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ABSTRACT 

Prototyping is the pivotal activity that structures innova-
tion, collaboration, and creativity in design. Prototypes 
embody design hypotheses and enable designers to test 
them. Framing design as a thinking-by-doing activity fore-
grounds iteration as a central concern. This paper presents 
d.tools, a toolkit that embodies an iterative-design-centered 
approach to prototyping information appliances. This work 
offers contributions in three areas. First, d.tools introduces 
a statechart-based visual design tool that provides a low 
threshold for early-stage prototyping, extensible through 
code for higher-fidelity prototypes. Second, our research 
introduces three important types of hardware extensibility 

— at the hardware-to-PC interface, the intra-hardware 
communication level, and the circuit level. Third, d.tools 
integrates design, test, and analysis of information appli-
ances. We have evaluated d.tools through three studies: a 
laboratory study with thirteen participants; rebuilding pro-
totypes of existing and emerging devices; and by observing 
seven student teams who built prototypes with d.tools. 

ACM Classification: H.5.2. [Information Interfaces]: User 
Interfaces — input devices and strategies; interaction 

styles; prototyping; user-centered design. D.2.2 [Software 
Engineering]: Design Tools and Techniques — State dia-

grams; user interfaces. 

General terms: Design, Human Factors 

Keywords: Toolkits, information appliances, design tools, 
prototyping, integrating physical & digital, design thinking 

INTRODUCTION 

Ubiquitous computing devices such as information appli-
ances — mobile phones, digital cameras, and music play-
ers—are growing quickly in number and diversity. To 
arrive at usable designs for such physical UIs, product 
designers commonly build a series of prototypes — ap-
proximations of a product along some dimensions of inter-
est. These prototypes are the pivotal media that structure 
innovation, collaboration, and creativity in design [21, 32]. 
Design studios pride themselves on their prototype-driven 
culture; it is through the creation of prototypes that design-
ers learn about the problem they are trying to solve. 

Reflective practice, the framing and evaluation of a design 
challenge by working it through, rather than just thinking it 

through, points out that physical action and cognition are 

interconnected [23, 30]. Successful product designs result 
from a series of “conversations with materials.” Here, the 
“conversations” are interactions between the designer and 
the design medium — sketching on paper, shaping clay, 
building with foam core [31]. The epistemic production 
[22] of concrete prototypes  affords unexpected realizations 
that a designer could not have arrived at without producing 
a concrete artifact. This articulation of design as a thinking-
by-doing activity foregrounds iteration as a central concern 
of design process. And indeed, product designer Michael 
Barry argues that, “the companies that want to see the most 
models in the least time are the most design-sensitive; the 
companies that want that one perfect model are the least 
design sensitive.” [33] 

In this paper, we suggest iteration as a core concern for UI 
tools and present d.tools, a design tool that embodies an 
iterative-design-centered approach to prototyping physical 
UIs (see Figure 1). This work offers three contributions.  

The first contribution is a set of interaction techniques and 
architectural features that enable d.tools to provide a low 

threshold for early-stage prototyping. d.tools introduces a 
visual, statechart-based prototyping model (see Figure 2) 
that extends existing storyboard-driven design practice [19]. 
To provide a higher ceiling than is possible with visual 
programming alone, d.tools augments visual authoring with 
textual programming. 

Figure 1. Toolkit support for design thinking: d.tools inte-
grates design, test, and analysis for physical prototyping. 



 

 

Second, d.tools offers an extensible architecture for physi-
cal interfaces. In this area, d.tools builds on prior work [4, 
7, 9, 13, 14, 26] that has shielded software developers from 
the intricacies of mechatronics through software encapsula-
tion, and offers a similar set of library components. How-
ever, the d.tools hardware architecture is significantly 
more flexible than prior systems by offering three exten-
sion points — at the hardware-to-PC interface, the intra-
hardware communication level, and the circuit level — that 
enable experts to extend the library.  

Third, d.tools integrates design, test, and analysis of infor-
mation appliances. In test mode, d.tools records a video of 
the user’s interaction with the physical device and logs 
interaction events to structure the video. Analysis mode 
uses this integration of video and event logs to facilitate 
post-test review of usability data. While iterative design is 
central to current practice, few tools — the notable excep-
tion being SUEDE [24] — have explored how this cycle can 
be facilitated through computation.  

The rest of the paper is organized as follows. We begin by 
outlining key findings of fieldwork that motivated our 
efforts. We then describe the key interaction techniques for 
building, testing and analyzing prototypes that d.tools of-
fers. We next outline implementation decisions and con-
clude with a report on three different strategies we have 
employed to evaluate d.tools. 

