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Abstract: Reflection fiber temperature sensors functionalized with plasmonic nanocomposite material
using intensity-based modulation are demonstrated for the first time. Characteristic temperature
optical response of the reflective fiber sensor is experimentally tested using Au-incorporated nanocom-
posite thin films deposited on the fiber tip, and theoretically validated using a thin-film-optic-based
optical waveguide model. By optimizing the Au concentration in a dielectric matrix, Au nanoparticles
(NP) exhibit a localized surface plasmon resonance (LSPR) absorption band in a visible wavelength
that shows a temperature sensitivity ~0.025%/◦C as a result of electron–electron and electron–phonon
scattering of Au NP and the surrounding matrix. Detailed optical material properties of the on-fiber
sensor film are characterized using scanning electron microscopy (SEM) and focused-ion beam (FIB)-
assisted transmission electron microscopy (TEM). Airy’s expression of transmission and reflection
using complex optical constants of layered media is used to model the reflective optical waveguide.
A low-cost wireless interrogator based on a photodiode transimpedance-amplifier (TIA) circuit with
a low-pass filter is designed to integrate with the sensor. The converted analog voltage is wirelessly
transmitted via 2.4 GHz Serial Peripheral Interface (SPI) protocols. Feasibility is demonstrated for
portable, remotely interrogated next-generation fiber optic temperature sensors with future capability
for monitoring additional parameters of interest.

Keywords: fiber optic temperature sensor; localized surface plasmon resonance; optical waveguide
modeling; reflection fiber probe; transimpedance amplifier; wireless interrogator

1. Introduction

Embedded temperature sensors that are low-cost and miniaturized to be widely acces-
sible in electrical transmission, energy storage, and power generation facilities have become
important to maintain the healthy condition of the device and predict early onset of thermal
failures without compromising the general operation and cost of the system. Fiber optic
sensors are favored over traditional thermal-resistive-based temperature sensors owing to
their compactness by nature and immunity to electromagnetic interference (EMI) in the
sensing conditions presented by electric power equipment. In particular, functional thin-
film-coated evanescent wave optical fiber sensors receive increasing attention due to their
lower fabrication cost compared to fiber Bragg Grating (FBG) or photonic crystal fiber (PCF)
temperature sensors, which require expensive femtosecond laser or stacking/drawing
equipment to produce the fiber, and their tunability of sensor performance by controlling
the doping level and microstructure of the film. Common dielectric materials such as
TiO2 were studied as functional thin film sensor elements on optical fibers based on the
thermal-optic effect of their refractive indices in response to temperature [1]. In the past
decade, the mechanism modulated by wavelength shifts due to the change in refractive
indices was further explored with the addition of noble metal film layers or metal NP
to various dielectric material hosts to induce surface plasmon resonance (SPR) or LSPR,
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respectively, creating resonance peaks that can be used as the primary interrogable spectral
feature [2–9].

LSPR responses have been demonstrated to be tunable in terms of spectral positions
and intensity by modifying precious metal doping levels and heat-treating temperature
to control particle size [10–13], and by changing the refractive index of the dielectric host,
such as using oblique deposition methods for the sensing films [14]. LSPR is a particular
type of SPR that happens when the propagating distance of surface plasmon polaritons
is confined to a scale comparable to the wavelength of incident light [15]. Unlike SPR, it
does not require total internal reflectance of propagating light to occur, making LSPR less
stringent to be produced and more readily leveraged in engineering of optical materials.
Not only were Au-incorporated nanocomposite films systematically characterized to assess
the potential sensing performances [16,17], but evanescent wave fiber optic temperature
sensors were also demonstrated to adopt Au NP in an oxide matrix as a cladding to detect
temperature variations based on shifts in optical transmission spectra [18–21]. However,
most works on plasmonic fiber optic sensors have focusing on using the mechanism of SPR
wavelength shifts, which is a result of refractive index change [22–24]. Interrogation with
wavelength-shifts associated with modifications to a real refractive index may suffer from
cross-sensitivity issues due to the fact that it is sensitive to any measurands which impact
the real index [25]. In addition, the cost of spectral shift-based interrogators is substantially
greater than that of intensity-based interrogation systems due to the need for low linewidth
sources and high wavelength resolution detection circuits. In contrast, LSPR intensity
modulation has the potential to discriminate multiple parameters with relatively low cost
and simple optical interrogation systems, because of the local change in spectral bands or
peaks in respond to each measurand. Nevertheless, a potential drawback of intensity-based
sensors can be the fact that their accuracy is highly dependent on the stability of the light
source, which can be mitigated by multi-wavelength referencing or monitoring the light
source intensity.

