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In this article we present a systematic study of the reflexivity properties of
homologically finite complexes with respect to semidualizing complexes in the setting
of nonlocal rings. One primary focus is the descent of these properties over ring
homomorphisms of finite flat dimension, presented in terms of inequalities between
generalized G-dimensions. Most of these results are new even when the ring
homomorphism is local. The main tool for these analyses is a nonlocal version of the
amplitude inequality of Iversen, Foxby, and Iyengar. We provide numerous examples
demonstrating the need for certain hypotheses and the strictness of many inequalities.
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INTRODUCTION

Grothendieck (1965) and Hartshorne (1966, 1967) introduced the notion of
a dualizing complex as a tool for understanding cohomology theories in algebraic
geometry and commutative algebra. The homological properties of these objects and
the good behavior of rings admitting them are well documented and of continuing
interest and application in these fields.

Semidualizing complexes arise in several contexts in commutative algebra as
natural generalizations of dualizing complexes; see 1.2. A dualizing complex for R
is semidualizing, as is a free R-module of rank 1. Such objects were introduced
and studied in the abstract by Foxby (1972/1973) and Golod (1984) in the case
where C is a module. The investigation of the general situation begins with the work
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462 FRANKILD AND SATHER-WAGSTAFF

of Christensen (2001) and continues with, e.g., Araya et al. (2005), Frankild and
Sather-Wagstaff (Preprint), Gerko (2001, 2004), and Sather-Wagstaff (Preprint).

The utility of these complexes was first demonstrated in the work of Avramov
and Foxby (1997) where the dualizing complex D¢ of a local ring homomorphism
¢: R — § of finite flat dimension (or more generally of finite G-dimension) is used
as one way to relate the Bass series of R to that of S; see 1.8. When ¢ is module-
finite, its dualizing complex is RHom(S, R), which is semidualizing for S. (For the
general case, see Avramov and Foxby, 1997.) This provides another generalization
of dualizing complexes: If R is Gorenstein, then D? is dualizing for S. It is believed
that D¢ will give insight into the so-called composition question for homomorphisms
of finite G-dimension.

A semidualizing complex C gives rise to the category of C-reflexive complexes
equivalently, the category of complexes of finite G.-dimension; see 1.4. When C is
dualizing, every homologically finite complex X is C-reflexive (Hartshorne, 1966).
On the other hand, a complex is R-reflexive exactly when it has finite G-dimension
as defined by Auslander (1967) and Auslander and Bridger (1969) for modules, and
Yassemi (1995) for complexes. This notion was introduced and studied in general
by Foxby (1972/1973) and Golod (1984) when C and X are modules, and by
Christensen (2001) in this generality.

The current article is part of our ongoing effort to increase the understanding
of the semidualizing complexes and their corresponding reflexive complexes. More
of our work in this direction is found in Frankild and Sather-Wagstaff (Preprint)
and Sather-Wagstaff (Preprint) where we forward two new perspectives for this
study. In Frankild and Sather-Wagstaff (Preprint) we endow the set of shift-
isomorphism classes of semidualizing R-complexes with a nontrivial metric. Sather-
Wagstaff (Preprint) investigates the consequences of the observation that, when R
is a normal domain, the set of isomorphism classes of semidualizing R-modules is
naturally a subset of the divisor class group of R. Each of these works relies heavily
on the homological tools developed in the current article, which fall into roughly
three categories.

First, we extend a number of results in Christensen (2001) from the setting
of local rings and local ring homomorphisms to the nonlocal realm. This process
is begun in Section 2 with an investigation of the behavior of these objects under
localization, and it is continued in Section 3 where global statements are proved
over a single ring.

The second advancement in this article is found in the descent results which
populate Sections 4-6. Based in part on the ideas of Iyengar and Sather-Wagstaff
(2004), we exploit the amplitude inequality of Iversen (1977) and Foxby and Iyengar
(2003) in order to prove converses of a number of results from Christensen (2001).
These results deal with the interactions between, on the one hand, semidualizing and
reflexive complexes, and on the other hand, complexes and ring homomorphisms
of finite flat dimension. Most of the results from Christensen (2001) that we focus
on are stated there in the local setting, and the converses are new even there.
However, our work in the earlier sections along with a nonlocal version of the
amplitude inequality extend these converses and the original results to the global
arena. Our version of the amplitude inequality is Theorem 4.2, wherein inf(X) and
sup(X) are the infimum and supremum, respectively of the set {i € Z|H,(X) # 0}
and amp(X) = sup(X) — inf(X).
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Theorem |. Let ¢: R — S be a ring homomorphism and P a homologically finite
S-complex with fd, (P) finite and such that ¢*(Suppg(P)) contains m-Spec(R). For each
homologically degree-wise finite R-complex X there are inequalities

inf(X ® P) < inf(X) + sup(P)
sup(X ®j P) > sup(X) + inf(P)
amp(X ® P) > amp(X) — amp(P).

In particular,

(@) X ~0 if and only if X ®% P ~ 0,
(b) X is homologically bounded if and only if X ®% P is so;
(c) If amp(P) =0, e.g., if P =S, then inf (X ®% P) = inf(X) + inf(P).

Section 4 deals for the most part with the behavior of the semidualizing and
reflexive properties with respect to the derived functor — ®% S where ¢: R — S is a
ring homomorphism of finite flat dimension, that is, with fd,(S) < co. As a sample,
here is a summary of Theorems 4.5, 4.8, and 4.9.

Theorem ll. Let ¢: R — S be a ring homomorphism of finite flat dimension and
C, C', X homologically degree-wise finite R-complexes. Assume that every maximal ideal
of R is contracted from S.

(a) The complex C ®% S is S-semidualizing if and only if C is R-semidualizing.
(b) When C is semidualizing for R, there is an equality

Ge-dimg(X) = Ggrg-dimg (X ®F 5).

In particular, X ®% S is C ®% S-reflexive if and only if X is C-reflexive.

(c) If the induced map on Picard groups Pic(R) — Pic(S) is injective and C, C' are
semidualizing R-complexes, then C ®% S is isomorphic to C' ®% S in D(S) if and
only if C is isomorphic to C' in D(R).

Section 5 is similarly devoted to the functor RHomg(S, —) when ¢: R — S
is module-finite. The version of Theorem II for this context is contained in
Theorems 5.5, 5.8, and 5.9. We highlight here the characterization of reflexivity of
RHomy, (S, X) with respect to C ®% S which is in Theorem 5.13.

Theorem lll. Let C, X be homologically finite R-complexes with C semidualizing. If ¢
is module-finite with fd(¢) < co and m-Spec(R) C Im(¢*), then

G-dimg(X) — pdg(S) < Gritomys.c-dims (X ®% S)
< Ge-dimy(X) + pdy(S).

Thus, X ®% S is RHomg (S, C)-reflexive if and only if X is C-reflexive. If R is local or
amp(C) = 0 = amp(RHomg(S, R)), then

GRHomR(S,C)_dimS(X ®II; S) = GC—dImR(X)
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In Section 6 we extend results of Section 5 to the case where ¢ is local
and admits a Gorenstein factorization R — R’ — S; see 6.2. To this end, we use
a shift of the functor RHomy (S, — ®% R') in place of RHom(S, —). We prove in
Theorem 6.5 that this is independent of the choice of Gorenstein factorization and,
when ¢ is module-finite, agrees with RHom,(S, —). The remainder of the section is
spent documenting the translations of the results from Section 5 to this context.

The third focus of this article is found in the numerous examples within the
text demonstrating that our results are, in a sense, optimal. These examples may
be of independent interest, as the number of explicit computations in this area is
somewhat limited. For this reason, and for ease of reference, we provide a resume
of the more delicate examples here. Note that some of the rings constructed have
connected prime spectra, and this makes the constructions a tad technical. We have
taken this approach because rings with connected spectra can exhibit particularly
nice local-global behavior and we wanted to make the point that the exemplified
behavior can occur even when the spectra are connected.

Example 2.7 shows that one can have inequalities G-dim,(X) < sup(X) and
Ge-dimg(X) < G -dimg (X,), even when R is local. Thus, G-dimg(X) cannot be
computed as the length of a resolution of X, and the assumption amp(C) =0 is
necessary in Lemma 2.1 and in the final statement of Lemma 2.4.

Example 2.13 provides a surjective ring homomorphism of finite flat dimension
that is Cohen—Macaulay with nonconstant grade. Thus, Spec(S) must be connected
in Corollary 2.12.

Example 3.8 shows that one can have amp(C) > 0 when amp(C,,) =0 for
each maximal ideal nt. Furthermore, if C’' is C-reflexive, the inequality amp(C) <
amp(C’) from Corollary 3.7 can be strict, even when amp(C) = 0. Thus, the
connectedness of Spec(R) is needed in Proposition 2.10 and in Corollaries 3.5
and 3.7.

Example 3.10 provides a ring R with Spec(R) connected where

inf(C) — sup(C’) = inf(RHom,(C', C)) < inf(C) — inf(C")
inf(C") < Ge-dimg(C’) = sup(C’)
G ,-dimg(B) — sup(B) = Gpic-dimgz(A¢) — inf(C) + inf (A)
< G,-dimg(B) — inf(B)
showing that inequalities in Lemma 3.4 and Proposition 3.9 can be strict or not.
Example 5.11 shows that strictness can occur in each of the inequalities
G-dimg(S) < sup{G, -dim, (S,,)|m € m-Spec(R)}
G-dimg(S) < pdg(S)
inf(C) < inf(C ®% )
inf(C) — pdg(S) < inf(RHom,(S, C))
G-dimg(S) < Grrom,(s,c)-dimg(S) + pd(S)

from Propositions 2.9, 3.11, and 5.10 and from Theorems 4.5 and 5.5.
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Example 5.14 pertains to Theorems 4.4, 4.8, 5.4, 5.8, and 5.13, showing
that one can have G.-dimg(X) = oo even though each of the following is finite:
G-dimg(RHomg (S, X)), Greomy(s.c)-dimg(RHom, (S, X)), Ge-dimg (X ®F ),
Gegts-dimg(X ®% S),  Grtomg(s.o-dimg (X ®% S).  Hence, the hypothesis on
m-Spec(R) is necessary for each result.

As this introduction suggests, most of the results of this article are stated and
proved in the framework of the derived category. We collect basic definitions and
notations for the reader’s convenience in Section 1.

1. COMPLEXES AND RING HOMOMORPHISMS

Throughout this work, R and § are commutative Noetherian rings and
¢: R — S is a ring homomorphism.

This section consists of background material and includes most of the
definitions and notational conventions used throughout the rest of this work.

1.1. We work in the derived category D(R) whose objects are the R-complexes,
indexed homologically; references on the subject include Gelfand and Manin (1996),
Hartshorne (1966), Neeman (2001), and Verdier (1977, 1996). For R-complexes
X and Y, the left derived tensor product complex is denoted X ®% Y and the right
derived homomorphism complex is RHom, (X, Y). For an integer n, the nth shift
or suspension of X is denoted "X where (3"X), = X,_, and 87X = (-1)"8X . The
symbol “~” indicates an isomorphism in D(R) and “~” indicates an isomorphism
up to shift.

The infinum and supremum of a complex X, denoted inf(X) and sup(X),
are the infimum and supremum, respectively, of the set {i € Z|H;(X) # 0}, and
the amplitude of X is the difference amp(X) = sup(X) — inf(X). The complex
X 18 homologically finite, respectively homologically degree-wise finite, if its total
homology module H(X), respectively each individual homology module H;(X), is
a finite R-module. It is homologically bounded above, respectively homologically
bounded below or homologically bounded, if sup(X) < oo, respectively inf(X) > —oo
or amp(X) < oo. The projective, injective, and flat dimensions of X are denoted
pdx(X), idg(X), and fd,(X), respectively; see Avramov and Foxby (1991).