FIELDWORK 

To learn about opportunities for supporting iterative design 
of ubiquitous computing devices, we conducted individual 
and group interviews with eleven designers and managers 
at three product design consultancies in the San Francisco 
Bay Area, and three product design masters students. This 
fieldwork revealed that designing off-the-desktop interac-

tions is not nearly as fluid as prototyping of either pure 
software applications or traditional physical products.  

Most product designers have had at least some exposure to 
programming but few have fluency in programming. De-
sign teams have access to programmers and engineers, but 
delegating to an intermediary slows the iterative design 
cycle and increases cost. Thus, while it is possible for in-
teraction design teams to build functional physical proto-
types, the cost-benefit ratio of “just getting it built” in 
terms of time and resources limits the use of comprehen-
sive prototypes to late stages of the design process. Com-
prehensive prototypes that integrate form factor (looks-like 
prototypes) and functions (works-like prototypes) are 
mostly created as expensive one-offs that serve as presenta-
tion tools and milestones, but not as artifacts for reflective 
practice. 

Interviewees reported using low-fidelity techniques to 
express UI flows, such as Photoshop layers, Excel spread-
sheets, and sliding physical transparencies in and out of 
cases (a glossy version of paper prototyping). However, 
they expressed their dissatisfaction with these methods 
since the methods often failed to convey the experience 
offered by the new design. In response, we designed 
d.tools to support rapid construction of concrete interaction 
sequences for experience prototyping [10] while leaving 
room to expand into higher-fidelity designs for presenta-
tions. 

REFLECTIVE PROTOTYPING WITH D.TOOLS 

In this section we discuss the most important interaction 
techniques that d.tools offers to enable the rapid design and 
evaluation of interactive physical devices. d.tools supports 
design thinking rather than implementation tinkering. Us-
ing d.tools, designers place physical controllers (e.g., but-
tons, sliders), sensors (e.g., accelerometers, compasses), 

Figure 2. Left: The d.tools software authoring environment offers (1) a device designer; (2) a statechart editor; (3) a source 
code editor; and (4) an image browser. Right: The d.tools hardware interface (5) connects compatible hardware inputs (6) 
to the PC. d.tools includes authoring support for small LCD screens (7). 



 

 

and output devices (e.g., LEDs, LCD screens, and speakers) 
directly onto their physical prototypes. The d.tools library 
includes an extensible set of smart components that cover a 
wide range of input and output technologies. In design 

mode, software duals of physical I/O components can be 
graphically arranged into a visual representation of the 
physical device (see Figure 2, part 1). On the PC, designers 
then author behavior using this representation in a visual 
language inspired by the statecharts formalism [16] (see 
Figure 2, part 2). d.tools employs a PC as a proxy for an 
embedded processor to prevent limitations of embedded 
hardware from impinging on design thinking. 

Designers can test their authored interactions with the 
device at any point in time, since their visual interaction 
model is always connected to the “live” device. When 
seeking to gather feedback from others, designers switch to 
test mode. In test mode, d.tools records live video and 
audio of user interactions with the prototype — important 
for understanding ergonomics, capturing user quotes, and 
finding usability problems. d.tools also logs all user inter-
action events and uses this log to automatically structure 
the test videos. Video can provide critical usability insights 
and aid in communicating these insights to other team 
members, but working with usability video can be prohibi-
tively time-consuming [27]. d.tools interactions with struc-
tured video enable rapid usability analysis through aggre-
gate data visualization, fast access to video data through 
the visual interaction model and vice versa, and finally 
comparative evaluation of multiple user tests in a video 
matrix. 

DESIGNING A PROTOTYPE 

This section presents d.tools support for authoring interac-
tion models with physical I/O components. As an example 
scenario, consider a designer creating a handheld GPS unit 
featuring tilt-based map navigation.  

Designing physical interactions with “plug and draw” 

Designers begin by plugging 
physical components into 
the d.tools hardware 
interface (which connects to 
their PC through USB) and 
working within the device designer of the authoring envi-
ronment. Physical components announce themselves to 
d.tools, creating virtual duals in this editor. Alternatively — 

when the physical components are not at hand or designing 
interactions for a control that will be fabricated later — 

designers can create visual-only input and output compo-
nents by dragging and dropping them from the device edi-
tor’s palette. A designer can later connect the correspond-
ing physical control or, if preferred, even manipulate the 
behavior via Wizard of Oz [20] at test time.  

In the device editor, designers create, arrange and resize 
input and output components, specifying their appearance 
by selecting images from an integrated image browser. 
This iconic representation affords rapid matching of soft-
ware widgets with physical I/O components. 

The component library available to designers comprises a 
diverse selection of buttons, switches, sliders, knobs, and 
RFID readers. Outputs include LCD screens, LEDs, and 
speakers. LCD and sound output are connected to the PC 
A/V subsystem, not our hardware interface. In addition, 
general purpose input and outputs are available for design-
ers who wish to add custom components. Physical and 
virtual components are linked through a hardware address 
that serves as a unique identifier of an input or output.  