Prior work successfully demonstrated intensity-based Au/SiO2 LSPR optical fiber tem-
perature sensors in the transmission configuration with an intuitive interpretation of sensor
responses based upon the modified film LSPR absorption [26]. However, fiber sensors
configured as reflection probes offer distinct advantages in installation during in-operando
monitoring of energized electric power facilities such as high-voltage transformers. Naci
Inci et al. [27] demonstrated one of the first functional material-based reflection fiber tem-
perature probes with a TiO2 coating of 1 µm on the tip of a single-mode fiber, where the
temperature-dependent optical phase change within the TiO2 film is a function of the
thermal-optic coefficient and thermal expansion coefficient of the thickness of the film. The
results showed decreased reflectance at a single wavelength of 780 nm as the temperature
increased. In our work, we demonstrated the first reflection intensity-modulated fiber optic
temperature sensor by using a thin film composed of an Au-incorporated nanocomposite,
with absorption bands displaying temperature-dependent characteristics of LSPR. The
intensity-based temperature dependence is dominated by the resistivity, ρAu, of Au NP,
and is further modified by the optical constant of the matrix phase and thermal expansion.
As described in (1), by equating the definition of resistivity of metal to its correlation with
drift mobility of free electrons [28], the increased electron–electron and electron–phonon
scattering at the surface and bulk film under elevated temperatures increases ρAu. This
results in an increase in electron and phonon collision frequency, ωc, which dampens
the intensity of LSPR absorption band and modifies the reflectance of the film. m∗e is the
effective mass of free electron, e is electronic charge, T is temperature, N is electron density,
and C is an independent constant.

ρAu =
m∗e T
e2NC

=
m∗e ωc

e2N
(1)

A less obvious temperature effect is the red shift of the LSPR peak with increasing
temperature due to the increase in the refractive index of the matrix phase originating from
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the change in electronic polarization of the dielectric oxide with temperature. From the fiber
optic interrogation perspective, interrogators and light sources dominate system cost and
prevent fiber sensor probes being integrated into commercial power equipment [29]. Ragha-
van et al. [30] designed a wavelength-resolving detector that integrates a position-sensitive
photodetector with a dispersive-filter-coated detector to serve as a low-cost FBG interroga-
tor. Our previous works proposed a design of low-cost and wireless interrogation based
on a photodiode-TIA circuit that converts optical signals into simple electrical signals [31].
Here, we further incorporate a dual-stage amplifier design with a low-pass filter to account
for temperature response time and optical response resolution of the plasmonic sensor. This
wireless communicated interrogation is intended for field deployment of intensity-based
fiber sensors in medium/high voltage electrical assets, where remote monitoring without
electrical wires to access is a personnel and equipment safety requirement. Taken together,
to emphasize the practical advantage of reflection-based fiber sensors and wireless interro-
gation, and the cost-effectiveness of intensity-based sensor/interrogator, this work aims
to provide a theoretical guide towards reflection-mode optical waveguide modeling and
experimental validation. This is examined in the context of AuNP-incorporated oxide LSPR
temperature fiber sensors when combined with a wireless signal demodulation circuit,
which is an area that currently lacks discussion in the literature for these sensing materials
on an optical fiber platform.

2. Materials and Experimental Procedures
2.1. Materials Preparation and Characterization

Au/TiO2 and Au/SiO2 nanocomposite thin films are made by E-beam evaporation
(PLASSYS, Marolles-en-Hurepoix, France) and magnetron RF sputtering (Angstrom, Cam-
bridge, Ontario, Canada), respectively, in periodic multilayered structures. In preparing
Au/TiO2 films, three layers of titanium are evaporated at a rate of 0.01 nm/s for 15 nm each,
with two layers of gold alternately evaporated in between at a rate of 0.05 nm/s for 4.4 nm
each. The specified thicknesses are to ensure an approximate 10 vol% of Au after calcination
step considering the volume expansion from titanium oxidation. This process is performed
in a vacuum with a plasma etch cleaning step preceding the deposition. To reach oxidation
and spheroidization of fully dispersed Au NP, the Au/Ti film stacks are then subjected to a
post-calcination step in a tube furnace from room temperature to 900 ◦C in air at a ramping
rate of 2.5 ◦C/min, followed by isothermal hold at 900 ◦C for 2 h and a cooling step to room
temperature at a rate of 2.5 ◦C/min. Figure 1 illustrates the deposition and post-processing
of an example Au-NP-incorporated TiO2 thin film. In preparing Au/SiO2, three layers of
SiO2 are sputtered at a rate of 0.012 nm/s for 25 nm each, with two layers of gold alternately
sputtered in between at a rate of 0.05 nm/s for 4.5 nm each. The working pressure in the
sputtering chamber is set to be 5 × 10−3 Torr with an Argon working gas at a flow rate
of 10 sccm. The Au/SiO2 film stacks are heat-treated after the deposition using the same
calcination schedule described above. All nanocomposite thin films are coated on both
1-inch quartz disc and step-index multimode (MM) fiber (FG105UCA, Thorlabs, Newton,
NJ, USA) substrates. MM fiber segments 8 cm long are cleaved on one end. Both the fiber
and planar quartz substrates are then cleaned with IPA and ethanol before deposition. To
deposit films on the fiber tip, during all processes in the above deposition chambers, fiber
segments are held upright by Kapton tapes with the cleaved end facing the target materials.

