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ABSTRACT 

 

 A “reforecast” (retrospective forecast) data set has been developed.  This data set 

is comprised of a 15-member ensemble run out to two weeks lead.  Forecasts have been 

run every day from 0000 UTC initial conditions from 1979 to present.  The model is a 

1998 version of the National Centers for Environmental Prediction’s Global Forecast 

System (NCEP GFS) at T62 resolution.  The 15 initial conditions consist of a reanalysis 

and seven pairs of bred modes. 

 This data set facilitates a number of applications that were heretofore impossible. 

Model errors can be diagnosed from the past forecasts and corrected, thereby 

dramatically increasing forecast skill. For example, calibrated precipitation forecasts over 

the United States based on the 1998 reforecast model are more skillful than precipitation 

forecasts from the 2002, higher-resolution version of the NCEP GFS. Other applications 

are also demonstrated, such as the diagnosis of bias for model development and an 

identification of the most predictable patterns of week 2 forecasts. 

 It is argued that the benefits of reforecasts are so large that they should become an 

integral part of the numerical weather prediction process.  Methods for integrating 

reforecast approaches without seriously compromising the pace of model development 

are discussed. 

 Users wishing to explore their own applications of reforecasts can download them 

through a web interface. 
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CAPSULE SUMMARY: 

Reforecasts (retrospective forecasts from the same model used operationally) can 

dramatically improve forecast skill through the statistical correction of the current 

forecast using the older forecasts.  

 

1. Introduction 

 Reanalyses such as the National Centers for Environmental Prediction/National 

Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996) and the 

European Centre for Medium Range Weather Forecasts (ECMWF) 40-year reanalysis 

(ERA-40; Uppala et al. 2004) have become heavily used products for geophysical science 

research.   These reanalyses run a practical, consistent data assimilation and short-range 

forecast system over a long period of time.  While the observation type and quality may 

change somewhat, the forecast model and assimilation system are typically fixed.   This 

facilitates the generation of a reanalysis data set that is fairly consistent in quality over 

time.   These reanalysis data sets have facilitated a wide range of research; for example, 

the Kalnay et al. article above has been cited more than 3200 times. 

 In this article we explore the value of a companion data set to reanalyses, which 

we shall call “reforecasts.”  These are retrospective weather forecasts generated with a 

fixed numerical model.  Model developers could use them for diagnosing model bias, 

thereby facilitating the development of new, improved versions of the model.  Others 

could use them as data for statistically correcting weather forecasts, thereby developing 

improved, user-specific products (e.g., Model Output Statistics, or “MOS,” Glahn and 

Lowry 1972, Carter et al. 1989).  Others may use them for studies of atmospheric 
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predictability.  Unfortunately, extensive sets of reforecasts are not commonly produced, 

utilizing the same model version as is run operationally.  These computationally 

expensive reforecasts are “squeezed out” by operational data assimilation and forecast 

models run at as fine a resolution as possible. 

 Would the additional forecast improvement and diagnostic capability provided by 

reforecasts make them worth the extra computational resources they require?  To explore 

this, we recently generated a prototype 25-year, 15-member ensemble reforecast data set 

using a 1998 version of the NCEP MRF model run at T62 resolution – admittedly a 

resolution far from state-of-the-art in operational numerical weather prediction centers in 

2005.   Despite the coarse resolution of this data set, we were able to make probabilistic 

week 2 forecasts that were more skillful than the operational NCEP forecasts based on 

higher-resolution models (Hamill et al. 2004).  Others have also demonstrated the utility 

of reforecasts for improving predictions. Rajagopalan et al. (2002) and Stefanova and 

Krishnamurti (2002) used multimodel reforecasts to improve seasonal predictions, and 

Vitart (2004) demonstrated improved monthly forecasts using a smaller reforecast data 

set.  Other smaller reforecast data sets also have been produced as companions to 

reanalysis data sets but have not been used for real-time statistical corrections of forecasts 

(Kistler et al. 2001 and Mesinger et al. 2005).  The novelty of the reforecast data set 

discussed here is its length (every day, from 1979 to current), the ongoing production of 

real-time numerical forecasts from the same model, and that it is an ensemble of forecasts 

rather than a single integration. 