The main objects of study in this article are the semidualizing complexes
and their reflexive objects, introduced by Foxby (1972/1973), Golod (1984), and
Christensen (2001).

1.2. A homologically finite R-complex C such that the homothety morphism

18: R — RHom,(C, C)
is an isomorphism is semidualizing. Observe that the R-module R is semidualizing.
An R-complex D is dualizing if it is semidualizing and has finite injective dimension;
see Hartshorne (1966, Chapter V) and Foxby (In preparation, Chapter 15). Over

local rings, dualizing complexes are unique up to shift-isomorphism.

The following result is proved like Jorgensen (to appear, (2.5.1)).
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Lemma 1.3. Let k be a field and R, R, local rings essentially of finite type over k
and let R be a localization of R, ®F R,. If D' is a dualizing complex for R, for i = 1,2,

then the complex (D1 L Dz) ®;1®LR2 R is dualizing for R.
k

1.4. Let C, X be homologically finite R-complexes with C semidualizing. If the
complex RHom (X, C) is homologically bounded and the biduality morphism

3$: X — RHomg(RHom,(X, C), C)

is an isomorphism, then X is C-reflexive. The complexes R and C are C-reflexive,
and C is dualizing if and only if each homologically finite complex is C-reflexive
by Hartshorne (1966, (V.2.1)). The G -dimension of a X is defined in Christensen
(2001) as

Go-dim, (X) = {inf (C) — inf(RHomg(X, C))  when X is C-reflexive
oo

otherwise.

When C = R this is the G-dimension of Foxby, Auslander (1967), Auslander and
Bridger (1969), and Yassemi (1995), denoted G-dimg(X); see also Christensen
(2000). If pdk(X) is finite, then so is G-dim(X), and one has pd,(RHom;(X, R)) =
—inf(X) by Christensen (2001, (2.13)); if in addition R is local, then G-dimg(X) =
pdx(X) by Christensen (2000, (2.3.10)). When C, X are modules and G.-dim,(X) =0,
one says X is fotally C-reflexive.

Other invariants and formulas are available over a local ring.

1.5. When R is local with residue field £ and X is homologically finite, the integers
BR(X) = rank, (H_,(RHomg(X, k)))  uy(X) = rank,(H_;(RHomy(k, X))

are the ith Betti number and Bass number of X. The formal Laurent series

Py() =2 B0 Ix(n) =3 ()1

i€Z i€Z
are the Poincaré series and Bass series of X. The depth of X is
depth,(X) = — sup(RHom,(k, X)).
When C is a semidualizing R-complex, and X is C-reflexive, the AB-formula reads
G-dimg(X) = depth(R) — depth,(X)
and the isomorphism R >~ RHom,(C, C) gives rise to a formal equality
PE()I (1) = Iz (1)

by Christensen (2001, (3.14)) and Avramov and Foxby (1997, (1.5.3)). When D is
dualizing for R, one has I5(¢) = ¢ for some integer d by Hartshorne (1966, (V.3.4)).
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We say that D is normalized when IR (r) =1, that is, when inf(D) = depth(R);
see Avramov and Foxby (1997, (2.6)). In particular, a minimal injective resolution /
of a normalized dualizing complex has I; = @©,Er(R/p) where the sum is taken over
the set of prime ideals p with dim(R/p) = j.

We continue by recalling some standard morphisms.

1.6. Let X, Y, Z be R-complexes. For an R-algebra S, let U, V, W be S-complexes.
We have cancellation, commutativity, associativity, and adjunction isomorphisms:

X®kR~X (a)

XLy ~yekx (b)

Xk (YohZ)~ (X®kY)R®%Z (c)
RHomg (X ®% V, W) >~ RHom, (X, RHom(V, W)) (d)
RHom, (U ®Y% V, Z) ~ RHomg(U, RHomg(V, Z)). (e)

Next, there are the tensor- and Hom-evaluation morphisms, respectively (Avramov
and Foxby, 1991, (4.4)).

wxyw: RHomg (X, V) @ W — RHomg (X, V Q% W) (f)
Oyyw: X ®% RHomg(V, W) — RHomg(RHom,(X, V), W). (2)

The morphism @y, is an isomorphism when X is homologically finite, V is
homologically bounded above, and either fdg(W) < oo or pdg(X) < oc. The
morphism 6y, is an isomorphism when X is homologically finite, V is
homologically bounded, and either idg(W) < oo or pdz(X) < .

1.7. Let C,P,V,W,Y be R-complexes with ¥ homologically bounded above, C
semidualizing, and pd,(P), G-dimg (W) < oo.

(a) Adjunction and C-reflexivity provide an isomorphism
RHom,(V, W) ~ RHomg(RHomg (W, C), RHom,(V, C)).
(b) Since P is R-reflexive, Hom-evaluation gives an isomorphism
RHom (P, Y) ~ RHomg(P, R) ®% Y.
In this article we focus on several specific types of ring homomorphisms.

1.8. The ring homomorphism ¢: R — § induces a natural map on prime spectra
¢*: Spec(S) — Spec(R). The flat dimension of ¢ is defined as fd(¢) = fd4(S).
Assume that ¢ is local, that is, the rings R and S are local with maximal ideals
m and n, respectively, and ¢(m) € n. The depth of ¢ is depth(¢) = depth(S) —
depth(R). When fd(¢) is finite, the Bass series of ¢ is the formal Laurent series
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with non-negative integer coefficients /,(r) satisfying the formal equality I§(r) =
I§(1)1,(r) whose existence is given by Avramov et al. (1993, (5.1)) or Avramov
and Foxby (1997, (7.1)). The homomorphism ¢ is Gorenstein at n if I,(t) = 1* for
some integer d, in which case, d = depth(¢). When ¢ is module-finite, it is Cohen—
Macaulay if S is perfect as an R-module, that is, when amp(RHom,(S, R)) = 0.

When ¢ is surjective and has finite flat dimension (but is not necessarily local)
it is Cohen—Macaulay if, for each prime ideal g C S, the localization ¢ : R, — S, is
Cohen—-Macaulay where p = ¢*(q). In this event, ¢ is Cohen—Macaulay of grade d if
one of the following equivalent conditions holds:

(1) S is a perfect R-module of grade d;
(i) d = gradey S, for each prime ideal q C S;
(iii)) amp(RHom(S, R)) = 0.

The map ¢ is Gorenstein' if it is Cohen-Macaulay and, for each prime ideal g C S,
the S, -module Exti“(S, R), is cyclic for d, = gradeg (S,) where p = ¢*(q).

Here are two more combinations of standard morphisms.

1.9. Assume that fd(¢) is finite and fix R-complexes W, X,Y,Z with W
homologically bounded, X homologically finite, and Y homologically bounded
above.

(a) Combining adjunction and tensor-evaluation yields an isomorphism
RHom (X ®% S, Y ®% S) ~ RHomg(X, ¥) ®% S.
(b) If ¢ is module-finite, then adjunction and Hom-evaluation provide
RHomg(RHom(S, W), RHomg (S, Z)) ~ S ® RHomg(W, Z).
(c) If ¢ is module-finite, then 1.7(b), tensor-evaluation, and adjunction yield
RHomg(X ®% S, RHomg(S, ¥)) >~ RHomg(X, ¥) ®% RHomg(S, R).

When X and Y are modules the next lemma is Grothendieck (1965, (2.5.8)).
Example 4.10 demonstrates the necessity of flatness.

Lemma 1.10. Let ¢: R — S be flat and local such that the induced extension of
residue fields is bijective. If X, Y are homologically degree-wise finite and bounded
below R-complexes and X ®% S ~ Y ®% S in D(S), then X >~ Y in D(R).

Proof. Consider minimal R-free resolutions P >~ X and Q ~ Y. The S-complexes
P®S and Q®,S are minimal S-free resolutions of X ®%S and Y ®%LS,

!Avramov and Foxby (1992, 1998) originally used the terms locally Cohen—Macaulay and locally
Gorenstein for these types of homomorphisms. As they have chosen to rename the second type
Gorenstein (Avramov and Foxby, 1997, (8.1)), we have followed suit with the first type.
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respectively. The first isomorphism in the following sequence follows from the
flatness of ¢

Homg(P, Q) ®; S ~ RHomg(X, ) ®% S
~ RHomg(X ®% S, Y ®% S)
~ Homg(P ®; S, O Qg S)

while the second is in 1.9(a) and the third is standard. This shows that the
composition of tensor-evaluation and adjunction

f: Homg (P, Q) ®; S —> Homy(P ®; S, 0 ® )

is a quasiisomorphism. The relevant definitions provide an equality

aé‘lomR(P,Q)@)RS — aglomR(P»Q) R S

and the flatness of ¢ provides a natural isomorphism
Ker (95 "™ ") @, § = Ker(af "), ()

Note that the set of chain maps from P to Q over R is exactly the set of cycles
7y P9 = Ker (05" ")), and similarly for P ®; S and Q ®4 S.
The assumption X ®L S~ Y ®L S provides an isomorphism in the category

of S-complexes o: P ®% S >0 ®L S. Since f is a quasi-isomorphism, there exists a
cycle o € Homg(P, Q), ®, S such that the images of f(o') and o in Hy(Homg(P ®,
S, Q ®g S)) are equal. In other words, the chain maps f(«') and o are homotopic.
In particular, since P ®; S and Q ®, S are minimal and o is an isomorphism of
complexes, the same is true of f(o').

The isomorphism (1) shows that o' = 3,/ ®s; for some o, € Ker(d) ™"
and s; € S. For each i fix an r; € R with the same residue as s; in k = R/m = S/n. We
shall show that the chain map o” = ), r;o: P — Q is an isomorphism of complexes.
By construction, there is a commutative diagram

fo)®sk
(P®RS)®Sk % (Q®RS)®Sk

Ellﬁ(a)(c) Ell.()(a)(c)

o’ ®rk

Pk —— O Qg k

showing that o ®; k is (degree-wise) surjective. Nakayama’s Lemma then implies
that o” is degree-wise surjective, and the result follows from Matsumura (1989,
(2.4)). O

The final background concept for this article is the Picard group.

1.11. The Picard group of R, denoted Pic(R), is the Abelian group of isomorphism
classes of finitely generated locally free (i.e., projective) R-modules of rank 1 with
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operation given by tensor product. The assignment M +— M ®% S yields a well-
defined group homomorphism Pic(¢): Pic(R) — Pic(S).

2. RESOLUTIONS AND LOCALIZATION

This section contains results used to globalize standard local results. We
begin by observing that G,.-dimension can be measured by resolutions when C
is a module. Example 2.7 shows that this fails when amp(C) > 0 however, see
Lemma 2.2.

Lemma 2.1. Let X be a homologically finite R-complex and C a semidualizing
R-module. Given an integer n, the following conditions are equivalent:

(1) There is an isomorphism G >~ X where G is a complex of totally C-reflexive
modules with G; = 0 for each i > n and for each i < inf(X);
(i1) There is an inequality G.-dimgz(X) < n;
(iii)) One has G-dimg(X) < o0 and n > — inf (RHomg (X, C));
(iv) n = sup(X) and in any bounded below complex G of totally C-reflexive modules
with G =~ X, the module Coker(09,,) is totally C-reflexive.

In particular, there is an inequality sup(X) < G-dimg(X).