The driving force for Au NP formation in the oxide matrix is a combined effect of
solid-state interfacial diffusion and a difference between bond energies of Au-Au and
Au-oxide. Figure 2 shows the SEM (ZEISS, Oberkochen, Germany) images of the calcined
fiber samples with Au/TiO2 or Au/SiO2 film deposited on the fiber tip. All SEM images
are performed in a variable-pressure mode with a low vacuum level at a chamber working
pressure of 4 × 10−4 to 7 × 10−4 mbar to prevent the charge accumulation on the non-
conductive oxide sample surfaces. Au/TiO2 and Au/SiO2 film on a fiber sensor tip are
characterized in Figures 2a and 2b, respectively. Although larger particles of approximately
1 µm can be observed on the surface, Au particles appear to be uniformly dispersed as
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shown in Figure 2c,d for both materials, with the majority of particles being much smaller
in size. Nanoscale Au spherical particles ranging from 100 to 200 nm can be seen in
Figure 2e on the surface of the Au/TiO2, whereas in Figure 2f, more elongated and islanded
shapes of Au particles are revealed on the surface of the SiO2 host. This is likely due
to the absence of grain boundaries in the amorphous SiO2 to effectively trap the NP on
the surface of the films. However, Au particle size distribution in Figure 2g,h shows that
much smaller (<50 nm) Au NP dominate in both the TiO2 and SiO2 matrix hosts, which
accounts for 57.5% of the NP in TiO2 and 50% of that in SiO2 matrices. This meets the
quasi-static approximation of propagating light wave in nanostructures and confines the
LSPR absorption bands in the visible range.
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Figure 2. Low-vacuum backscattered-electron SEM images of (a) Au/TiO2 and (b) AuSiO2 of a
fiber sensor tip. Uniform Au particle distribution at the surface of (c) TiO2 and (d) SiO2. Spherical
inclusions of Au NP in (e) TiO2 and (f) SiO2 at the nanoscale, with SiO2 showing more diverse shapes
of elongated Au particles. Au NP size distribution in (g) TiO2 and (h) SiO2 matrix.
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The larger particles tend to lie on the surface, resulting from enhanced surface diffusion
rates of Au atoms relative to the film interior. The optical properties of both materials are
first confirmed using planar quartz samples measured by standard spectrophotometer
(JASCO, Japan). As shown in Figure 3a, the Au/TiO2 sample exhibits an LSPR absorption
band with full width at half maximum (FWHM) spanning from 600 to 750 nm. Spectra
of Au/SiO2 in Figure 3b, on the other hand, have the FWHM of LSPR band at 500 to
550 nm. Despite the fact that most Au NP are spherical and less than 50nm in diameter,
the less symmetric and larger ones will tend to contribute additional absorption and
even scattering at longer wavelengths than would be predicted within the quasi-static
approximation, thereby shifting the spectral location of the LSPR and affecting the intensity
of the absorption peak [32]. This tends to raise heterogeneities among samples with the
same processing recipe. In addition to particle size, different spacing, resulting from
plasmon coupling and radiative dipole interaction between nearby Au NPs, is another
parameter to consider that can vary the spectral location of LSPR peak [33]. A systematic
analysis is required regarding the size, shape, and spacing distribution of the NP inclusions
and their effect on the effective optical constants of the nanocomposite medium, and thus
the LSPR spectral properties, for high quantitative accuracy of LSPR optical response
modeling. Nevertheless, the quasi-static approximation can still yield useful insights for
comparative benchmarking with experimental results and trends observed in practice.
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2.2. Sensor and Conventional Interrogation Setup