 A variety of other approaches are being explored for improving probabilistic 

forecasts. The “DEMETER” project in Europe has generated probabilistic seasonal 
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climate forecasts in a multi-model environment (Palmer et al. 2004, Hagedorn et al. 2005, 

Doblas-Reyes et al. 2005). Statistical approaches to correcting weather forecasts have 

been tried using shorter training data sets, including some with multi-model or multi-

analysis approaches (Vislocky and Fritsch 1995, 1997, Hamill and Colucci 1997, 1998, 

Eckel and Walters 1998, Krishnamurti et al. 1999, Roulston and Smith 2003, Raftery et 

al. 2005, Wang and Bishop 2005).   Results presented here will reinforce our previous 

assertion (Hamill et al. 2004) that for many difficult problems such as long-lead 

forecasts, forecasts of rare events, or forecasts of surface variables with significant bias, a 

large training sample size afforded by reforecasts may prove beneficial. 

 Our intent in this article is to introduce the reader to the several applications of 

reforecast data that demonstrate the potential for improving weather predictions and 

increasing our understanding of atmospheric predictability.  We also intend to stimulate a 

serious discussion about the value of reforecasts.  Is the value added so large that 

operational weather forecast centers should make reforecasting a regular part of the 

operational numerical weather prediction process? We will demonstrate that for the 

problem of probabilistic precipitation forecasting, there is a large, additional amount of 

skill that can be realized through the use of the reforecasts.   Because reforecasting using 

higher-resolution models can be expensive, implementing this idea could require the 

purchase or reallocation of computer resources.   Thus the implementation of 

reforecasting requires discussion at the top levels of the weather services. 

 We will provide a description of this data set in section 2 and illustrate how users 

can download raw data. We then demonstrate a range of potential applications in section 

3, illustrating how such data sets may be used to inform a variety of forecast problems.  
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Section 4 discusses how reforecasts may be able to be integrated into operational NWP 

facilities without excessive disruption.  

 

2.  Description of the reforecast data set. 

 A T62 resolution (roughly 200 km grid spacing) version of NCEP's Global 

Forecasting System (GFS) model (Kanamitsu 1989; Kanamitsu et al. 1991;  Hong and 

Pan 1996, Wu et al. 1997, Caplan et al. 1997, and references therein) was used with 

physics that were operational in the 1998 version of the model. This model was run with 

28 vertical sigma levels.  The reforecasts were generated at the NOAA lab in Boulder, 

Colorado, and real-time forecasts are now generated at NCEP and archived in Boulder.  

 A 15-member ensemble was produced every day from 1979 to current, starting 

from 0000 UTC initial conditions.  The ensemble initial conditions consisted of a control 

initialized with the NCEP-NCAR reanalysis (Kalnay et al. 1996) and a set of 7 bred pairs 

of initial conditions (Toth and Kalnay 1993, 1997) re-centered each day on the reanalysis 

initial condition.  The breeding method was the same as that used operationally in 

January, 1998.  The forecasts extend to 15 days lead, with data archived every 12 h.   

 Because of the large size of this data set, we have chosen to archive only a limited 

set of model output.  Winds, temperature, and geopotential height are available at the 

1000, 850, 700, 500, 250, and 150 hPa levels.  10-m wind components, 2-m temperature, 

mean sea-level pressure, accumulated precipitation, convective heating, precipitable 

water, and 700 hPa relative humidity were also archived.  Data can be downloaded using 

the online web form http://www.cdc.noaa.gov/reforecast/ (Fig. 1).  Real-time data can 

also be ftp’ed from ftp://ftp.cdc.noaa.gov/Datasets.other/refcst/ensdata/yyyymmddhh, 
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where yyyy is the year, mm is the month, dd is the day, and hh is the hour of the 

initialization time.  The real-time forecasts are typically available about 10 hours after 

initialization time. 