Proof. The local case when X is a module is stated in Golod (1984, p. 68). For the
general case, mimic the proof of Christensen (2000, (2.3.7)). O

The next result is Christensen (2001, (3.12)) which we state here for ease of
reference. Example 2.5 shows that equality or strict inequality can occur.

Lemma 2.2. [f C, X are homologically finite R-complexes with C semidualizing, then
sup(X) — amp(C) < G-dim,(X).

Lemma 2.3. If C is homologically finite, the following conditions are equivalent:

(1) C is R-semidualizing;
(i) S7'C is S™'R-semidualizing for each multiplicative subset S C R;
(ii1) C,, is a R, -semidualizing for each maximal ideal m C R.

m m

Proof. The implication (ii) = (iii) is trivial, while (i) = (ii) follows from the
argument of Christensen (2001, (2.5)). For the remaining implication, condition (iii)
implies that the natural map xf: R — RHom,(C, C) is locally an isomorphism, so
it is an isomorphism and C is R-semidualizing. d

The proof of the next result is almost identical to that of Christensen (2001,
(3.16)). Examples 2.5-2.7 show that the inequalities can be strict or not, that the
converse of the second statement fails, and that the final inequality fails to hold if
amp(C) > 0.
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Lemma 2.4. Let C, X be homologically finite R-complexes with C semidualizing. For
each multiplicative subset S C R, there is an inequality

Gyo1o-dimgo1z(S7'X) < G-dimg(X) + inf(S~'C) — inf(C).

In particular, if X is C-reflexive, then S™'X is S~'C-reflexive. Furthermore, if
amp(C) = 0, then Gy -dimg-i,(S7'X) < G-dimg(X).

Example 2.5. When R is local and amp(C) = 0 = amp(X), the inequalities in
Lemmas 2.2 and 2.4 can be strict (if 0 < pds-1x(S7'X) < pdg(X) < o) or not (set
C=R=X).

Example 2.6. The converse to the second statement in Lemma 2.4 can fail. Let
(R, m) be a local non-Gorenstein ring with prime ideal p C nt. The module m is not
R-reflexive but the module m, = R, is R, -reflexive.

Example 2.7. The final inequalities in Lemmas 2.1 and 2.4 can fail if amp(C) > 0.
Note that Lemma 3.4 shows that X cannot be a semidualizing module.

Let k be a field and R = k[[Y, Z]|/(Y?, YZ). Since R is complete local, it admits
a dualizing complex D. With p = (Y)R and X = R/p the AB-formula implies

Gp-dim,(X) = depth(R) — depth,(X) = —1 < 0 = sup(X)
Gp,-dimg (X,) = depth(R,) — depth,, (X,) =0 > —1 = Gp-dimg(X).
The next equalities are by definition, and the first inequality is by Christensen (2000,
(A.8.6.1))
Gp-dimg(D) = inf (D) = sup(D) — 1 < sup(D)
Gp,-dimy (D,) = inf(D,) = inf(D) + 1 > inf(D) = G)-dimg (D)

while the second inequality follows from the arguments of Foxby (In preparation,
Section 15).

We do not know if the extra hypotheses are necessary for the converses in
the next result; they are not needed when G.-dimension is replaced by projective
dimension.

Proposition 2.8. Ler C, X be homologically finite R-complexes with C semidualizing.
Consider the following conditions:

(1) X is C-reflexive;
(i) S7'X is S~'C-reflexive for each multiplicative subset S C R;
(iii) X,, is C, -reflexive for each maximal ideal m C R.

m

The implications (1) = (ii) = (iil) always hold, and the converses hold when either
inf(RHom (X, C)) > —oo, dim(R) < oo, or X is semidualizing.
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Proof. The implication (i) = (iii) is trivial, while (i) = (ii) is in Lemma 2.4.
So, assume that X, is C,-reflexive for each maximal ideal m. The biduality map
0$: X — RHom,(RHom,(X, C), C) is locally an isomorphism, and so it is an
isomorphism. It remains to show that RHom, (X, C) is homologically bounded.
Assume first dim(R) < oo. For each maximal ideal m C R the AB-formula
provides the following equality while the inequality is (Foxby and Iyengar, 2003,

2.7))
C}Cm_dirnRm (Xm) = depth(Rm) - depthRm (Xm) = dim(Rm) + Sup(Xm)'

This explains the first inequality in the next sequence, while the equality is by
definition and the second inequality is standard:

iIlf(RHOl’IlRm (Xm’ Cm)) = inf(cm) - GC,”_dimRm (Xm)
= inf(cm) - dim(Rm) - sup(Xm)
> inf(C) — dim(R) — sup(X).

It follows that RHom,(X, C) is homologically bounded because
inf(RHomg (X, €)) = inf{inf(RHom; (X,,, C,,)) | m € m-Spec(R)}.

Assuming next that X is semidualizing, the AB-formula and Christensen (2001,
(3.2.2)) provide the equality G, _-dim; (X,,) = inf(X,,). As above one deduces

inf(RHom, (X,,, C,,)) > inf(C) — sup(X)
and the homological boundedness of RHom,(X, C). O

For strictness in the next inequality, see Example 5.11 or argue as in
Example 3.8.

Proposition 2.9. If C is R-semidualizing, then there is an inequality

G-dimg(X) < sup {G¢_-dim, (X,,) | m € m-Spec(R)}

m

for each homologically finite R-complex X, with equality if amp(C) = 0.

Proof. For the inequality, set s = sup{G,_-dim, (X,,) | m € m-Spec(R)} and i =
inf(RHom (X, C)), and assume s < oco. For each maximal ideal m, one has

G, -dimg (X,,) + inf(RHomg (X, C),,) = inf(C,,) > inf(C).

It follows that RHom,(X, C) is bounded because the previous sequence gives

i = inf{inf(RHomg(X, C),,) | m € m-Spec(R)} > inf(C) — s

m
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80 G-dimg(X) < oo by Proposition 2.8. With m € Supp,(H;(RHom,(X, C))), the
desired inequality is in the next sequence:
G-dimg(X) = inf(C) — inf(RHomg (X, C)) < inf(C,,) — inf(RHomg(X, C)

l]l) S S.

When amp(C) = 0, equality follows from Lemma 2.4 since inf(C) = inf(C,,). |

Example 3.8 shows the need for the connectedness hypothesis in the next
result. When R is Cohen—Macaulay, the condition amp(C,,) =0 is automatic
by Christensen (2001, (3.4)).

m

Proposition 2.10. Let C be a semidualizing R-complex and assume that Spec(R) is
connected. If amp(C,,) = 0 for each maximal ideal m, then amp(C) = 0.

m

Proof. If amp(C) > 0, then Spec(R) = Supp,(C) is the disjoint union of the closed
sets Suppg (Hiye(c) (C)), - - - » Suppg(Hgyp(c) (C)), contradicting connectedness. |

Question 2.11. If C is a semidualizing R-complex and Spec(R) is connected, must
the inequality amp(C) = sup{amp(C,,) | m € m-Spec(R)} hold?

Proposition 2.10 with C = RHom(S, R) yields the next local-global principle;
see 1.8. Example 2.13 shows that this fails if Spec(S) is disconnected.

Corollary 2.12. Let ¢: R — S be a surjective Cohen—Macaulay ring homomorphism.
If Spec(S) is connected, then ¢ is Cohen—-Macaulay of constant grade.

Example 2.13. We construct a a surjective Cohen—Macaulay ring homomorphism
of nonconstant grade. Let £ be a field and R = k[Y, Z] a polynomial ring, and set

S=R/((Y,Z)RN (Y — 1)R)

with natural surjection ¢: R — S. Since R is regular, one has pd,(S) < oo. The
equality (Y, Z)R + (Y — 1)R = R provides an isomorphism of R-algebras

S=R/(Y,Z)R x R/(Y —1)R.
In particular, the ring S is Cohen—Macaulay, and hence so is ¢ by Avramov and
Foxby (1998, (8.10)). Set n;, = (¥, Z2)S and n, = (Y — 1, Z)S. To prove that ¢ has
nonconstant grade, it suffices by 1.8 to show that amp(RHomg(S, R)) > 0. For this
we verify

inf(RHomg (S, R),,) = =2 inf(RHomg(S, R),,) = —1.

It is straightforward to verify that the localization ¢, is equivalent to the natural
surjection Ry, — k which has projective dimension 2. Thus, one has

inf(RHomg (S, R),,) = inf(RHomy , (k, Ryz)) = —pdg,, (k) = =2



474 FRANKILD AND SATHER-WAGSTAFF

where the second equality is by Christensen (2001, (2.13)). This is the first desired
equality; the second one follows similarly from the fact that the localization
®,, is equivalent to the surjection k[Y, Z]y_, ;) — k[Z] which has projective
dimension 1.

Lemma 2.14. Let R =[] R; be a graded ring where R, is local with maximal ideal
mg. Set m = my+ ][5, R; and let X, Y be homologically degree-wise finite complexes
of graded R-module homomorphisms.

(a) For each integer i, one has H,(X) = 0 if and only if H;(X
(b) There are equalities

)=0.

m

inf(X) = inf(X,,) sup(X) = sup(X,,) amp(X)=amp(X,,)

so X is homologically bounded (respectively, homologically bounded above or
homologically bounded below) if and only if the same is true of X,,,.
() If a: X —> Y is a graded homomorphism of complexes, then o is a quasi-
isomorphism if and only if o, is a quasi-isomorphism.
Proof. Part (a) follows from Bruns and Herzog (1998, (1.5.15)) and the
isomorphism H,(X,,) = H,(X),,, and (b) is immediate from (a). For (c), apply (b) to
the mapping cone of a. a

Proposition 2.15. Let R = [[.( R; be a graded ring where R, is local with maximal
ideal my. Set m =my+ ][ R; and let C,X be homologically degree-wise finite
complexes of graded R-module homomorphisms.

(a) The complex C is R-semidualizing if and only if C,, is R,
(b) If C is R-semidualizing, then Gc-dimg(X) = G, -dim(X
is C-reflexive if and only if X, is C,,-reflexive.

-semidualizing.
). Thus, the complex X

m

Proof. (a) One implication is contained in Lemma 2.3, so assume that C, is
R,.-semidualizing. By Lemma 2.14, the R-complexes C and RHom,(C, C) are
homologically finite, and the homothety morphism R — RHom(C, C) is a quasi-
isomorphism. so C is semidualizing.

(b) It suffices to prove the final statement. Indeed, if X is C-reflexive and X,
is C,-reflexive, then the equality is a consequence of the following sequence:
G-dimg(X) = inf(C) — inf(RHomg (X, C))
= inf(cm) - inf(RHOl’an (Xm’ Cm))
= GC," _dim(Xm)
where the second equality is by Lemma 2.14(b), and the others are by definition.
For the final statement, one implication is in Lemma 2.4, so assume that X,
is C,-reflexive. Lemma 2.14 implies that X and RHom,(X, C) are homologically

finite and the biduality morphism X — RHomg(RHom,(X, C), C) is a quasi-
isomorphism, so X is C-reflexive. O
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3. DUALITY: GLOBAL RESULTS

This section is primarily devoted to reflexivity relations between semidualizing
complexes in the nonlocal setting. We begin with a global version of Gerko (2004,

(3.1), (3.4)).
Lemma 3.1. Let C, C' be semidualizing R-complexes.

(a) If C' is C-reflexive, then RHomg(C’, C) is semidualizing and C-reflexive with
Gc-dim(RHom,(C’, C)) = inf(C) — inf(C").

(b) If C' is C-reflexive, then the evaluation morphism C' ®% RHomg(C’, C) — C is an
isomorphism.

(¢) If C®%C' is semidualizing, then C is C ®% C'-reflexive and the evaluation
morphism C — RHomg(C’, C ®% C') is an isomorphism.