The reflection-based fiber sensor is made by fusion-splicing a MM fiber sensor segment,
105 µm in core diameter, to a wideband MM circulator (WMC1H1S, Thorlabs, Newton, NJ,
USA), as shown in Figure 4. Lead fibers at port 1, 50 µm in core diameter, are connected
in free space to the light source; whereas fibers at port 2 and 3, with core diameter of
105 µm, are spliced and connected to the sensor element and the interrogator, respectively.
Temperature sensing experiments are performed using the conventional interrogation
equipment: a Halogen broadband white light source (Ocean Insight, Orlando, FL, USA)
with Flame UV-VIS spectrometer (Ocean Insight, Orlando, FL, USA). As shown in Figure 5,
the optical fiber is inserted in a tube furnace (MTI, Richmond, CA, USA), with the sensor
probe being placed at the center of the heating zone. A k-type thermocouple is placed from
the other end into the quartz tube in vicinity of the fiber sensor to calibrate the temperature
readings. The furnace is programmed to ramp from room temperature to 500 ◦C in 30 min,
with an isothermal hold for 10 min and subsequently cooled down by air. The data
sampling rate of the thermocouple logger is set to be 1 s−1. Data acquisition parameters of
the spectrometer depend on the reflectance of the post-annealed nanocomposite deposited
on the sensor tip. For Au/TiO2 sensors, the integration time is set to be 3 to 5 ms. However,
10 to 12 ms of integration time is needed for Au/SiO2 sensors due to the lower reflection
intensity of the SiO2. For all sensors in this setup, 100 scans of spectrums are averaged
to obtain one visible range of spectral data. The data update rate is set to be 1 s−1. The
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spectral resolution of the spectrometer is 1.35 nm with a boxcar averaging width of 5 data
points being applied to increase the signal-to-noise ratio (SNR).
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arrows indicate the coherent oscillation of free electrons in Au NPs with charge separation, while the
blue surface represents the oxide matrix surrounding the Au NPs.
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2.3. Wireless Interrogation

The low-cost interrogator circuit consists of a pigtailed photodiode (FDSP625, Thor-
labs), dual-stage amplifiers, two Arduino Uno microcontroller boards, and two wireless
transceiver modules (nRF24L01+), with a total build cost of ≤USD 250. The detailed op-
eration principles of TIA was described previously in our work [31]. Here, an updated
design of the dual-stage TIA is shown in Figure 6a. A single wavelength fiber-coupled
LED (M530F2, Thorlabs) is used as the light source. Briefly, the photocurrent, IPD, from
the diode is converted into output voltage, V0, by the operational amplifier (Op-Amp),
and later transmitted by the microcontrollers. The max. and min. of the photocurrent and
output voltage define the gain of the Op-Amp, which is also represented by the feedback
resistor. The photocurrent change from the sensor is designed to be amplified to the voltage
input range of the Arduino analog-to-digital converters (ADC), and a DC offset is added for
the minimum current to correspond to the minimum voltage of the ADC. The internal ADC
reference voltage of the Arduino is 1.1 V. The dual-stage amplifier consists of a high-gain
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transimpedance amplifier, U1, cascaded into a low-gain amplifier, U2, with filtering and
a DC offset [34]. The cut-off frequency of the low-pass filter is defined by R0 and C0 to
capture the low frequency of temperature optical response. The DC offset is controlled by
resistors R1 and Rg2 that form a voltage divider, and the gain is customized by resistors
R f 2, Rg1 and Rg2 through two potentiometers. The non-inverting input of U2 takes the
voltage produced by the first stage, and its inverting input receives voltage produced by
the voltage divider. With the component values chosen, this circuit can provide signal gain
between 0.07 V/nA and 0.33 V/nA and up to 90V of negative DC offset. For a proof of
concept, the nanocomposite reflection fiber sensor is spliced with the photodiode and inte-
grated with the low-cost customized TIA interrogator to test the voltage output. Figure 6b
shows the reversibility of the voltage variations wirelessly transmitted as a function of
input optical intensity by manual adjustment of the LED driver over a short period of
time. The transmitter-integrated Arduino is programmed to take 100 voltage samples
each second and average them to mitigate the noise inherent to a high-gain system. The
nRF24L01+ wireless modules communicate with the Arduino through an SPI interface
and transmit/receive signals in the 2.4 GHz band. Data is collected and logged from the
receiver using the USB interface of the Arduino at a sampling rate of 1 s−1 after the data
pre-processing. The entire low-cost wireless interrogator is presented in Figure 7. Two 9 V
batteries are connected in series to power the entire interrogator circuit. Alternative power
supply options are being considered for future prototypes.
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3. Theoretical Modeling Procedures