3.  Some applications of the reforecast data set. 

 As reanalyses have fostered many creative diagnostic studies, a long reforecast 

data set permits an examination and correction of weather forecasts in ways that were not 

previously possible.  Robust statistical forecast techniques can be developed, the 

characteristics of model biases more thoroughly understood, and predictability issues 

explored.  We demonstrate some interesting applications. 

 

a. Forecasting with observed analogs. 

Many forecast users desire reliable, skillful high-resolution ensemble predictions, 

perhaps for such applications as probabilistic quantitative precipitation forecasting or 

hydrologic applications (e.g., Clark and Hay 2004).  The data set produced in this pilot 

reforecast project is comparatively low resolution, T62.  However, it may be possible to 

downscale and correct systematic errors in ensemble forecasts through analog techniques, 

producing a skillful probabilistic forecast at as high a resolution as the observed data.  

Given a long time series of reforecasts and high-resolution analyses or observations, a 

two-step procedure is invoked.  First, today’s ensemble forecast is compared to 

reforecasts of the same lead. Second, the dates of the closest pattern matches are noted, 

and an ensemble is formed from the observed or analyzed conditions on those dates.    

This two-step procedure may be appealing, for it simulates the forecast process of 

many humans: we look at the current forecast, recall situations where the forecast 
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depiction was comparable (step 1), and try to recall the weather that actually occurred 

(step 2).  Analog forecast techniques have a rich history (e.g., Toth 1989, van den Dool 

1989, Livezey et al. 1994, Zorita and von Storch 1999, Sievers et al. 2000), but most 

utilize a simpler approach of directly finding observed analogs to the forecast.  Consider 

a situation where the forecast model is consistently too wet.  In a one-step analog 

technique, the ensemble of observed analogs would, by construction, retain the forecast’s 

wet bias. The two-step procedure would first find similar forecasts, but if the observed 

data were drier, the second step would compensate for the wet bias. 

 To demonstrate the potential of this two-step analog procedure, the technique was 

used to generate probabilistic forecasts of 24-h accumulated precipitation over the 

conterminous United States (US).  Forecasts were verified during January-February-

March 1979-2003 (JFM 79-03).  Approximately 30-km North American Regional 

Reanalysis (NARR; Mesinger et al. 2005) analyzed precipitation data was used both for 

verification and as the data set from which historical observed weather analogs were 

selected.    

 The first step of the procedure was to find the closest local reforecast analogs to 

the current numerical forecast.  That is, within a limited-size region, today’s forecast was 

compared against past forecasts in that same region and at the same forecast lead.  

Specifically, the ensemble-mean precipitation forecast pattern was computed at a subset 

of 16 coarse-resolution grid points (for example, the blue dots in Fig. 2).1 The ensemble-

                                                
1
 Techniques that attempted to find analogs for each member were generally less skillful; 

we believe that this is both because the ensemble mean acts as a filter of the 
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mean forecast in this region were compared to ensemble mean reforecasts over all other 

years, but only those within a window of 91 days (+ / - 45 day window) around the date 

of the forecast.  For example, a 15 February 2002 4-day ensemble-mean forecast over the 

northwest US was compared against the 4-day ensemble mean reforecasts from 1 January 

– 1 April 1979 - 2001 over the northwest US.  The root-mean square (RMS) difference 

between the current forecast and each reforecast was computed, averaged over the 16 grid 

points in Fig. 1.  The n historical dates with the smallest RMS difference were chosen as 

the dates of the analogs.    

 The second step was the collection of the ensemble of observed weather on the 

dates of the closest n analogs.  For this application, the NARR observed precipitation 

states were collected at the interior red dots in Fig. 2.    A probabilistic forecast was then 

generated using the ensemble relative frequency; for example, if 2/3 of the members at a 

grid point had greater than 10 mm accumulated rain, the probability of exceeding 10 mm 

was set to 67%. 

 The process was then repeated for other locations around the US.  A full, high-

resolution probabilistic forecast was generated by tiling together the local analog 

forecasts.2 

                                                                                                                                            
unpredictable scales and because there is not much relationship between spread and skill 

in this particular ensemble (Hamill et al. 2004). 