Proof. Part (a) is contained in Christensen (2001, (2.11)). For parts (b) and (c),
observe that the maps are locally isomorphisms by Gerko (2004, (3.1), (3.4)) and are
thus isomorphisms. |

The next result follows immediately from the local case; see Araya et al. (2005,
(5.3)). Example 3.3 shows that RHom,(C’, C) # R in general; see also Example 3.8.

Lemma 3.2. [f C, C' are R-semidualizing, C' is C-reflexive, and C is C'-reflexive,
then RHom,(C’, C),, ~ R,, and C ~ C,, for each maximal ideal m.

m m

Example 3.3. One can have RHomg(C’, C) #* R in Lemma 3.2. Assume that there
exists [L] € Pic(R) with [L] # [R]. If C is a semidualizing R-complex, then so is
c'=cC ®',3 L. Furthermore, C’ is C-reflexive and C is C’-reflexive. However, one has
RHom,(C, C') ~ L # R and RHom,(C’, C) ~ RHomg(L, R) # R.

The next lemma follows directly from Christensen (2001, (3.1), (3.2), (4.8.c)).
To see that the second and third inequalities can be strict and that the others can
be equalities, consult Example 3.10 or argue as in Example 3.8. For strictness in the
first and last inequalities, let R be local and amp(C’) > 0, and use the guaranteed
equalities.

Lemma 3.4. If C, C' are R-semidualizing and C' is C-reflexive, then

inf(C) — sup(C’) < inf(RHomg(C’, C)) < inf(C) — inf(C’)
inf(C") < Ge-dimg(C") < sup(C')

with equality in the second and third inequalities if R is local or amp(C") = 0. In
particular, if C, C' are both modules, then C' is totally C-reflexive.

Example 3.8 shows the need for the connectedness hypothesis in the next
result.

Corollary 3.5. Ler C, C' be semidualizing R-complexes with amp(C) = 0. If Spec(R)
is connected and C' is C-reflexive, then amp(C’) = 0.
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Proof. By Proposition 2.10 we may assume that R is local. The first inequality in
the next sequence is in Lemma 2.1

sup(C’) < G-dimg(C") = inf(C") < sup(C’)

while the equality is in Christensen (2001, (3.1), (3.2)) and the last inequality is
immediate. U

Question 3.6. If Spec(R) is connected and C, C’ are semidualizing complexes such
that C’ is C-reflexive, does the inequality amp(C’) < amp(C) hold?

The answer is “yes” when R is local and C is dualizing for R by Christensen
(2001, (3.4a)). The next result resolves the local case when C is not necessarily
dualizing. The inequality can be strict (e.g., if amp(C) > 0 and C' = R) or not (e.g.,
if R is Cohen—Macaulay). Consult Example 3.8 to see the need for connectedness.

Corollary 3.7. Let R be local and C,C’ semidualizing R-complexes. If C' is
C-reflexive, then amp(C") < amp(C).

Proof. Since R is local, the equality in the following sequence is in Lemma 3.4
inf (C") = G-dimg(C") > sup(C’) — amp(C)
while the inequality is in Lemma 2.2. O

Example 3.8. The conclusions of Proposition 2.10 and Corollaries 3.5 and 3.7
can fail if Spec(R) is not connected. Let k|, k, be fields and set R = k; x k,. With
m; =0 x k, and m, = k; x 0, one has Spec(R) = {m;, m,} and R, = k; = R/m, for
i =1, 2. Hence, R is Gorenstein, and an R-complex is dualizing if and only if it is
semidualizing. If pg # 0, the next equality and isomorphism are easily verified:

amp((2°k7) x (2°k3)) = |a — b|
RHom, (347 x (2°k3), (2k7) x (29h3)) = (27]") x (247°k)

It follows that (2°k}) x (29k3) is dualizing if and only if r = s = 1. So, the dualizing
complex C' =k, x Xk, is R-reflexive, and the next computations are routine:

C. ~k C._~3k

ny n,

amp(C,, ) =0 < 1 =amp(C’)

m

amp(R) =0 < 1 = amp(C’)

Here are the reflexivity relations between RHomg(A, C) and RHomg(B, C)
when Lemma 3.1(a) guarantees that they are semidualizing. Example 3.10 shows
that the first inequality can be an equality and the second one can be strict. The first
one can also be strict: Use the guaranteed equality when R is local and amp(B) > 0.
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Proposition 3.9. Ler A, B, C be semidualizing R-complexes such that A and B are
both C-reflexive and set (—)'c = RHomg(—, C). There are inequalities

G ,-dimg(B) — sup(B) < Gyi-dimgz(A’¢) — inf(C) + inf(A)
< G,-dimg(B) — inf(B)

with equality at the second inequality when R is local or amp(B) = 0. In particular,
B is A-reflexive if and only if Ac is Bc-reflexive.

Proof. 1t suffices to verify the final statement. Indeed, if B is A-reflexive and A'c is
Bfc-reflexive, then Lemma 3.4 combined with 1.7(a) provide the desired inequalities
and, when R is local or amp(B) = 0, the equalities.

Assume that B is A-reflexive, and note that A'c is homologically finite since A
is C-reflexive. Employ the isomorphism from 1.7(a) and the fact that B is C-reflexive
to conclude that the complex RHom,(A'c, B'c) is homologically bounded. Next,
consider the following commutative diagram of morphisms of complexes:

stc

. afc

RHom, (RHomg(A'e, Bic), B'c)

A'c
3.1(b)l: 1.7(a)JV:

(B ®% RHom, (B, A))TC RHomy, (B*cfc, RHom, (A'c, BTC)TC)

Lé(dﬁ: l:

R .
RHomg (B, RHomg(B, A)’) —— RHomg(B, RHomg(A'¢, Bic)ic).

The unmarked map RHom, (6§, RHomg(A'c, Bfc)ic) is an isomorphism since B is
C-reflexive. Thus, 5§:§ is an isomorphism and A'c is Bic-reflexive.
The converse follows from the isomorphisms A ~ Afcic and B ~ Bfcic, O

Example 3.10. Here we construct a ring R with Spec(R) connected demonstrating
the following: In Lemma 3.4, the first and fourth inequalities can be equalities and
the other inequalities can be strict, and in Proposition 3.9 the first inequality can be
an equality and the other inequality can be strict. Let k£ be a field and set

AI :k[XI’Y]]/(szXlYI) Az :k[Xz’ Yz]/(Xz’Xzyz)
A=A QA= k[Xl’ Y, X,, Yz]/(Xz’ XY, X%, X2Y2)~

The natural maps ¢;: A; — A are faithfully flat since they are obtained by applying
— ®; A, to the faithfully flat maps k — A;. For i =1, 2 set S, = A\(X,, Y,)A;. The
local ring R; = S; ' A; has maximal ideal m; = (X, Y;)R; and exactly one nonmaximal
prime ideal p, = (X,)R,. Let S = A\((X;, ¥}, X,)AU (X, X,, ¥,)A) and set R=S"'A
which has exactly two maximal ideals n; = (X;, ¥}, X,)R and n, = (X, X,, \,)R
and exactly one nonmaximal prime ideal p = (X,, X,)R. As p C 1; N n,, Spec(R) is
connected.
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The containment ¢;(S;) C S provides faithfully flat maps ¥: R, > R. It is
straightforward to verify that R is a localization of the tensor product R, ®, R,, and
furthermore that 1, is the composition of the tensor product map R, — R, ®, R,
and the localization map R, ®, R, — R. Equally straightforward are the following:

i) =y i) =p Yip) = py
Yi(my) =p,  Yr(p) =my, () =py

In particular, if M, is a nonzero R;-module of finite length, then the R-module M; ®;,
R is nonzero with finite length because Supp;(M; ®; R) = {n;}.

Since R; is essentially of finite type over k, it admits a normalized dualizing
complex D'. Hence, sup(D’) = dim(R,) = 1 and inf(D’) = depth(R,) = 0. From the
structure of Spec(R;), the minimal R;-injective resolution of D is of the form

D' ~0— Eg (R;/v;) = Eg (R;/m;) — 0.

In particular, the R,-module H, (D) has nonzero finite length.

Set C' = D' ® R which is semidualizing for R by Theorem 4.5. By flatness,
we have H;(C') = H;(D') ® &, R for each integer j. In particular, since the R;-module
Hy(D') has nonzero finite length, the R-module H,(C’) has finite length and
Suppr(Hy(C?)) = {n,}. Nakayama’s lemma implies H,(C") ®, H,(C?) = 0.

Using Lemma 1.3 and the isomorphism C' ®} C* = (D' ®, D*) ®F 5z, R We
conclude that C' ®% C? is dualizing for R. Write D = C! ®% C?. In particular, C', C?
are D-reflexive, and Lemma 3.1 provides isomorphisms

RHom,(C', D) ~ C* RHomg(C?, D) ~ C".
We claim that inf(D) > 0. Indeed, since inf(C’) = 0 for i = 1, 2 one has
inf(D) = inf (C' ®% C?) > inf(C") +inf(C*) =0

where the inequality is Christensen (2000, (A.4.15)) using the last line of the previous
paragraph.

We now show inf(D) = 1 = amp(D). The Kiinneth formula H(D' ®, D?) =
H(D') ®, H(D?) and the equalities sup(D’) = 1 provide the next equality

sup(D) < sup(D' ®, D*) =2
while the inequality is due to the fact that D is a localization of D' ®, D?. Since
inf(D) > 1, one has 0 < amp(D) < 1, and so it suffices to verify amp(D) > 1. For

this, note that the localizations R, are not Cohen-Macaulay and therefore one has
amp(D) > amp(D,,) > 1. The desired computations now follow readily:

inf(D) — sup(C') = inf(RHom,(C', D)) < inf(D) — inf(C")
inf(C") < Gp-dim,(C") = sup(C")
G,-dimg(C") — sup(C') = G ¢1)1p-dimg (D) — inf(D) + inf(D)
< G-dimg(C") — inf(C").
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We next extend Christensen (2001, (2.9)). Example 5.11 shows that this
inequality can be strict.

Proposition 3.11. If C, X are homologically finite R-complexes with C semidualizing,
then there is an inequality

G-dimg(X) < pdg(X)
with equality when pdg(X) is finite and either R is local or amp(C) = 0.

Proof. Assume that pd,(X) is finite. The finiteness of G.-dim,(X) is in Christensen
(2001, (2.9)), and the local case of the equality is Christensen (2001, (3.5)).
Proposition 2.9 provides the inequality in the following sequence:
Ge-dimg(X) < sup{G, -dim; (X,,)|m € m-Spec(R)}

= Sup{de“l (Xm) | me m_speC(R)}

= pdx(X),
while the first equality is by the local case and the second equality is classical.

Assume now that amp(C) = 0. Let P >~ X be a projective resolution and set

g = G.-dimg(X). Lemma 2.1 implies that G = Coker(ag ,1) is totally C-reflexive,
and one checks locally (using the AB-formulas) that G is projective. O

Next we extend Christensen (2001, (3.17)). Example 4.6 shows that the
inequalities can be strict. Partial converses of the final statement and conditions
guaranteeing equality are in Theorems 4.4 and 5.4; to see that the converse can fail
consult Example 5.14.

Proposition 3.12. Let C,P,X be homologically finite R-complexes with C
semidualizing and pd,(P) finite. There are inequalities

Ge-dimy (X ®% P) < Ge-dimg(X) + pdg(P)
G-dimgz (RHomg (P, X)) < Go-dimg(X) — inf(P).
In particular, if X is C-reflexive, then so are X ®% P and RHom(P, X).
Proof. The final statement is proved as in Christensen (2001, (3.17)). For
the inequalities, assume that the complexes X, X ®% P, and RHomg(P, X) are
C-reflexive. Since pd;(P) is finite, adjunction and 1.7(b) yield an isomorphism
RHomg (X ®5 P, C) >~ RHomg (P, R) ®; RHomg(X, C)

and so the following sequence provides the first inequality.