In order to benchmark and validate the experimental results of LSPR plasmonic sen-
sors, we developed an analytical model that combines thin-film optics and an optical
waveguide in reflection geometry carried out in MATLAB programming. This model
consists of two major parts: optical constant models of different Au-incorporated nanocom-
posites in a visible range and an MM fiber wave optics model that starts from a collimated
light source through the lead fiber to the nanocomposite film, implemented by Fresnel and
Airy’s expression of transmission and reflection coefficients in layered media.

3.1. Optical Constant Modeling

Optical constant models using Sellmeier dispersion relations of SiO2 and TiO2 were
described in detailed in our previous work [31], with the degree of birefringence of TiO2
polycrystalline tetrahedral structure neglected. Constant thermo-optic coefficients of
1.28 × 10−5/K and−1.49× 10−4/K are used for SiO2 and TiO2, respectively, to capture the
temperature dependence of refractive indices [20,27]. On the other hand, optical constants
of Au NP, nAu, requires a careful consideration of both the electronic intraband absorption
in the longer visible range and the interband absorption in the shorter, visible-to-UV range.
This is modeled by a linear combination of interband transition term of the dielectric con-
stant of Au, εIB

Au, and a Drude oscillator in (2). ε∞ is the high frequency limit of dielectric
constant of Au. The asymmetric line shapes of the two interband transition peaks render
it difficult to model εIB

Au without using many Lorentz oscillators with phenomenological
fitting parameters. Therefore, critical point analysis of interband transitions [35] are per-
formed in (3) with parameters acquired from Etchegoin et al. [36], where Cj is the amplitude,
ϕj the phase, Ej the interband energy gap, τj the broadening parameter for the jth critical
point, and µj the order of the pole. As simulated in Figure 8a, two dominant interband
electronic transition features are captured in the 300 to 400 nm region. The same interband
transition features can be seen in the corresponding complex dielectric function of Au NP
in Figure 8b. The temperature dependence of Au NP lies in the Drude term in (2), where
ωp is plasma frequency as a function of temperature and a thermal expansion coefficient of
Au, γe, as in (4) [37]. ω is the frequency components of incident light, and ωc, in (5), is a
size-dependent collision (damping) frequency as a result of the electro–electron scattering
frequency, ωce, and the electron–phonon scattering frequency, ωcp. vF is the Fermi velocity
representing free electrons travelling in Au, and rnp is the Au nanoparticle size. Electro–
electron scattering in (6) is modeled by the Lawrence expression [38], whereas the Holstein
model in (7) is based on the Debye model of phonon’s specific heat contribution in solids
and is used to model electron–phonon scattering [39]. Γ is scattering probability averaged
over the Fermi surface, ∆ is Umklapp fractional scattering, EF is the Fermi energy, h is the
Dirac constant, kB is the Boltzmann’s constant, TD is the Debye temperature, and ω0 is a
frequency constant.

nAu(ω, T) =

√
εIB

Au + ε∞ −
ω2

p

ω(ω + iωc)
(2)

εIB
Au = ∑2

j=1Cj

[
eiϕj
(
Ej − E− iτj

)µj + e−iϕj
(
Ej + E + iτj

)µj
]

(3)

ωp(T) = ωo
p[1 + γe(T − 298)]−1/2 (4)

ωc(T) = ωce(T) + ωcp(T) +
vF
rnp

(5)

ωce(T) =
1
6

π4 Γ∆
h EF

[
(kBT)2 +

(
hω

4π2

)2
]

(6)
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ωcp(T) = ω0

[
2
5
+ 4
(

T
TD

)5 ∫ TD/T

0

z4 dz
ez − 1

]
(7)

εe f f − εoxide

εe f f + 2εoxide
= fAu

εAu − εoxide
εAu + 2εoxide

(8)
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To derive the optical constant models for Au–oxide nanocomposites, Maxwell–Garnet
effective medium theory, (8), is used. εe f f gives the effective complex dielectric constant of
the nanocomposite with Au NP assumed as spherical inclusions for simplicity, where the
depolarization factor equals to 1. fAu is the volume fraction of Au NP doped in the oxide
matrix. A total of 10 vol% of Au NP is assumed for all simulations in this work due to the
temperature sensitivity analysis in our previous work [31] and the mechanical strength of
the actual nanocomposite film studied by Rodrigues et al. [40]. Using Equation (8) and the
parameters described in Table 1, the resulting optical constants of Au/TiO2 and Au/SiO2
are shown in Figure 8c,d. At the same Au doping level, Au/TiO2 shows a larger extinction
coefficient in the anomalous dispersion region than Au/SiO2 due to the larger real index of
TiO2 incorporated in the Maxwell–Garnet equation and the lack of an interband electron
absorption overlaying the LSPR.
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Table 1. Model parameters used to generate optical constants and dielectric functions of Au nano
particles in Figure 8.