Authoring interaction models 

Designers define their prototype’s behavior by creating 
interaction graphs in the statechart editor (see Figure 2). 
States are graphical instances of the device design. They 
describe the content assigned to the outputs of the proto-
type at a particular point in the UI: screen images, sounds, 
LED behaviors. States are created by dragging from the 
statechart editors palette onto the graph canvas. As in the 
device editor, content can be assigned to output compo-
nents of a state by dragging and dropping items from the 
asset library onto a component. All attributes of states, 
components and transitions (e.g., image filenames, event 
types, data ranges) can also be manipulated in text form via 
attribute sheets.  

Transitions represent the control flow of an application; 
they define rules for switching the currently active state in 
response to user input (hardware events). The currently 
active state is shown with a red outline. Transitions are 
represented graphically as arrows connecting two states.  

To create a transition, designers mouse over 
the input component which will trigger the 
transition and then drag onto the canvas. A 
target copy of the source state is created and 
source and target are connected. Transitions 
are labeled with an icon of the triggering 

input component.  

Conditions for state transitions can be composed using the 
Boolean AND and OR. A single such connective is applied 

to all conditionals on a transition arrow, as 
complex Boolean expressions are error-
prone. More complex conditionals can be 
authored by introducing additional states. 
This allows authoring conditionals such as 
“transition if the accelerometer is tilted to 

the right, but only if the tilt-enable button is held down 
simultaneously.”  

Within the visual editor, timers can be added as input com-
ponents to a device to create automatic transitions or (con-
nected with AND to a sensor input) to require a certain 
amount of time to pass before acting on input data. Auto-
matic transitions are useful for sequencing output behav-
iors, and timeouts have proven valuable as a hysteresis 
mechanism to prevent noisy sensor input from inducing 
rapid oscillation between states.  

While the statechart’s visual representation aids a 
designer’s understanding of the control flow, complex 
designs still benefit from explanation. d.tools supports 



 

 

commenting with text notes that can be freely placed on the 
statechart canvas.  

Demonstrating transitions 

Through our own prototyping practice and through student 
projects built with d.tools, we discovered that fine-tuning 
parameters of continuous sensors is a time-consuming, 
trial-and-error process. Mapping sensor values to discrete 
categories is further complicated by noise and non-linear 
responses. The time taken “tuning the dials” could be better 
spent exploring the design space.  

d.tools facilitates parameter setting in two 
ways. First, the Sensor Data View pre-
sents a real-time visualization of all at-
tached continuous sensors. Second, 
ranges of sensor data that trigger transi-
tions can be authored by demonstration. 

The designer selects the input icon on the transition that 
represents the desired continuous input, bringing up a real-
time display of the sensor’s current value and history. The 
designer then performs the desired interaction with the 
physical prototype (e.g., tilting an accelerometer to the 
right or moving a slider) and presses keys to define upper 
and lower thresholds for the transition. This technique 
replaces needing to set numerical sensor values through 
trial-and error parameter modification with a physical 
demonstration technique. This approach lends itself to 
future work on machine-learning by demonstration for 
capturing more complex input patterns (cf. [12]).  

Raising the ceiling 

The statechart-based visual programming model embodied 
in d.tools enables rapid design of initial comprehensive 
prototypes, but the complexity of the control flow and 
interactive behavior that can be authored is limited. To 
support later phases of design, when labor and expertise 
permit higher-fidelity prototyping, d.tools provides two 
mechanisms that enable more complex interactions: paral-
lel statecharts and extending statecharts with code. 

Expressing parallelism in single point-of-
control automata results in an exponen-
tially growing number of states. Our first-
use study also showed that expressing 

parallelism via cross-products of states is not an intuitive 
authoring technique. To support authoring parallel, inde-

pendent functionality, multiple states in d.tools can be 
active concurrently in independent subgraphs (e.g., the 

power button can always be used to turn the device off, 

regardless of the other state of the model).  

Designers can attach Java code to 
visual states to specify behaviors that 
are beyond the capability of the 
visual environment (e.g., dynami-
cally generate graphics such as map 

annotations). The right-click context menu for states offers 
actions to edit and hook or unhook Java code for each state. 
The first time a designer chooses to add code, d.tools gen-
erates a skeleton source code file and opens a Java editor. 
We leverage the Eclipse programming environment to 
provide auto-completion, syntax highlighting, and inte-
grated help. Eclipse automatically compiles, loads, and 
updates code. d.tools offers a compact API that calls de-
signers’ functions on transition and input events, allows 
designers to query input state of any attached hardware, 
gives write access to attached outputs (e.g., to program-
matically change the image shown on the LCD screen), and 
allows remote control of third party applications (see Table 
1). Using this API, two of the authors prototyped acceler-
ometer-based zoom and pan control for the Google Earth 
application in less than 30 minutes.  