G-dimg (X ®} P) = inf(C) — inf (RHom (X ®} P, C))
= inf(C) — inf (RHom, (P, R) ®; RHom,(X, C))
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< inf(C) — inf(RHom, (P, R)) — inf(RHom, (X, C))
= G-dimg (X) + pdg(P).

Similarly, the Hom-evaluation isomorphism gives a sequence of (in)equalities

G-dimgz(RHomg (P, X)) = inf(C) — inf(RHom,(RHom, (P, X), C))
= inf(C) — inf (P ® RHomg (X, C))
< inf(C) — inf(P) — inf(RHom, (X, C))
= G-dimg (X) — inf(P)

providing the second inequality. O

4. RING HOMOMORPHISMS OF FINITE FLAT DIMENSION: BASE CHANGE

In this section we study the interaction between the semidualizing
and reflexivity properties and the functor —®LS where ¢: R — S is a ring
homomorphism of finite flat dimension. We begin with a more general situation
(Christensen, 2000, (A.4.15), (A.5.5)) wherein the inequalities may be strict (see
Example 4.6) or not (use P = R).

4.1. If X, P are R-complexes such that P 2£ 0 is bounded and fd,(P) is finite, then

inf(X ® P) > inf(X) + inf(P)
sup(X ®j P) < sup(X) + fd;(P)
amp(X ®j P) < amp(X) + fdz(P) — inf(P).

Our nonlocal version of the amplitude inequality, based on Iversen (1977) and
Foxby and Iyengar (2003, (3.1)), is next. It is Theorem I from the introduction
and provides inequalities complimentary to those in 4.1. Example 4.6 shows that,
without the hypothesis on m-Spec(R), bounds of this ilk and the nontrivial ensuing

implications need not hold, and that the inequalities can be strict; to see that they
may not be strict, use P = R.

Theorem 4.2. Let P be a homologically finite S-complex with fdz(P) finite and
such that ¢*(Suppg(P)) contains m-Spec(R). For each homologically degree-wise finite
R-complex X there are inequalities
inf (X ®% P) < inf(X) + sup(P)
sup (X ®% P) > sup(X) + inf(P)
amp(X K P) > amp(X) — amp(P).

In particular:

(a) X ~0 if and only if X Q% P ~ 0,
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(b) X is homologically bounded if and only if X ®% P is so;
(c) If amp(P) =0, e.g., if P =S, then inf(X ®% P) = inf(X) + inf(P).

Proof. For the first inequality, it suffices to verify the following implication: If
H, (X) # 0, then inf(X ®% P) < n+ sup(P). Indeed, if X ~ 0, that is, if inf(X) = oo,
then the inequality is trivial. If inf(X) is finite, then using n = inf(X) gives the
desired inequality. And if inf(X) = —oo, then taking the limit as n — —oo gives the
desired inequality.

Fix an integer n and assume that H,(X) # 0. Thus, there is a maximal ideal
m € Suppr(H, (X)) € Supp(X), and by assumption there exists a prime ideal p €
Suppg(P) such that ¢*(p) = m. The local homomorphism ¢,: R, — S, and the
complexes X, and P, satisfy the hypotheses of Foxby and Iyengar (2003, (3.1)),
providing the second equality in the following sequence wherein the inequalities are
straightforward

inf(X ®% P) < inf((X ® P),) = inf(X,, ®; P,) = inf(X,,) +inf(P,) < n+ sup(P)
and the first equality follows from the isomorphism (X ®% P), =~ X,, ®%_ P,

The second inequality is verified similarly. The third inequality is an immediate
consequence of the first two, and statements (a), (b), and (c) follow directly. |

The proof of the next result is nearly identical to that of Iyengar and Sather-
Wagstaff (2004, (2.10)), using X = cone() in Theorem 4.2. Example 4.6 shows that
the extra hypotheses are necessary for the nontrivial implication.

Corollary 4.3. Let P be a homologically finite S-complex with fdz(P) < oo and
m-Spec(R) C ¢*(Supps(P)). If o is a morphism of homologically degree-wise finite
R-complexes, then o is an isomorphism if and only if « ®% P is so.

Here is a partial converse for Proposition 3.12. The first inequality can be
strict: Use the guaranteed equality with R local and inf(P) < pd,(P). Example 4.6
shows that the second inequality may be strict and the first one may not.

Theorem 4.4. Let C, P, X be homologically finite R-complexes with C semidualizing,
pdx (P) finite, and m-Spec(R) contained in Suppy(P). There are inequalities

Ge-dimg(X) + inf(P) < Ge-dimg(X ®f P)
= G¢-dimg(X) + pdg(P).

In particular, the complexes X and X ®% P are C-reflexive simultaneously. If R is local
or amp(RHom (P, R)) = 0, then the second inequality is an equality.

Proof. First we verify that X and X ®% P are C-reflexive simultaneously.
Theorem 4.2(b) and the isomorphism 1.7(b) imply that the complexes RHom, (X, C)
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and RHom (X ®% P, C) are homologically bounded simultaneously. The following
commutative diagram from Christensen (2001, (3.17))

5C
3
L
X@gP

XeLP ——  RHom,(RHom,(X ®% P, C), C)

5§®1§Pl l.G(d)T:

RHom,(RHom, (X, C), C) ®% P %()) RHomg(RHomg(P, RHomg(X, €)), C)
6(e

shows that & _, , and 0% ®} P are isomorphisms simultaneously. Corollary 4.3 then
R
implies that 5§®L » and 0% are isomorphisms simultaneously.
R

For the (in)equalities, we assume that X and X ®% P are C-reflexive. The first
inequality is verified in the next sequence where (1) is by definition and 1.7(b)

Go-dimg(X ® P) Q inf(C) — inf (RHom, (P, R) ® RHom, (X, C))

@ . .
> inf(C) — sup(RHomg (P, R)) — inf(RHomg(X, C))

(3)
> G-dimg(X) — pdz(RHomg (P, R))

Y G -dimg(X) + inf(P)
(2) is by Theorem 4.2, (3) is standard, and (4) is by 1.4. The second inequality is in
Proposition 3.12. When amp(RHomg(P, R)) = 0, there is an equality

inf(RHom, (P, R) ®% RHom, (X, C)) = inf(RHomg (P, R)) + inf(RHom(X, C))

by Theorem 4.2(c); the same equality holds by Nakayama’s Lemma when R is
local. Thus, under either of these hypotheses, the displayed sequence in the proof of
Proposition 3.12 gives the desired equality. O

The next result contains Theorem Il(a) from the introduction. Example 4.6
shows that the converse of the first implication can fail. To see that the inequalities
can be strict, consult Example 5.11. For equality, use C = R.

Theorem 4.5. Assume that fd(¢) is finite and C is a homologically degree-wise finite
R-complex. If C is R-semidualizing, then C Q% S is S-semidualizing with

inf(C ®% S) > inf(C) and amp(C ®} S) < amp(C).

Conversely, if C ®% S is S-semidualizing and Im(¢*) contains m-Spec(R), then C is
R-semidualizing and inf (C ®% S) = inf(C).

Proof. The first implication and the inequalities are in Christensen (2001, (1.3.4),
(5.1)). Assume that C®%S is S-semidualizing and m-Spec(R) C Im(¢*). The
equality is in Theorem 4.2(c), and Theorem 4.2(b) implies that C is homologically
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finite over R. The following commutative diagram shows that yf ®%S is an
isomorphism

S
1L
CoRs

§ —— RHomy(C ®% S, C ®% )

1.6(a)l: 1.9(a)l:

Reks
R®LS =5  RHomg(C,C) ®ks

and Corollary 4.3 implies that xX is an isomorphism as well. |

Example 4.6. We show: (1) the implication in Theorem 4.2(c) can fail when
amp(P) > 0; (2) the nontrivial implications in Theorem 4.2(a) and Corollary 4.3
can fail in the absence of the hypothesis on Suppg(P); and (3) the first inequality
in Proposition 3.12 and the second inequality in Theorem 4.4 can be strict, while
equality can occur in the first inequality in Theorem 4.4.

Let R = k[Y]. Setting P! = R/(Y — 1) ® SR ® 3*R/Y and X' = R/(Y), one has
X' @ P! ~ SR/(Y), and so one verifies (1) from the next computations:

inf(X'") = sup(X') = amp(X') =0
inf(P')=0  sup(P') =amp(P') =2 fdy(P") =3
inf(X' @5 Py =sup(X' @5 P)=1 amp(X' ®% P') =0.
For (2) let a: R — R/(Y) ® R be the natural map and P>=R/(Y —1). It is
straightforward to check that o ®% P? is an isomorphism, even though « is not.
Furthermore, with X = cone(x) one has X> ®% P> ~ 0 while X> % 0. With X3 =
R® (D, R/(Y)), the complex X ® P>~ P> is homologically bounded, even

though X? is not.
For (3), if PP = R® R/(Y — 1), then X' ®% P* ~ R/(Y) and so

Ge-dimg(X') + inf(P?) = Ge-dimg (X' ®% P?) < Ge-dimg(X") + pdg(P).

Set § = R/(Y) with ¢: R — S the natural surjection. The module P3 is not R-
semidualizing, even though P? ®% S ~ § is S-semidualizing.

Next we refine the ascent property (Christensen, 2001, (5.10)). When ¢ is local,
Theorem 4.8 shows that this inequality can be strict (if amp(C) > 0) or not (if

amp(C) = 0). Example 5.14 shows that the converse to the final statement need not
hold.

Proposition 4.7. Assume that fd(¢) is finite, and let C, X be homologically finite R-
complexes such that C is R-semidualizing. There is an inequality

Gegys-dimy(X @ ) < amp(C) + G-dimg(X).

In particular, if X is C-reflexive, then X ®% S is C ®% S-reflexive.
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Proof. The last statement is in Christensen (2001, (5.10)), so assume that
G-dimg(X) and Gegr s-dimy(X ®% S) are finite. In the following sequence

Gegts-dimy(X ®f ) = inf(C ® S) — inf(RHomg(X ®% S, C ®% 5))
< sup(C) — inf (RHom,(X, C))
= amp(C) + inf(C) — inf(RHom, (X, C))
= amp(C) + G-dimg(X)
the equalities are routine, and the inequality follows from 1.9(a) and 4.1. O

The following descent result is Theorem II(b) from the introduction.

Theorem 4.8. Let C,X be homologically degree-wise finite R-complexes with C
semidualizing. If fd(¢) is finite and Im(¢*) contains m-Spec(R), then

Ge-dimg(X) = Gegrs-dimy(X ®F S).
In particular, X ®% S is C Q% S-reflexive if and only if X is C-reflexive.