Model Parameter of Au NP Value

High frequency dielectric constant (ε∞) 1.5
Plasma frequency at room temp. (ωo

p) 1.418× 1016 rad/s

Thermal expansion coefficient (γe) 1.42× 10−5 K−1

Fermi velocity of free electrons (vF) 1.4× 106 m/s

Assumed averaged Au NP size (rnp) 20 nm
Scattering probability (Γ) 0.55

Umklapp fractional scattering (∆) 0.77
Fermi energy (EF) 5.53 eV

Debye temperature (TD) 185 K
Frequency constant (ω0) 1.0698× 1014 rad/s

3.2. Optical Waveguide Modeling

Figure 9a illustrates the optical waveguide model of a fiber optic reflection sensor. The
first step of the model assumes a broadband light source that launches through a pair of
plano-convex lenses. These lenses are assumed to be made of MgF2-coated N-BK7 glass
with a real index of 1.5 and a diameter, D, of 12.7 mm. Lenses are assumed to be coupled
with the lead fiber in the air. The numerical aperture (NA) of a lens is a function of its
refractive index, radius of curvature, R, and the emission diameter, d, of the light source.
The effective focal length (EFL) of the lens is defined by the lensmaker’s equation [41],
and the back focal length (BFL) can be found by assuming a constant value for the edge
thickness (ET) of the lens. ET is the thickness of the lens to a principal plane, p, where the
light mode bends due to refraction in the lens. By requiring that the NA of the MM fiber,
0.22, equals to that of the plano-convex lenses, the emission diameter of the source can
be determined to form a trigonometric relation with BFL. This derives and confines the
incident angle into the fiber to a specific range, which simulates core modes transmitting
through the lead fiber of the sensor. A multilayered media can be envisioned when the core
modes enter the lead fiber, creating three interfaces: air-core, core-film, and film-air. Each
interface is conditionally implemented by Snell’s law and critical angle calculation if total
internal reflection can be satisfied. This determines the refraction angle of every opposing
medium. For simplicity, we assume the optical loss due to core-cladding mode coupling
is negligible and each core mode is propagating independently throughout the process.
From light source to detector, the roundtrip propagation of a complete optical signal can
be simulated at three steps: forward propagation at the entrance fiber, propagation and
multi-reflection within the nanocomposite sensor film, and backward propagation at the
exit fiber connected to the detector. The final total reflectance of the fiber sensor received by
the detector is estimated as:

Rtotal = Tf ·R f ilm·Tb (9)

where Tf and Tb are transmittances calculated at the air/core interfaces at the entrance and
exit, respectively. Assuming isotropic and linear wave optics, this is implemented using
simple Fresnel transmission and reflection coefficients to derive the corresponding transmit-
tance and reflectance. However, R f ilm, the effective reflectance of the silica core/film/air
media, entails a careful consideration because of the finite thickness of thin solid films
falling into the scale of the coherence length of propagating light wave. This condition
is described in (10), where l is the thin film thickness, λ the incident wavelength, n2 the
complex optical constants of the film, ∆λ the spectral bandwidth of the light source [42].

l ≤ λ2

2πn2∆λ
(10)

t =
t12t23e−iϕ

1 + r12r23e−2iϕ (11)
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r =
r12 + r23e−2iϕ

1 + r12r23e−2iϕ (12)

ϕ(T) =
2πln2cosθc

2
λ

[
1
l

dl
dT

+
1
n2

dn2

dT

]
(13)

R f ilm = |r|2 (14)