 
2 Tiling can in some situations introduce slight discontinuities of the probabilities at the 
boundaries between tiles.  We tested a slightly modified method whereby larger, 
overlapping tiles were used, and the final probabilities were increasingly averaged toward 
the edges of the tiles.  This produced a smoother field, though the skill scores were 
slightly diminished. 
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 Figure 3 shows the data from one such case, a 3-day heavy precipitation event 

along the west coast in late December, 1996 (Ralph et al. 1998, Ogston and Hay 2000). 

Figure 3a shows the probabilistic forecasts generated from the raw T62 ensemble.  

Regions where the ensemble forecast members exceeded 100 mm of rainfall over the two 

days excluded Washington State, and the probabilities of greater than 100 mm were 

highest in northern California.  In comparison, when probabilities were computed from 

the n=75 historical analogs, nonzero probabilities for exceeding 100 mm were extended 

north into Washington State.   The high probability tended to be localized more along the 

coastal mountain ranges, the Cascades, and the Sierra Nevada range.  The observed 

precipitation (Fig. 3c) shows that the heaviest precipitation had a similar spatial pattern of 

high probabilities, with heaviest precipitation along the mountain ranges.   

To understand better how the analog technique performed, consider the forecasts 

at the three dots in Fig. 3a.  The lower two dots, near Mt. Shasta (bottom) and Medford, 

Oregon (middle) were both in the region where the model predicted record rainfall.  The 

top dot, in the Olympic Range in Washington, was outside of the region where any of the 

ensemble members forecast over 100 mm (precipitation was forecast there, just 

consistently less than 100 mm).    At these three grid points, we will consider the raw 

ensemble data at that grid point, the values of the ensemble means of the chosen forecast 

analogs interpolated to this location, and the values of the associated observed data on 

those same days.  Figure 4a provides information for the grid point near Mt. Shasta. The 

histogram along the top denotes the raw T62 ensemble forecast information, showing that 

the precipitation was exceptionally heavy at this point for all ensemble members.  The 

scatterplot shows the closest 75 ensemble-mean reforecast values of rainfall (abscissa) 
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plotted against the associated 75 historical NARR analyzed rainfall values (ordinate). The 

histogram for the NARR analog ensemble is plotted along the right-hand side. As 

indicated by the difference in the position of the raw forecast histogram and forecast 

analogs dots, the reforecast data was not able to find many close forecast analogs to this 

record event, at least considering just the data at this one point.  However, the observed 

amounts associated with even these relatively poor analogs often indicated heavier 

precipitation than forecast, correcting a typical under-forecast bias.  Also, the spread of 

the observed analogs was much larger than the spread of the raw ensemble or the 

ensemble-mean forecast analogs, correcting the ubiquitous precipitation spread 

deficiency (e.g., Hamill and Colucci 1997, Mullen and Buizza 2001). 

In Fig. 4b, the raw forecast ensemble at Medford, Oregon also indicated a record-

breaking heavy precipitation event.  As with Mt. Shasta, no similarly wet analogs could 

be found among the reforecasts.  However, this location was in a climatological rain 

shadow of the Coast Ranges in Oregon and California.   The smoothed terrain in the 

reforecast model was unable to resolve this level of terrain detail, so heavier precipitation 

than observed was commonly forecast in Medford.  Consequently, the two-step analog 

procedure adjusted for the typical over-forecast bias.  The very different bias corrections 

between Mt. Shasta and Medford amount to a way of downscaling the coarse forecast to 

be consistent with the local variations of rainfall in the observed data. 

In Fig. 4c, moderate precipitation amounts were forecast in the original ensemble 

in the Olympic Range of Washington State, and many similar reforecast analogs were 

found in the data set.  The associated NARR observed analogs tended to be heavier in 
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amount, with a larger spread than the original ensemble, thus correcting for an under-

forecasting bias and what was probably insufficient spread in the original ensemble. 