Proof. One implication is in Proposition 4.7, so assume that X ®%S is
C ®L S-reflexive. Theorem 4.2(b) and 1.9(a) imply that X and RHomg(X, C)
are homologically bounded. With Corollary 4.3 the commutative diagram
from Christensen (2001, (5.10))

60@55

L
X ®% 5 —~% RHoms(RHoms(X &% S,C ®% 5),C ®% )
1.9(a)T:
= RHomg(RHompg(X,C) ®% S,C ®% S)

1.9(a)T2
< ®k

X @% § ———> RHomg(RHomg(X,C),C) ®% S

shows that 5§ is an isomorphism, and so X is C-reflexive.
Assuming that G-dimg(X) and Gegrg-dimg(X ®L S) are finite, one has

Gegrs-dimy(X ®F S) = inf(C ®} §) — inf(RHomg(X ®% S, C ®% 5))
= inf(C) — inf(RHom (X, C))
= G-dimg (X)
where the second equality is from Theorem 4.2(c) and 1.9(a). O

Here is Theorem IlI(c) from the introduction. It uses the functor Pic(—);
see 1.11. The conclusion fails outright if C,C’ are not semidualizing by
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Example 4.10. Note that the injectivity of Pic(¢) in the hypotheses is not automatic,
even when ¢ is faithfully flat (Fossum, 1973, (11.8)), unless ¢ is local or surjective;
see Proposition 4.11. In fact, the inclusion Pic(R) € &(R) shows that this condition
1S necessary.

Theorem 4.9. Assume that fd(¢) is finite, Im(¢*) D m-Spec(R), and Pic(p) is
injective. If C, C' are R-semidualizing and C ®% S ~ C' @k S, then C ~ C'.

Proof. By Theorem 4.8 the isomorphism C ®% S >~ C’' ®% S implies that C is C'-
reflexive and vice versa. It follows from Lemma 3.2 that, for each m € m-Spec(R),
there is an isomorphism RHomg(C’, C),, ~ R,,. The isomorphisms

R®}) S~ S~ RHomy(C' ®} S, C ®% S) ~ RHom,(C', C) ® S ()
along with Theorem 4.2, explain the following inequalities:

0 = amp(RHom,(C’, C) ®% S) = amp(RHom,(C’, C)) > 0.

Thus, amp(RHomg(C’, C)) =0 and RHomg(C’, C), ~ 3R, for each m ¢
m-Spec(R), where i = inf(RHomg(C’, C)). In other words, RHom,(C’, C) ~ 3'L
where [L] € Pic(R). The isomorphisms (T) imply S ~ 'L ®% S ~ 'L ®, S and so
i = 0. Applying (1) again yields Pic(¢)([L]) = [S] = Pic(¢)([R]) so the injectivity of
Pic(¢) implies L = R. Hence, RHom,(C’, C) >~ R and thus

C' ~ R®} C' ~ RHomg(C', C) ®; C' ~ C
where the last isomorphism is from Lemma 3.1(b). O

Example 4.10. The conclusions of Lemma 1.10 and Theorem 4.9 fail if ¢ is not
flat and if the complexes are not semidualizing. Set R = k[[Y, Z]] and S = R/(Y, Z)
with ¢: R — S the surjection. The complexes C = R/(Y) and C' = R/(Z) satisfy
CRLS~SPIS~C' ®%Sand C#C.

Proposition 4.11. If ¢ is surjective with fd(¢p) finite and m-Spec(R) is contained in
Im(¢*), then Pic(p) is injective.

Proof. Set I = Ker(¢p) so that § = R/I, and note that our hypothesis on ¢ implies
that the Jacobson radical of R contains /. Let L be a finitely generated rank 1
projective R-module such that S = L ®, S = L/IL. Fix an element x € L whose
residue in L/IL is a generator and let «: R — L be given by 1 — x. By construction,
the induced map a®;S: S - L ®, S is bijective. Since L is a projective R-
module, this says that the morphism o ®% S: § — L ®% S is an isomorphism. By
Corollary 4.3 it follows that « is also an isomorphism. |

5. FINITE RING HOMOMORPHISMS OF FINITE FLAT DIMENSION:
COBASE CHANGE

Here we study the relation between the semidualizing and reflexivity
properties and the functor RHomg (S, —) where ¢: R — S is a module-finite ring
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homomorphism of finite flat dimension. We begin with results that follow directly
from 4.1-4.3 using 1.4 and 1.7(b); their limitations are shown by the same examples.

5.1. If X, P are R-complexes such that H(P) # 0 is finite and pd;z(P) < oo, then

inf(RHomg(P, X)) > inf(X) — pdz(P)
sup(RHomg (P, X)) < sup(X) — inf(P)
amp(RHomg (P, X)) < amp(X) + pdi(P) — inf(P).
Corollary 5.2. Let P be a homologically finite R-complex with pdg(P) finite and
such that Suppg(P) contains m-Spec(R). For each homologically degree-wise finite R-
complex X, there are inequalities
inf(RHom, (P, X)) < inf(X) + sup(RHom,(P, R))
sup(RHomg (P, X)) > sup(X) + inf (RHom, (P, R))
amp(RHomg (P, X)) > amp(X) — amp(RHomg (P, R)).

In particular:

(a) X ~ 0 if and only if RHomg(P, X) ~ 0;
(b) X is homologically bounded if and only if RHomg (P, X) is so;
(c) If amp((RHomg(P, R)) = 0, then the first inequality is an equality.

Corollary 5.3. Let P be a homologically finite R-complex with pdg(P) finite and
such that Suppg(P) contains m-Spec(R). If o is a morphism of homologically degree-
wise finite R-complexes, then o is an isomorphism if and only if the induced morphism
RHomy(P, «) is an isomorphism.

Here is a partial converse for Proposition 3.12. For strictness in the first
inequality, use the guaranteed equality with R local and amp(P) > 0. Example 4.6
shows other limitations.

Theorem 5.4. Let C, P, X be homologically finite R-complexes with C semidualizing,
pdi(P) finite, and m-Spec(R) contained in Suppy(P). There are inequalities

G-dimg (X) — sup(P) < Go-dim,(RHomg (P, X))

< G-dimg(X) — inf(P).

In particular, the complexes X and RHomy(P, X) are C-reflexive simultaneously. If R
is local or amp(P) = 0, then the second inequality is an equality.

Proof. Set (—)c = RHomg(—, C). First we verify that X and RHom,(P, X) are
C-reflexive simultaneously. Theorem 4.2(b) and the Hom-evaluation isomorphism

RHom (P, X)'c ~ P ®} X'c ()
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show that the complexes RHomg(P, X)'c and X'c are homologically bounded
simultaneously. The following commutative diagram from Christensen (2001, (3.17))

5¢
RHompg (P,X)

RHom,(P, X) ———— RHom(P, X)icic

RHomR(P,zsg)l :lm(g)
RHom, (P, XTcTc) %(d)> (P ®l}5 XTC)TC,

implies that gy, pxy and RHomg(P,d%) are isomorphisms simultaneously.
Corollary 5.3 shows that the same is true for dgyop, (px) @nd 0%

Assume that X and RHom(P, X) are C-reflexive. The second inequality is in
Proposition 3.12. The first inequality is verified in the following sequence

G -dimg (RHom (P, X)) 2 inf(C) — inf (P ®% RHom(X, C))
()
> inf(C) — sup(P) — inf (RHomg (X, C))
= G-dimg(X) — sup(P)
where (1) is by isomorphism (F), and (2) is by Theorem 4.2. If amp(P) = 0, then

inf (P ®; RHom, (X, C)) = inf(RHom,(P, R)) + inf(RHom, (X, C))

by Theorem 4.2(c); the same equality holds by Nakayama’s Lemma if R is local.
Thus, under either of these hypotheses, the displayed sequence in the proof of
Proposition 3.12 gives the desired equality. O

Example 4.6 shows how the converse of the first implication of the next result
can fail. If R is local and amp(C) = 0, then the second and third inequalities are
strict if and only if pd;(S) > 0. We do not know if the first inequality can be strict.

Theorem 5.5. Assume that ¢ is module-finite with fd(¢p) finite and C is a
homologically degree-wise finite R-complex. If C is R-semidualizing, then RHom (S, C)
is S-semidualizing and

inf(C) — pd,(S) < inf(RHomg(S, C)) < sup(C)

with equality on the left if R is local or amp(C) = 0. Conversely, if RHom(S, C) is
S-semidualizing and m-Spec(R) < Im(¢*), then C is R-semidualizing and

inf(RHom,(S, C)) < inf(C) + sup(RHom,(S, R))
with equality if amp(RHom,(S, R)) = 0.

Proof. First, assume that C is R-semidualizing. Mimic the proof of Christensen
(2001, (6.1)) to show that RHomg(S, C) is S-semidualizing. The first inequality
and conditional equality follow immediately from Proposition 3.11. The second
inequality is a consequence of 5.1 since inf(RHom,(S, C)) < sup(RHomg(S, C)).
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Next, assume that RHom,(S, C) is S-semidualizing and m-Spec(R) € Im(¢p*).
Corollary 5.2(b) implies that C is homologically finite. The commutative diagram

S
ZRHomR(S,C)

S ——— RHomg(RHomg(S, C), RHomg(S, C))

| o

sekik
SLR — = S ®L% RHom,(C, C)

shows that S ®% %% is an isomorphism and Corollary 4.3 implies the same for yX.
The last (in)equality is in Corollary 5.2. a

Part (a) of the next result says, if amp(RHomg(S, R)) =0 = amp(C), then
amp(RHom,(S, C)) = 0.

Proposition 5.6. Ler C be a semidualizing R-module, and assume that ¢ is surjective
and Cohen—Macaulay of grade d.

(a) Ext4(S, C) is S-semidualizing and Exti(S, C) = 0 for each i # d.
(b) If ¢ is Gorenstein, then the S-module Ext4(S, R) is locally free of rank 1.

Proof. (a) Let g C S be prime and set p = ¢*(q) and I = Ker(¢). The S-complex
RHomg (S, C) is semidualizing by Theorem 5.5, so it suffices to show Exty(S, C), =
0 for j # d. There is an R -sequence y € I, of length d = gradeRD (S,)- Since C, is
R,-semidualizing, y is also C,-regular, and thus Ext}(S, C), = Ext{?D(S C,) =0 for
Jj<d. Also, d = pdy (S,) implies Extj(S, C), = 0 for j > d.
Part (b) follows from (a) and the definition of a Gorenstein homomorphism.
O

q°

When ¢ is local, Theorem 5.8 shows that the next inequality can be strict (if
pdi(S) > 0) or not (if amp(C) = 0 = pd,(S)). Example 5.14 shows that the converse
to the final statement need not hold.

Theorem 5.7. Assume that ¢ is module-finite with fd(¢) < oo, and let C,X be
homologically finite R-complexes with C semidualizing. There is an inequality

GRuomg(s,c)-dimg(RHomg (S, X)) < G-dimg(X) + amp(C).
In particular, if X is C-reflexive, then RHom(S, X) is RHom(S, C)-reflexive.
Proof. Set (—)(¢) = RHom(S, —). It suffices to verify the final statement. Indeed,

if G¢(,)-dimg(X(¢)) and G-dimg(X) are both finite, then Theorem 5.5 and 1.9(b)
explain (2) below

Ge(p)-dimg(X(¢)) 2 inf(C(g)) - inf(RHomg(X(¢). C(¢)))

@ , L
< sup(C) — inf (S ® RHom, (X, C))
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3)
< sup(C) — inf(RHom, (X, C))

@ amp(C) + Ge-dimy(X)

while (1) and (4) are by definition, and (3) follows from 4.1.

Assume now that X is C-reflexive. The complex RHom,(X, C) is homolo-
gically bounded below, so 1.9(b) and 4.1 imply the same for RHomg(X(¢), C(¢)).
The commutative diagram shows that the biduality morphism 5;&‘3 is an
isomorphism

Ce)
X(¢)

X(p) RHoms(RHoms (X (), C(p)), C(¢))

1.9(b)l:

= RHoms(S ®% RHomg(X, C), RHomg(S, C))
1.6(d)I:

MR (O, ¢
RHomr(5%) . RHomp(S, RHomp(RHomp (X, C), C))

RHomg(S, X)

and it follows that X(¢) is C(¢)-reflexive. O

When ¢ local the first inequality in our next result can be strict (if pd.(S) > 0)
or not (if pd;(S) = 0). We do not know if the second inequality can be strict.