Executing interaction models at design time 

Designers can execute interaction models in three ways. 
First, they can manipulate the attached hardware; the pro-
totype is always live. Second, they can imitate hardware 

events within the software workbench by using a simula-
tion tool where the cursor can be used to click and drag 
virtual inputs that will then generate appropriate event 
transitions. Finally, designers can employ the Wizard Of Oz 
[20, 24] technique by operating the prototype’s visual rep-
resentation. In all cases, the prototype is fully interactive. 

TESTING & ANALYZING PROTOTYPES 

d.tools provides integrated support for designers to test 
prototypes with users, and analyze the results to inform 
subsequent iteration. Manual video annotation and analysis 
for usability tests is enormously time consuming. Even 
though video recording of user sessions is common in 
design studios, resource limits often preclude later analysis. 
We introduce d.tools support for video analysis through 

Function Description 

enterState() Is called when the code’s associated state receives focus in the statechart graph. 

update(String component,  

Object newValue) 
Is called when a new input event is received while the code’s state has focus. The component’s 
hardware address (e.g., “/btn5” for a button) is passed in as an identifier along with the updated 
value (Booleans for discrete inputs, Floats for continuous inputs, and Strings for received RFID 
tags). 

getInput(String component) Queries the current value of an input.  

setOutput(String component, 

Object newValue) 
Controls output components. LCD screens and speakers receive file URLs, and LEDs and general 
output components Booleans for on/off. 

println(String msg) Outputs a message to a dedicated debug view in our editor. 

keyPress(KeyEvent e) 

keyRelease(KeyEvent e) 
Inserts keyboard events into the system’s input queue (using Java Robots [1])  to remote control 
external applications. 

Table 1.  The d.tools Java API allows designers to extend visual states with source code. The listed functions serve as 
the interface between designer’s code and d.tools runtime system. Standard Java classes are also accessible. 

 



 

 

timestamp correlation between video and statechart (see 
Figure 3); this video functionality is implemented as an 
extension to the VACA video analysis tool [11]. d.tools 
automatically creates timeline annotations that capture the 
complete set of state transitions and device events at test 
time. After completing a test, at analysis time, the video 

view enables designers to access video segments from the 
statechart authoring environment and vice versa. This in-
teraction allows for fast video query and enables accessing 
interaction code (the statechart) from a record of its execu-
tion (the video). The video view also enables comparison 
of multiple test sessions (see Figure 4).  

Test 

In test mode, d.tools executes user interactions just as in 
the design phase. Interactions with 
the physical prototype are reflected 
in the statechart, and outputs are 
reflected back in the device. Addi-

tionally, however, d.tools logs all device events and state 
transitions for video synchronization. 

Switching to test mode initiates video capture. Then, as 
events and transitions occur they are displayed on the video 
view timeline in real-time. To clarify correspondence be-
tween statechart and video views, a consistent color-coding 
is used for states and hardware components in both. One 
row of the timeline corresponds to the state events for each 
independent subgraph of the statechart (see Figure 3, part 
1), and an additional row displays hardware events. Three 
types of hardware events are displayed. Instantaneous 

events, such as a switch changing from on to off, appear as 
single slices on the timeline. Events with duration, such as 
the press and release of a button, show up as block seg-
ments (see Figure 3, part2). And continuous events, such as 
slider movements, are drawn as small line graphs of that 
event’s value over time (see Figure 3, part 3).  

During the test session, the designer can make live annota-
tions. d.tools offers dedicated buttons on an attached video 
control console to quickly mark positive (e.g., interesting 

quotes) or negative (e.g., usability problems) sections for 
later review. The experimenter’s annotations are displayed 
in the video view as a separate row on the timeline.  

Analyze 

Analyze mode allows the designer to review the data from 
user test sessions. The video view and statechart editor 
function in tandem as a multiple view interface [6] into the 
test data to aid understanding of the relationship between 
the user experience and the interaction model underlying it. 
d.tools supports both single user analysis and group analy-

sis, which enables designers to compare data across  
multiple users.  

Single User Analysis 

Single user mode provides playback control of a test ses-
sion video using a glanceable timeline visualization of the 
flow of UI state and data throughout that session. d.tools 

speeds up video analysis by enabling 
designers to work both from their 
interaction models to corresponding 
video segments and from video 
exploration to the statechart, 
facilitating analysis within the original 
design context. In addition to this 

dynamic search and exploration, the statechart also shows 
an aggregation of all user interactions during the test: the 
line thicknesses of state transitions are modified to indicate 
how often they were traversed (see Figure 3, part 4). This 
macro-level visualization shows which transitions were 
most heavily traversed and which were never reached. 