Tf ilm =
n3cosθc

3
n1cosθc

1
|t|2 (15)
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The multiple internal reflections within the film contribute to both the effective trans-
mission coefficient and reflection coefficient of the thin film in (11) and (12), respectively.
They are also called the expressions of Airy’s summation [43], which consist of: t12 and
r12, the simple Fresnel transmission and reflection coefficients at the core/film interface;
and t23 and r23, those at the film/air interface illustrated in Figure 9a. The resulting
phase gain, ϕ, from the thin film propagation is described in (13) as a function of tempera-
ture. This temperature dependence comes from both the thermo-optic effect ( dn2

dT ) of the
complex optical constants described in the previous section and the thermal expansion
( dl

dT ) of the thickness of the film [27]. The thermal expansion coefficient used for TiO2

is 7.14 × 10−6/K [27], and 2.4 × 10−7/K for SiO2 [44]. The baseline thicknesses of the
simulated Au-oxide nanocomposite films are assumed to be 85 nm at room temperature,
which are approximately the same as the film fabricated in the experimental recipe and
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measured in the subsequent sample characterization. S-polarized and p-polarized waves
are both considered in deriving the simple Fresnel coefficients, which gives two sets of
Airy’s effective transmission and reflection coefficients for later being averaged in (14) to
obtain the effective reflectance and in (15) for effective transmittance. The simulated reflec-
tion fiber sensor absolute reflectance in response to temperature is shown in Figure 9b,c for
Au/TiO2 and Au/SiO2 nanocomposite functional coatings. The Au/TiO2 sensor shows a
higher temperature response in the relevant LSPR wavelength region than the Au/SiO2
sensor. This is a direct result of the refractive index of the polycrystalline TiO2 being 1.5
to 2.5 times the index of amorphous SiO2 in the visible range. In theory, the Au/TiO2 is
thus expected to exhibit a higher temperature sensitivity than AuSiO2 in reflectance of a
reflection configured fiber optic sensor at the same Au nanoparticle loading.

4. Results and Discussion

The temperature sensing experiments are conducted in real-time using the furnace
setup described in Section 2.2. to compare the plasmonic-induced temperature sensitivity
of the two reflective nanocomposites and validate against their theoretical performance
modeling results. To simulate the spectral baseline of the interrogation software (OceanView
2.0), the comparative modeling results are completed by assuming that 100% of the absolute
reflectance of the Au–Oxide reflection sensor modeled at 22 ◦C is served as the baseline
reference. The subsequent temperature-dependent spectra at all elevated temperatures are
obtained by dividing the modeled absolute reflectance at those temperatures by the baseline
and normalized with a value of 100% to complete the relative reflectance. Figure 10a shows
the experimental results of an Au/TiO2 reflection sensor changing as the environmental
temperature increases from room temperature to 500 ◦C. All spectral convex features within
the visible region are captured and confirmed experimentally when compared to their
simulation counterpart in Figure 10b. The characteristics in the visible range are dominated
by the LSPR absorption of Au NP inclusion, with the one from 600 nm and onwards being
dominating, which can be observed from the absolute reflectance spectrum in Figure 9b.
As for the absorption band before 600 nm, the convex-upward band at 500 to 550 nm
decreases in intensity with temperature. The convex-downwards feature at 450 to 500 nm
and 550 to 600 nm are shown to be increasing with temperature in the modeling but is
observed to first increase then drop in relative reflectance at higher temperatures due to
the spectral damping effect from the 500 to 550 nm band being in the immediate vicinity.
Although the experimental results validate the spectral feature locations for the Au/TiO2
sensor, the peak change in reflection intensity is lower than the model in theory would
predict. We hypothesize that these intensity deviations derive from the discrepancies
between the assumed uniform film thickness, neglected TiO2/air surface and TiO2/fiber
interface roughness, average particle size and spherical shape of Au NPs in the model
and those formed in the fabricated sample, as well as the polycrystalline microstructure
of the Au/TiO2 sample. However, the Au/SiO2 shows good agreement both in terms
of the intensity change and the major LSPR peak, as shown in Figure 11a,b. At low
temperatures, 22 to 200 ◦C, the Au/SiO2 shows a higher approximately linear response
with a temperature sensitivity of 0.04%/◦C, which is the temperature range of interest
for electric power equipment thermal health monitoring. The convex-upward band at
500 to 600 nm has an accuracy of relative reflectance intensity change within ±3% when
being benchmarked against the simulated intensity change in Figure 11b. Both sensing
layers in the reflection fiber optic configuration show potential for temperature sensing
in normal operational temperature rises in electrical power equipment, as well as high
temperature monitoring in applications under extreme conditions. This could be relevant
for a wide range of other harsh environment applications including aviation aerospace,
power generation, and industrial manufacturing processes.
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Figure 11. (a) Experimental results of the optical response of an Au/SiO2 plasmonic reflection sensor
under temperature sensing test. (b) Simulated optical response to temperature of the same using the
optical waveguide model.