Theorem 5.8. Let C,X be homologically degree-wise finite over R with C
semidualizing. If ¢ is module-finite with fd(¢) < oo and m-Spec(R) C Im(¢*), then

GRruomg(s,0)-dimg(RHomg (S, X)) < Ge-dimg(X)
= GRHomR(S,C)'dimS(RHomR(S’ X)) + pdg(S).

Thus, RHom,(S, X) is RHom(S, C)-reflexive if and only if X is C-reflexive. If either
R is local or amp(C) = 0, then the second inequality is an equality.

Proof. Set (—)(¢) = RHom(S, —). First, we assume that X(¢) is C(¢)-reflexive
and prove that X is C-reflexive; the converse is in Theorem 5.7. The complexes
X(¢) and S ®% RHomg(X, C) are homologically finite by 1.9(b). Theorem 4.2(b)
and Corollary 5.2(b) imply the same for RHom,(X, C) and X. In the commutative
diagram from the proof of Theorem 5.7, the morphism 5%:; is an isomorphism,
hence so are RHom, (S, 6%) and 6% by Corollary 5.3.

Now assume G-dimg(X), Gg,)-dimg(X(¢)) < oco. The first desired inequality
follows from the numbered sequence in the proof of Theorem 5.7 because
inf(C(¢)) < inf(C) by Theorem 5.5. The second inequality is in the next sequence:

Ge-dimp(X) £ inf(C) — inf(RHom, (X, C))

2 inf(C) — inf(RHom,(X(¢), C(¢)))
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2 pd,(S) + inf(C(e)) — inf(RHom,(X(¢), C(¢)))
@ Gy -dimg (X (@) + pdg(S).

(1) and (4) are by definition, (2) is from 1.9(b) and Theorem 4.2(c), and (3) is in
Theorem 5.5. If amp(C) = 0 or R is local, (3) is an equality by Proposition 3.11.
O

Here is a version of Theorem 4.9 for RHomg(S, —); its proof is almost
identical, using Theorem 5.8 in place of Theorem 4.8, and the isomorphism 1.9(b).

Theorem 5.9. Assume that ¢ is module-finite with fd(¢) < oo, Im(¢*) contains
m-Spec(R), and Pic(¢) is injective. If C, C' are semidualizing R-complexes such that
RHom,(S, C) ~ RHomg(S, C'), then C ~ C'.

Each inequality in the next result can be strict: for the first and third, let ¢ be
local and pd,(S) > 0, and use the equality; for the second, see Example 5.11. To see
that each one can be an equality, take amp(C) = 0 = pd,(S).

Proposition 5.10. Let C be a semidualizing R-complex and X a homologically finite
S-complex. If ¢ is module-finite and fd(¢) < oo, then there are inequalities
GRruomg(s,0)-dimg(X) — amp(C) < Ge-dimg(X)
= GRHomR(S,C)'dimS(X) + de(S)
with equality on the right if R is local or amp(C) = 0. In particular, the complex X is

simultaneously C-reflexive and RHomg(S, C)-reflexive. If Im(¢*) contains m-Spec(R),
then Gryom,(s,c)-dimg(X) < Ge-dimg(X).

Proof. Set (—)(¢) = RHomg(S, —). Simultaneous reflexivity is proved in
Christensen (2001, (6.5)), so assume that X is C-reflexive and C(¢p)-reflexive. In the
next sequence:

. 1) . .
G(p)-dimg(X) = inf(C(¢)) — inf(RHom, (X, C))
2
2 sup(C) — inf(RHom, (X, C))
2 amp(C) + G-dim,(X).

(1) is by adjunction, (2) is by Theorem 5.5, and (3) is by definition. This is the first
inequality. For the second inequality, start with adjunction in (4)
G-dimg(X) @ inf (C) — inf (RHom, (X, C(¢)))
(5 . .
=< pdx(S) + inf(C(¢)) — inf(RHomg(X, C(¢)))

(6) .
= pdg($) + GC(¢:)‘dlms(X)
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while Theorem 5.5 yields (5), and (6) is by definition. If R is local or amp(C) =0,
then (5) is an equality by Theorem 5.5 and thus so is the second inequality.

If m-Spec(R) € Im(¢*), then Corollary 5.2 gives inf(C(¢)) < inf(C). Using
this in (2) above gives the third inequality. d

Example 5.11. Certain inequalities in Propositions 2.9, 3.11, and 5.10 and in
Theorems 4.5 and 5.5 can be strict, even when Spec(R) and Spec(S) are connected.
Let & be a field and set

A=k[X,Y,Z]/(Y*,YZ) U=A\((X,Y)AU(Y,Z)A) R=U'A.
The ring R has two maximal ideals and one nonmaximal prime ideal
m=(X, )R n=({,2) R p=(Y)R

and Spec(R) is connected as p € mt N n. The minimal injective resolution of the
normalized dualizing complex for R has the form

D=0— E(R/p) —> E(R/m)® E(R/n) — 0.

Since R, is not Cohen—Macaulay, one has H,(D), # 0 # Hy(D), and hence
inf(D) = 0. Also, E(R/m), = 0 = E(R/n), implies H,(D), = E(R/p), # 0. Since R,
is Gorenstein, one has D, ~ R,; and since 0 # H,(D), = (H,(D),,),, it follows that
H,(D),, # 0 and thus D,, >~ 3R,,.

With § = R/(X)R = k[Y, Z]y,/(Y?) and ¢: R — S the natural surjection, one
has pd;(S) = 1 and Suppg(S) = {m}. The map ¢, : R,, — S is local Gorenstein of
grade 1, giving the third isomorphism below; the other computations are routine:

RHomg(S, D) ~ RHom, (S, D,,) >~ RHom,, (S, <R
D®;S~D,®; S~3R,®; S~3S
Gp-dimg(S) = 0 < 1 = sup{G,, -dimg (S,,), Gp -dim (S,)}
Gp-dimg(S) =0 < 1 = pdx(S)
inf(D) = 0 < 1 = inf(D ®} S)
amp(D ®% §) =0 < 1 = amp(D)
inf (D) — pdz(S) = —1 < 0 = inf(RHomg(S, D))
Gp-dimg(S) = 0 < 1 = Gryom(s.p)~dimg(S) + pdg(S)

)~ S

m

m

The next result follows from Propositions 3.12 and 5.10. If ¢ is local,
the inequality can be strict (if pd(S) > 0) or not (if pd(S) = 0 = amp(C)); see
Theorem 5.13.

Theorem 5.12. Let C, X be homologically finite R-complexes with C semidualizing.
When ¢ is module-finite with fd(¢) < oo there is an inequality

GRHomR(S,C)'dimS(X ®£€ S) < G¢-dimg(X) + amp(C) + pdg(S).

In particular, if X is C-reflexive, then X ®% S is RHomg(S, C)-reflexive.
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Here is Theorem III from the introduction. When ¢ is local, the equality
guarantees that the inequalities are strict if and only if pd,(S) > 0.

Theorem 5.13. Let C, X be homologically finite R-complexes with C semidualizing.
If ¢ is module-finite with fd(¢) < oo and m-Spec(R) C Im(¢*), then

Ge-dimg(X) — pdg(S) < Gretomy(s.c-dimg(X ®f )
< Ge-dimg(X) 4 pdg(S).

Thus, X ®% S is RHom (S, C)-reflexive if and only if X is C-reflexive. If R is local or
amp(C) = 0 = amp(RHom(S, R)), then

GRHOmR(S,C)-dimS(X ®:; S) = Gc'dimR(X).

Proof. Set (—)(¢) = RHomg(S, —). In the sequence

. (O] .
Gp-dimy(X ®% S) < G-dimg(X ®F S)
(2 .
= Ge-dimg(X) + pdg(S)

3) .
< Ge-dimy(X ®Y; ) + pdg(S)

“4) .
< Gp-dimy(X ®F% S) + 2pd,(S)

(1) and (4) are in Proposition 5.10, and (2) and (3) are in Theorem 4.4. When one
of the extra conditions holds, there is a similar sequence

G (p-dimyX ®% §) = G-dimg(X ®j §) — pdg(S) = G-dim,(X)
by Theorem 4.4 and Proposition 5.10. a

Example 5.14. Without the hypothesis on m-Spec(R) in Theorems 4.4, 4.8, 5.4,
5.8, and 5.13, the nontrivial implications fail, even when Spec(R) is connected;
one can have G -dimy(X) =00 even though each of the following is finite:
Ge-dimg(RHomg(S, X)), Gryom,s,c)-dimg (RHomg (S, X)),  G-dimy (X ®k S),
Ggrs-dimg (X ®F S), Gritomy(s,c-dimg (X ®F ).

Let (Ry, nm,) be a non-Gorenstein local ring and set R = Ry[Y] with m =
(my, V)R and X = R/m ® R and S = R/(Y — 1) with the natural surjection R — S.
Then X is not R-reflexive since if it were then R,,/mR,, would be R, -reflexive
implying that R, is Gorenstein. However, X ®% S~ S has finite projective
dimension over § and over R, so it is reflexive with respect to each complex that
is R-semidualizing or S-semidualizing; similarly for RHomg (S, X) ~ 3~!S. Finally,
Spec(R) is connected as the existence of nontrivial idempotents in R would give rise
to such elements in R; see, e.g., Atiyah and Macdonald (1969, Exer. 1.22).
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6. FACTORIZABLE LOCAL HOMOMORPHISMS OF FINITE FLAT
DIMENSION: COBASE CHANGE

Motivated by Avramov and Foxby (1997) and Iyengar and Sather-Wagstaff
(2004) we extend results of Section 5 to special nonfinite cases.

Proposition 6.1. Let ¢: R — R and ¢': R — S be homomorphisms of finite flat
dimension with ¢ module-finite and X a homologically degree-wise finite R-complex.

(a) If the R-complex X is homologically bounded (respectively, semidualizing), then the
S-complex RHomR,(S, X ®'1; R/) is so as well.

(b) Assume that ¢ is faithfully flat and Im((¢")*) contains m-Spec(R’). If the S-complex
RHomyg, (S, X ®k R/) is homologically bounded (respectively, semidualizing), then
the R-complex X is so as well.

Proof. (a) If X is homologically bounded, then so is RHomy (S, X ®% R') by 4.1
and 5.1. Theorems 4.5 and 5.5 yield the other implication.

(b) When ¢ is flat, the isomorphism H,(X ®% R') = H,(X) ®; R’ implies that
the R'-complex X ®% R’ is homologically degree-wise finite. If RHomy, (S, X ®% R’)
is homologically bounded, then so is X ®% R by Corollary 5.2(b), and so is X.
Theorems 4.5 and 5.5 provide the remaining implication. |

For the rest of this article, we focus on local homomorphisms that factor
nicely.

6.2. When ¢ is local, a regular (respectively, Gorenstein) factorization of ¢ is

a pair of local homomorphisms R 5 RS S such that ©=¢'¢, ¢ is surjective,
and ¢ is flat with regular (respectively, Gorenstein) closed fibre. In either case,
the homomorphisms ¢ and ¢’ have finite flat dimension simultaneously by Foxby
and Iyengar (2003, (3.2)). When the ring R’ is complete, the regular factorzation
is a Cohen factorization. It is straightforward to construct a regular factorization
when ¢ is essentially of finite type. Also, if S is complete, then ¢ admits a Cohen
factorization (Avramov et al., 1994, (1.1)).