Statechart to video: To access video from the interaction 
model, the designer can select a state in the statechart – the 
video annotations are automatically filtered such that only 
corresponding video clips are shown on the timeline and 
played. Similarly, the designer can query by demonstration: 
manipulating a hardware component on the physical proto-
type (e.g., pushing a button or moving a slider) causes the 
corresponding input event category to be selected in the 
video view. Designers can also select multiple categories 

Figure 3. In Analysis mode, statechart and recorded video are synchronized and each can be used to access the other.  
Inset: simultaneous interaction with statechart and video editing is possible on a dual-screen workstation.



 

 

by manipulating multiple hardware components within a 
small time window. Thus, the designer can effectively 
search for a particular interaction pattern within the video 
data by re-enacting the interaction on the prototype itself. 

Video to statechart: During video playback a dynamic 
visualization of transition history is displayed on top of the 
d.tools statechart. Active states get highlighted and d.tools 
also animates a real-time moving trail along the state transi-
tions, indicating which state was previously active and 
which will be active next. This window into the chronology 
of interactions provides a visual reminder of context.  

Group Analysis 

Group mode collects all of the user capture sessions corre-
sponding to a given statechart and displays 
them together. The timeline now aggregates 
flows for each user. The video window 
displays an n × m table of videos, with the 

rows corresponding to the n users, and the columns corre-
sponding to the m categories (comprised of states, hard-

ware events, and annotations). Thus, a cell in the table 
contains the set of clips in a given category for a given 
user. Any set of these clips may be selected and played 
concurrently. Selecting an entire row plays all clips for a 
particular user; selecting an entire column plays all clips of 
a particular category. As each clip is played, an indicator 
tracks its progress on the corresponding timeline. 

ARCHITECTURE AND IMPLEMENTATION 

Implementation choices for d.tools hardware and software 
emphasize both a low threshold for initial use and extensi-
bility through modularity at architectural seams. In this 
section we describe how these design concerns and exten-
sibility goals are reflected in the d.tools architecture. 

Plug-and-Play Hardware 

d.tools contributes a plug-and-play hardware platform that 
enables tracking identity and presence of smart hardware 
components for plug-and-play operation. I/O components 
for low-bandwidth data use a common physical connector 
format so designers do not have to worry about which 
plugs go where. Smart components each have a dedicated 
small microcontroller; an interface board coordinates 
communication between components and a PC (see Figure 
5). Components plug into the interface board to talk on a 
common I2C serial bus (see Figure 6). The I2C bus abstracts 
electrical characteristics of different kinds of components, 
affording the use of common connectors. The interface 
board acts as the bus master and components implement 
I2C slave protocols. A USB connection to the host computer 
provides both power and the physical communication 
layer. 

Atmel microcontrollers are used to implement this architec-
ture because of their low cost, high performance, and pro-
grammability in C. The hardware platform is based around 
the Atmel ATmega128 microcontroller on a Crumb128 
development board from chip45. I/O components use At-
mel ATtiny45 microcontrollers. Programs for these chips 
were compiled using the open source WinAVR tool chain 
and the IAR Embedded Workbench compiler. Circuit 
boards were designed in CADsoft Eagle, manufactured by 
Advanced Circuits and hand-soldered. 

d.tools distinguishes audio and video from lower-
bandwidth components (buttons, sliders, LEDs, etc.). The 
modern PC A/V subsystem provides plug-and-play support 
for audio and video; for these components d.tools uses the 
existing infrastructure. For graphics display on the small 
screens commonly found in information appliances, d.tools 
includes LCD displays which can be connected to a PC 
graphics card with video output (e.g., Purdy AND-TFT-

25PAKIT). This screen is controlled by a secondary video 
card connected to a video signal converter. 

Hardware Extensibility 

Fixed libraries limit the complexity ceiling of what can be 
built with a tool by knowledgeable users. While GUIs have 
converged on a small number of widgets that cover the 
design space, no such set exists for physical UIs because of 
the greater variety of possible interactions in the real world. 
Hence, extending the library beyond what “comes with the 

 

Figure 5. The d.tools board offers plug-and-play  
interfacing for I/O components. 

 

Figure 6. The d.tools architecture uses standardized, 
open protocols for hardware and PC communication.

Figure 4.  Group Analysis mode aggregates timeline 
and video data of multiple user sessions into one view. 