Figure 12a presents a detailed analysis of the optical responses of different characteris-
tic peaks of LSPR under normal operation temperatures ranging from room temperature
to 200 ◦C. The analysis shows both ascending and descending trends at different peaks
for the Au/TiO2 sensor. Among these peaks, the 700 nm peak exhibits the most stable
response over an extended range, whereas the 450 nm peak demonstrates better sensitivity
at temperatures below 200 ◦C. Moreover, the multiple LSPR features presented by Au/TiO2
reflection spectra offer a unique potential of decoding simultaneous multivariate sensing
beyond the temperature measurand alone, as shown in prior work [21,45]. Sensitivities of
two sensing materials are recorded in real time in Figure 12b, where the Au/TiO2 sensor
is interrogated at 700 nm and the Au/SiO2 sensor at 510 nm. The percentage changes in
relative reflectance as a function of temperature are plotted to build a comparative case. At
the respective interrogation wavelengths, the Au/SiO2 sensor yielded a higher averaged
temperature sensitivity of 0.025%/◦C than that of Au/TiO2 at around 0.01%/◦C, at respec-
tive wavelengths. The response linearity of the two sensors can be represented by the R2

value of the linear fit, which is 0.97428 and 0.97367 for Au/TiO2 and Au/SiO2, respectively.
The observed quantitative experimental results are impacted by experimental details of the
film morphologies and microstructure, which is expected to explain deviations from the
quasistatic modeling approximation for Au/TiO2.
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zone axis, confirms the Face-Centered-Cubic (FCC) phase of the
Au nanoparticle, whereas TiO2 is confirmed to be in a stable rutile phase, as shown in
Figure 13d, along the [211] zone axis. In addition, this agrees with the X-ray diffraction
(XRD) patterns conducted on nanocomposite thin film planar samples, shown in Figure 13e.
XRD experiment is performed at grazing incidence with an Empyrean X-ray Diffractometer
(Malvern Panalytical, Malvern, UK) using a cobalt source. A close comparison between
the experimental XRD patterns and the standard XRD patterns of Au and TiO2 shows that
the Au/TiO2 nanocomposite calcined at 900 ◦C is rutile phase dominated and showing the
major Au FCC diffraction peaks.
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embedded in the TiO2 matrix. (b) HRTEM image of a representative Au nanoparticle at the interface
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. (d) FFT pattern of TiO2 in the surrounding region of the Au nanoparticle along

the zone axis [211]. (e) Grazing incidence XRD pattern of a reference Au/TiO2 planar sample on
quartz disc made by the same recipe as the fiber sample in (a).

5. Conclusions

We have experimentally confirmed the developed LSPR optical waveguide model
for two exemplar Au-incorporated nanocomposite thin films fabricated in a simple reflec-
tion fiber probe configuration by an optical circulator. Physics-based optical waveguide
modeling has proved to be an essential tool to benchmark the optical sensing performance
for fiber optic sensors using functional material cladding. Both Au/TiO2 and Au/SiO2
nanocomposite sensors exhibit reasonable agreement, with Au/SiO2 being the more readily
validated one in practice and therefore appears to have greater potential sensitivity for
use as a reflection fiber probe for point temperature sensing in electrical power facilities.
Au/TiO2, on the other hand, shows potential in multi-parameter sensing by identifying
different representative LSPR absorption bands in the reflection spectrum. This can be
particularly important for challenging environments where both temperature-rise and
off-gassing are convoluted events that indicate imminent failures. With the experimental
demonstrations up to 500 ◦C and potential for even higher temperatures, both sensing
materials also show capability to be deployed in extreme temperatures and harsh envi-
ronments for relevant applications. From a practical deployment perspective, the concept
of low-cost interrogators based on a simple dual-stage TIA circuit with customized gain
and filtering for intensity-based fiber temperature sensors has been demonstrated, with an
additional advantage of wireless signal transmission to prevent hazardous high-voltage
contacts during field equipment monitoring. The reflection configuration of the sensor
probe itself also provides a geometrical advantage for the ease of installation. Future
exploration in this topic can be expanded to further optimize both the temperature sen-
sitivity and accuracy by incorporating bimetallic nanoparticles in stable oxide matrices.
The temperature-dependent electron and phonon scattering based on plasmon coupling of
different noble metals can provide more control parameters for the tunability of functional
thin-film-based fiber optic temperature sensors. In addition, bivariate temperature and gas
sensing can be studied using metal NP-incorporated thermo-optic dielectrics with high
selectivity towards targeted gas species.
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