Lemma 6.3. Assume that ¢ is module-finite and local and that it admits a Gorenstein

. ¢ 4 . . .
factorization R AN R, — S with R, R, S complete. Then there exists a commutative
diagram of local homomorphisms

R,

L Pl

where T is surjective with kernel generated by an R,-sequence and the bottom row is a
Gorenstein factorization of ¢ such that ¢ is module-finite.

Proof. Since ¢ is module finite, the closed fibre S/mS = R,/(Ker(¢)), m) is
Artinian and the extension of residue fields k& — [ is finite. In particular, the
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ideal (Ker(¢}), m)R,/mR, is primary to the maximal ideal of R;/mR,. Let y =
Yis---,¥q € Ker(¢]) be a system of parameters for R;/mR,;, that is, a maximal
R,/mR,-sequence. Set R” = R,/(y) with natural surjection n: R, — R”, and let the
maps ¢: R — R” and ¢": R” — S be induced by ¢, and ¢|, respectively.

One has ¢"$ = ¢| ¢, = ¢, and ¢” is surjective because ¢ is so. The closed fibre
of $ is R”/mR" = (R,;/mR,)/(y) which is Gorenstein because R,/mR, is so. The
sequence y is R,-regular, and the map § is flat; see, e.g., Matsumura (1989, Corollary
to (22.5)). Finally, the equality in the next sequence is straightforward

length,(R"/mR") = lengthg, g (R"/mR") - rank, (1) < oo

and the inequality is by construction. So, ¢” is module-finite by Matsumura (1989,
(8.4)). 0

o . . . . ¢
Proposition 6.4. Assume that ¢ is local and admits Gorenstein factorizations R AN

[3 @ #2 . . .
R, —5 S and R —> R, — S with each R; complete. There exists a commutative
diagram of local ring homomorphisms

R

R,

where ¢'@ is a Cohen factorization of ¢ and each m; is surjective and Gorenstein.

. . . &; @/ e, .
Proof. Taking Cohen factorizations R BN R: — R; of ¢, it is evident that the

diagrams R BN R #% S are Cohen factorizations of ¢. Since ¢; is flat with
Gorenstein closed fibre, the surjection ¢! is Gorenstein by Avramov and Foxby
(1992, (2.4)) and Avramov et al. (1994, (3.2)). The “comparison theorem” for Cohen
factorizations (Avramov et al., 1994, (1.2)), provides a commutative diagram of local
ring homomorphisms

R

&1 T ot
T1
. '

R—¢>R'L>>S

v T2
P2 N

R,

where ¢'¢ is a Cohen factorization of ¢ and each 7; is surjective with kernel
generated by a regular sequence. Each 1, is Gorenstein by Avramov and Foxby
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(1992, (4.3)), and hence so is each m; = ¢!t;. Thus, these maps yield a diagram with
the desired properties. |

Theorem 6.5. Let X be a homologically finite R-complex. Assume that @ is local wzth
fd(qo) finite and that ¢ admits Gorenstein factorizations R BN R, A, S and R 2>

R, 8. Setd = depth(¢) and d; = depth(¢,) for i =1, 2.

(a) The S-complexes X“RHomg (S, X ®% R,) and 3“RHomg (S, X @k R,) are
isomorphic.

(b) When ¢ is Gorenstein at n, the S-complexes 3“RHomy, (S, X ®f R,) and 3X ®F
S are isomorphic.

(c) When ¢ is module-finite, the S-complexes Ed"RHomRi (S, X ®% Ri) and
RHom (S, X) are isomorphic.

Proof. First, we show that, if ¢ is module-finite and Gorenstein at n, then the
S-complexes 29X ®% S and RHomg(S, X) are isomorphic. To this end, note that
grade,(S) = —d and so Proposition 5.6(b) implies 3¢S ~ RHom(S, R) since S is
local. This provides the first of the following isomorphisms:

35 @L X ~ RHomg(S, R) ®% X ~ RHom(S, X)

where the other is from 1.7(b). This estabhshes the desired isomorphism.

The completed diagrams R R %S are Gorenstein factorizations of
b R— S. Using Lemma 1.10, one can replace the given factorizations with the
completed ones to assume that the local rings R, R, R,, S are complete.

By considering the upper and lower halves of the diagram provided by Proposi-
tion 6.4, we assume that there is a commutative diagram of local homomorphisms

R,

$1 i »1
T
. 7

R£>R2ﬁ»5

where 7 is surjective and Gorenstein. By definition then, one has d, = d, 4+ depth(z).

(a) The above diagram gives a sequence of isomorphisms

S“RHom, (S, X ®j R2) EdZRHomRZ (X ®% R)) ®%, R,)

< 3%RHom, (s, 3~9PhORHom, (R,, X @ R,))
2 S RHomy (S, RHomg (R,, X ®% R,))

(5.
i
i
(

“)
~ S“RHom, (S, X Q% R))
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where (1) is by associativity, (2) follows from the the first paragraph since 7 is
Gorenstein and surjective, (3) follows from the final observation of the previous
paragraph, and (4) is adjunction.

(b) When ¢ is Gorenstein, the same is true of each ¢; by Avramov et al.
(1994, (3.2)) and Avramov and Foxby (1992, (2.4)). Since each ¢/ is also surjective,
the first paragraph gives the first isomorphism in the next sequence where the second
isomorphism is associativity and cancellation:

S“RHomy, (S, X ® R;) ~ S4HP@ (X @k R) @ S ~3/X @ S

(¢) When ¢ is module-finite, the diagram provided by Lemma 6.3 yields a
sequence of isomorphisms where d” = depth($):

QR
S“RHom (S, X ® R,) ~ S RHomy, (S, X ® R")
Qe ’
~ 3* RHomy, (S, 3~ RHomg(R", X))
2 RHomg(S, X).

(5) is by part (a), (6) follow from the first paragraph, and (7) is by adjunction. [

We employ the following handy notation for the remainder of this section.

6. 6 Assurne that ¢ is local with fd(¢) finite and admits a Gorenstein factorization
R-5 R -5 Swithd = depth(¢). For a homologically finite R-complex X, set

X(¢) = S‘RHom, (S, X ®% R).

Theorem 6.5 shows that this is independent of the choice of Gorenstein factorization
and that X(¢) >~ RHomg(S, X) when ¢ is module-finite.

Remark 6.7. With ¢ as in 6.6, the complex R(¢) is normalized dualizing for ¢. If
D is a (normalized) dualizing complex for R, then the complex D(¢) is (normalized)
dualizing for S; see Proposition 6.10.

Next is an alternate description of X(¢) that follows directly from 1.7(b). In
it, we tensor over S in order to stress that complexes are isomorphic over S and not

just over R. A similar remark applies to Proposition 6.9.

Proposition 6.8. If ¢ is as in 6.6 and X is a homologically finite R-complex, then
there is an isomorphism X(¢) ~ (X ®% S) ®% R(¢).

The next isomorphisms follows from parts (b) and (c) of 1.9.
Proposition 6.9. If ¢ is as in 6.6 then there are isomorphisms

RHomg(X(¢), Y(¢)) =~ RHomg(X, ¥) ®% S
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RHom,(X ®% S, ¥(¢)) >~ (RHom, (X, Y) ® S) ®% R(¢)
for all homologically finite R-complexes X, Y.

Proposition 6.10. Assume that ¢ is local with fd(¢) finite and let C be a
semidualizing R-complex. The Poincaré and Bass series of C ®% S are

PSas( = PRy 150 = IS, (0).

If @ has a Gorenstein factorization, then the Poincaré and Bass series of C(¢) are

Py, () = PR(L(t)  I9(0) = I (0).

Proof. The first Poincaré series is from Avramov and Foxby (1997, (1.5.3)), and
the Bass series follows

1780 2150/ (0 2 1R (01,(0/PE®) 2 IE()1,(1)

where (1) and (3) are by 1.5 and (2) is from 1.8. If ¢ admits a Gorenstein
factorization, then the second Poincaré series follows from Proposition 6.8 with
Avramov and Foxby (1997, (1.5.3)) and Christensen (2001, (1.7.6)), and the second
Bass series is computed like the first one. |

Here we record the analog of Theorem 5.8 for our new setting.

Corollary 6.11. If ¢ is as in 6.6 and C, X are homologically finite R-complexes with C
semidualizing, then G, -dimg(X(p)) = G-dimg(X) + depth(e). In particular, X(¢)
is C(p)-reflexive if and only if X is C-reflexive.

Proof. Let R LN R 2> be a Gorenstein factorization of ¢ and set d =
depth(¢). Equalities (1) and (5) in the following sequence are by definition:

. 1) . / /
G -dimg(X(¢)) = sz(cgokzef)(‘p')'dlms(zd (X ®% R)(¢))

@ . N
2 Gcatre)-dimy((X ®% R)(¢)) +d

3 . ,
2 Grorp-dimp(X ®% R) — pdg (S) + d

D Ge-dimg(X) + depth(¢’) + d

9 G -dimy(X) + depth(e)

while (2) is by Christensen (2001, (3.12)), (3) is Theorem 5.8, and (4) is from
Theorem 4.8 and the Auslander—Buchsbaum formula. O

Theorems 4.9 and 5.9 provide the proof of the next result.
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Corollary 6.12. Let ¢ be as in 6.6. When C, C' are semidualizing R-complexes, one
has C(p) ~ C'(¢) if and only if C ~ C'.

Replace Proposition 5.10 with Theorem 5.13 in the proof of Corollary 6.11 to
prove the next result.

Corollary 6.13. If¢isasin 6.6 and C, X are homologically finite R-complexes with C
semidualizing, then GC(@-dimS(X ®L S) = Gc-dimg(X). In particular, X ®% S is C(¢)-
reflexive if and only if X is C-reflexive.

Remark 6.14. With the reflexivity relations of Theorem 4.8 and Corollaries 6.11
and 6.13 in mind, we wish to characterize the finiteness of Gegrs-dimg(X(¢)). If
G-dimg(X) is finite and ¢ is Gorenstein at n, then Gegrs-dimg(X(¢)) is finite by
Theorems 4.8 and 6.5(b). We wonder if the converse holds. Here is one instance of
this: If Gegrg-dimg(C(¢)) is finite, then C ®L S and C(¢) are shift isomorphic by
Lemma 3.2, and Frankild and Sather-Wagstaff (Preprint, (3.7(c))) implies that ¢ is
Gorenstein at 1.

Proposition 6.15. Let ¢ be local with fd(¢) finite and C,C’ semidualizing R-
complexes such that C' is C-reflexive. There are the coefficientwise equalities

s _ pR
PRHomS(C'®',;s,C®',;s)(t) = PRuomp(c.0) (1)

RHomg(C'®ks,coks) RHomg(C',C)
Is * : (t) = IR ! (t)I(p(t)‘
If ¢ has a Gorenstein factorization, then there are equalities

S R
Pretoms(cr(e).cte) () = Prtomy(cr,0 (1)
I;{HomS(C’(gv),C(@))(t) — Ill;HomR(C,’C)(t)I‘P(l‘)

s _ pR
PRHomS(C/®'§S,C(¢))(t) = PRHomR(C’,C)(t)I<p(t)

/oL /
I;lHomS(C ®S.C(e)) (l) _ I]l;HomR(C ,0) (l)

Proof. For the first Poincaré series, use Christensen (2001, (1.7.6)) with 1.9(a).
When ¢ admits a Gorenstein factorization, the other Poincaré series come from
Proposition 6.9 with Avramov and Foxby (1997, (1.5.3)) and Christensen (2001,
(1.7.6)). The Bass series follow as in Proposition 6.10. a
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