 

 

box” is an important concern for physical computing tools. 
In the d.tools software, extensibility is provided by its Java 
hooks. In the d.tools hardware architecture (see Figure 6) 
extensibility is offered at three points: the hardware to PC 

interface, the hardware communication level, and the elec-

tronic circuit. This allows experts with sufficient interest 
and skill to modify d.tools to suit their needs. 

d.tools hardware and a PC communicate by exchanging 
OpenSoundControl (OSC) messages. OSC was chosen for 
its open source API, existing hardware and software sup-
port, and human readable addressing format (components 
have short path-like addresses – e.g., buttons are labeled 
/btn1 or /btn6.) By substituting devices that can produce 
OSC messages or software that can consume them, d.tools 
components can be integrated into different workflows. For 
example, music synthesis programs such as PD and 
Max/MSP can receive sensor input from d.tools hardware. 
Connecting other physical UI toolkits to d.tools involves 
developing an OSC wrapper for them. As a proof of con-
cept, we have written such a wrapper to connect Phidgets 
InterfaceKits to the d.tools software. 

Developers can extend the library of smart I/O components 
by adding components that are compatible with the indus-
try standard I2C serial communication protocol. I2C offers a 
large base of existing compatible hardware. For example, 
the accelerometers used in d.tools projects are third party 
products that send orientation to d.tools via on-board ana-
log-to-digital converters. Presently, adding new I2C devices 
requires editing of a source code file for the master micro-
controller; in future work this configuration will be pushed  
up to the d.tools authoring environment.  

On the circuit level, d.tools can make use of inputs that 
vary in voltage or resistance and drive generic discrete 
outputs with on/off control pulse width modulation. This 
allows designers versed in circuit design to integrate new 
sensing and actuation technologies at the lowest level. This 
level of expansion is shared with other hardware platforms 
that offer direct pin access to digital I/O lines and analog-
to-digital converters.  

Software 

To leverage the benefits of a modern IDE, d.tools was im-
plemented in Sun's Java JDK 5 as a plug-in for the open-
source Eclipse platform. Its visual editors are fully inte-
grated into the Eclipse development environment. d.tools 
uses the Eclipse Graphical Editing Framework (GEF) for 
graphics handling. d.tools file I/O is done via serialization 
to XML using XStream, which enables source control of 
device and statechart files in ASCII format using CVS or 
similar tools.  

The video viewer is implemented in C# and uses Microsoft 
DirectShow technology for video recording and playback. 
Synchronization between the statechart and video views is 
accomplished by passing XML fragments over UDP sockets 
between the two applications. DirectShow was chosen 
because it allows synchronized playback of multiple 
streams of video. 

EVALUATION AND ITERATION  

In this section, we outline the methodological triangulation 
we employed to evaluate and iteratively refine our tool. 
Evaluations were carried out at different points during a 
seven-month period. First, an early version of the tool was 
tested by thirteen design students and professional design-
ers in a first-use lab study to ascertain the use threshold. 
Second, the authors rebuilt prototypes of three existing 
devices and used it in a research project. Third, we made 
d.tools hardware kits available to students in a project-
centric interaction design course at our university. Figure 7 
shows some of the projects and devices built with d.tools 
as part of these evaluations. These evaluations addressed 
designing with d.tools and motivated the design-test-
analyze integration; we reserve evaluation of test and 
analysis modes for future work. 

Establishing threshold with a First Use Study 

We conducted a controlled study of d.tools in our labora-
tory to assess the ease of use of our tool; the study group 
comprised 13 participants (6 male, 7 female) who had 
general design experience. Participants were given three 
design tasks of increasing scope to complete with d.tools 
within 90 minutes. Most participants were students or 
alumni of design-related graduate programs at our univer-
sity. 

Successes 

Automatic recognition of hardware connections and visual 
statechart authoring were intuitive and well-received. Re-
fining default behaviors through text properties and ex-
pressing functional independence in a statechart was less 
intuitive; nevertheless, participants mastered these strate-
gies by the end of the session.  

After an initial period of learning the d.tools interface, 
participants spent much of their time with design thinking 

Figure 7. A selection of projects built with d.tools. 
(1) music player for children; (2) media player; (3) digital 
camera back; (4) tangible drawer for a tabletop display; (5) 
voice message trading pebble; (6) tangible color mixer.  



 

 

— reasoning about how their interface should behave from 
the user’s point of view instead of wondering about how to 

implement a particular behavior. This was especially true 
for authoring UI navigation flows. 

In a post-test survey, participants consistently gave d.tools 
high marks for enabling usability testing (µ=4.6 on 5 point 
Likert scale), shortening the time required to build a proto-
type (µ=4.3), and helping to understand the user experience 
at design time (µ=4.25).  

Shortcomings discovered 

One significant shortcoming discovered through the study 
was the lack of software simulation of an interaction 
model: the evaluated version did not provide for stepping 
though an interaction without attached hardware. This 
prompted the addition of our software simulation mode. 

Specifying sensor parameters textually worked well for 
subjects who had some comfort level with programming, 
but were judged disruptive of the visual workflow by oth-
ers. Interaction techniques for graphically specifying sensor 
ranges were added to address this issue. 

Building existing and novel devices 

To evaluate the expressiveness of d.tools’ visual language, 
we recreated prototypes for three existing devices — an 
Apple iPod Shuffle music player, the back panel of a Casio 
EX-Z40 digital camera, and Hinckley et al.’s Sensing PDA 
[18]. We distilled the central functionality of each device 
and prototyped these key interaction paths. 

Additionally, a novel project built with d.tools explored 
physical drawers as a file access metaphor for a shared 
tabletop display [29]. The first author built four drawer 
mechanisms mounted underneath the sides of a Diamond-
Touch interactive table. Opening and closing these drawers 
controlled display of personal data collections, and knobs 
on the drawers allowed users to scroll through their data. 

From these exercises, we learned that interactive physical 
prototypes have two scaling concerns: the complexity of the 
software model, and the physical size of the prototype. 
d.tools diagrams of up to 50 states are visually understand-
able on a desktop display (1920 × 1200); this scale is suffi-
cient for the primary interaction flows of current devices. 
Positioning and resizing affords effective visual clustering 
of subsections according to gestalt principles of proximity 
and similarity. However, increasing transition density 
makes maintaining and troubleshooting statecharts taxing, 
a limitation shared by other visual authoring environments. 
An area for future work is the design of techniques that 
selectively display transitions based on the current context. 

In building these systems, the percentage of implementa-

tion-related work (as opposed to graphic design or physical 
construction) was less than 30% of total prototyping time, 
enabling the prototyping to be driven by design concerns. 
In the drawers project, the presence of multiple independ-
ent drawers prompted the need for multiple concurrently 
active states as well as sensor data access from Java. 

HCI Design Studio 

We deployed the d.tools hardware and software to student 
project teams in a masters level HCI design course at our 
institution [25]. Students had the option of using d.tools 
(among other technologies) for their final project, the de-
sign of a tangible interface. Seven of twelve groups used 
d.tools. In this real-world deployment, we provided techni-
cal assistance, and tracked usability problems, bug reports 
and feature requests.  

Successes 

Students successfully built a range of innovative interfaces. 
Examples include a wearable “sound pebble” watch that 
allows children to record and trade secret messages with 
their friends, a color mixing interface in which children can 
“pour” color from tangible buckets onto an LCD screen, 
and an augmented clothes rack that offers product compari-
sons and recommendations via hanger sensors and built-in 
lights. 

Students were able to work with supplied components and 
extend d.tools with sensor input not in the included library. 
For example, the color mixing group integrated four me-
chanical tilt switches into their project. 

Shortcomings discovered 

Remote control of third party applications (especially Mac-
romedia Flash) was a major concern – in fact, because such 
support was not integrated into the graphical tool, two 
student groups chose to develop their project with Phidgets 
[14], as it offers a Flash API. To address this need, we 
released a Java API for the d.tools hardware with similar 
connectivity and added Java execution ability to d.tools 
statecharts. We observed that student groups that used 
solely textual APIs ended up writing long-winded statechart 
representations using switch or nested conditional state-
ments; the structure of their code could have been more 
concisely captured in our visual language.  

The first author also served as a physical prototyping con-
sultant to a prominent design firm. Because of a focus on 
client presentation, the design team was primarily con-
cerned with the polish of their prototype – hence, they 
asked for integration with Flash. From a research stand-
point, this suggests — for “shiny prototypes” — a tool inte-
grating the visual richness of Flash with the computational 
representation and hardware abstractions of d.tools.  

RELATED WORK  

The d.tools system draws on previous work in two areas: 
prototyping and evaluation tools, and physical computing 
tools. This section summarizes how d.tools relates to each 
body of work. 

Tool support for prototyping and rapid video evaluation 

Most closely related to the design methodology embodied 
in d.tools is SUEDE [24], a design tool for rapidly prototyp-
ing speech-user interfaces. SUEDE introduces explicit sup-
port for the design-test-analyze cycle through dedicated UI 
modes. It also offers a low-threshold visual authoring envi-
ronment and Wizard of Oz support. SUEDE has been used 
and extended by several speech UI firms. SUEDE’s open 



 

 

architecture enabled these firms to extend the visual envi-
ronment to support complex interactions. d.tools extends 
SUEDE’s framework into a new application domain – 
physical user interfaces. It contributes a model for applying 
design-test-analyze to applications that transcend software 
development and adds integration of video analysis into the 
cycle. Like SUEDE, the d.tools system supports early-stage 
design activities. 

This research also draws on prior work on structuring and 
accessing usability video of GUI tests through user inter-
face event records; Hilbert and Redmiles present a com-
parative survey of such systems in [17]. Mackay described 
challenges that have inhibited the utility of video in usabil-
ity studies, and introduced EVA, which offers researcher-
initiated annotation at record time [27]. Hammontree et al. 
recorded test-generated event data to index video tapes and 
for comparing UI prototypes [15]. I-Observe by Badre et al. 
[5] enabled an evaluator to access synchronized UI event 
and video data of a user test by filtering event types 
through a regular expression language. While Weiler [34] 
suggests that proprietary solutions for event-structured 
video have been in place in large corporate usability labs 
for some time, their proprietary nature prevented us from 
learning about their specific functionality. Based on the 
data that is available, d.tools extends prior research and 
commercial work in three ways. First, it moves off the 

desktop to physical UI design, where live video is espe-
cially relevant, since the designers’ concern is with the 
interaction in physical space. Second, it offers a bi-

directional link between model and video where video can 
also be used to access and replay flow of control in the 
model. Third, it introduces comparative evaluation tech-
niques for evaluating multiple user sessions. 

Tool support for physical computing 

The Phidgets [14] system introduced physical widgets: 
programmable ActiveX controls that encapsulate commu-
nication with USB-attached physical devices, such as a 
switch, pressure sensor, or servo motor. Phidgets abstracts 
electronics implementation into an API and thus allows 
programmers to leverage their existing skill set to interface 
with the physical world. In its commercial version, Phidg-
ets provides a web service that marshals physical I/O into 
network packet data, and provides several APIs for access-
ing this web service (e.g., for Java and ActionScript). 

d.tools shares much of its library of physical components 
with Phidgets. In fact, Phidgets analog sensors can be con-
nected to d.tools. Both Phidgets and d.tools store and exe-
cute interaction logic on the PC. However, d.tools differs 
from Phidgets in both hardware and software architecture. 
First, d.tools offers a hardware extensibility model not 
present in Phidgets. d.tools’ three extension points enable 
users with knowledge of mechatronics to add to the library 
of supported devices. Second, on the software level, d.tools 
targets prototyping by designers, not development by pro-
grammers. Textual APIs have too high a threshold and too 
slow an iteration cycle for rapid UI prototyping; they have 
not generally been adopted by product designers. The 

d.tools visual authoring environment contributes a lower 
threshold tool and provides stronger support for rapidly 
developing the “insides of applications” [28]. Finally 
Phidgets only addresses the design part of the design-test-
analyze cycle – it does not offer support for testing or ana-
lyzing user test data. 

Calder [4, 26] integrates RFID buttons and other wired and 
wireless devices with C and the Macromedia Lingo lan-
guage. Fluid integration with physical mock-ups is aided 
by the small form factor of the devices. Calder shares with 
d.tools its focus on design; it also describes desirable me-
chanical attachment mechanisms and electrical properties 
(battery-powered RF transceivers) of prototyping compo-
nents. Like Phidgets, Calder’s user interface is a textual 
API and only supports the design stage. 

iStuff [7] extended the idea of programmatic control of 
physical devices to support wireless devices, a loose cou-
pling between input and application logic, and the ability to 
develop physical interactions that function across an entire 
ubiquitous computing environment. iStuff, in conjunction 
with the Patch Panel [8], enables standard UIs to be con-
trolled by novel inputs. iStuff targets room-scale applica-
tions. The size of hardware components make it infeasible 
to design integrated devices like information appliances. 

The Lego Mindstorms Robotic Invention System [2] offers 
a visual environment based on control flow puzzle pieces 
to control sensors and actuators. While a benchmark for 
low-threshold authoring, Lego Mindstorms targets robotics 
projects; the programming abstractions are inappropriate 
for designing physical user interfaces. Mindstorms supports 
developing autonomous stored programs which runs 
counter to storyboard-driven development and eliminates 
designer access to model behavior at runtime.  

Maestro [3] is a commercial design tool for prototyping 
mobile phone interactions. It provides a complex visual 
state language with code generators, software simulation of 
prototypes, and compatibility with Nokia’s Jappla hard-
ware platform. Maestro and Jappla together offer high 
ceiling, high fidelity mock-up development; however, the 
complexity of the tools make them too heavyweight for the 
informal prototyping activities that d.tools targets. The 
availability of such a commercial tool demonstrates the 
importance of physical UI design tools to industry. 

CONCLUSIONS AND FUTURE WORK 

This paper introduced d.tools, a prototyping environment 
that lowers the threshold for creating functional physical 
prototypes and integrates support for prototype testing and 
analysis into the workflow. We have released d.tools to the 
design community as open source (see http://hci.stan-
ford.edu/dtools/). Further work is underway to cut the 
tether to the PC by executing interaction models directly on 
embedded platforms to enable development of truly mobile 
prototypes. Finally, beyond individual tools, we are look-
ing at creating entire design spaces that enable and support 
iterative design for ubiquitous computing. 
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