The analog technique apparently can correct for bias and spread deficiencies and 

downscale the forecast to account for terrain effects.  But does the skill of this technique 

exceed that from existing operational ensemble forecasts?  To determine this, we have 

extracted the operational ensemble forecasts from NCEP for JFM 02-03; starting in 

January 2002, NCEP GFS ensemble forecasts were computed at T126 resolution to 84 h 

lead, providing it with a resolution advantage over the reforecast model. Figures 5a-b 

show the Brier Skill Score (Wilks 1995) of ensemble forecasts at the 2.5 mm and 25 mm 

(per 24 h) thresholds, respectively, calculated in a way that does not exaggerate forecast 

skill (Hamill and Juras 2005).  The 75-member analog reforecast technique is much more 

skillful than the NCEP forecast, especially at the 25 mm threshold.  

The increase in skill is primarily due to an increase in the resolution of the 

probability forecasts rather than improved reliability. Resolution measures the ability of 

the forecasts to distinguish between situations with different observed event frequencies 

(Murphy 1973, Wilks 1995); higher numbers indicate more skill. Reliability indicates 

how closely the long-term observed event frequency given a forecast probability matches 

the forecast probability; the smaller the reliability value the better (ibid).  If the 

climatological probability of event occurrence is the same for all samples (Hamill and 

Juras 2005), then the Brier skill score (BSS) can be decomposed as  

BSS =
resolution ! reliability

uncertainty
,       (1) 

(Wilks 1995, eq. 7.29), where uncertainty denotes the variability of the observations (see 

Wilks for formal definitions). Figure 6 shows the BSS decomposition for the event of 24-
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h accumulated precipitation larger than the upper quintile of the climatological 

distribution for both NCEP forecasts and 75-member analog forecasts, using only points 

where the climatological probability of precipitation is greater than 20 percent (otherwise 

the definition of the upper quintile is ambiguous). Reliability is improved through the 

application of the analog technique, but most of the increase in the BSS is a result of 

increased resolution. 

The increased skill of the analog forecasts relative to operational NCEP forecasts 

results suggest that there is some benefit from the use of analogs, the large training data 

set, or both.  Figure 4 demonstrated how the use of high-resolution observed analogs 

permitted the extraction of small-scale detail that was not in the original forecast.  But are 

two-plus decades of reforecasts necessary?  Figure 7 indicates that forecast skill is 

degraded somewhat when shorter training data sets are used, especially at high 

precipitation thresholds.  In these cases, when a large amount of rain is forecast, it is 

important to have other similar high-rain forecast events in the data set, otherwise very 

few close analogs can be found.  For 2.5 mm forecast amounts, where there are many 

similar analogs in the reforecast data set, and little skill is gained between 3 and 24 years 

of training data.  However, for 25 mm, there still is a notable increase in skill between 3 

and 24 years, indicating the potential benefit of the long training data set with this 

technique.  Notice also in Figure 7 that the ensembles of different sizes were tested, and 

relatively small ensembles provided the most skill at short leads and larger ensembles at 

long leads.  When required to use short training data sets, it is difficult to find many close 

analogs for these short-lead forecasts, so the performance is degraded if too many analogs 
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are used to set probabilities.  For large training data sets, the performance difference at 

short leads is minimal between 25 and 75 members (not shown). 

Figure 8 shows the spatial pattern of the 75-member analogs’ BSS at 2.5 mm and 

4 days lead.  Skill varied greatly with location. The method produces highly skillful 

forecasts along the West Coast, presumably because the methodology provides a way of 

downscaling the weather appropriate to the complex terrain.  Forecast skill was generally 

high over the eastern US and lower over the northern US and Rockies.  In general, the 

BSS tended to be smaller in drier regions, where the reference climatology forecasts were 

more skillful.  Also, the skill appeared to be less in regions where precipitation tended to 

fall as snow, perhaps because the observational data was less trustworthy (both the radar 

and gage data used in the NARR precipitation analysis are less accurate in snow).  In any 

case, the forecasts are generally quite reliable (Fig. 6), though less so at short forecast 

leads, where there is a tendency to under-forecast probabilities3.  

Analog techniques will never predict record-setting events, events that lie outside 

the span of the past data.  If predicting extreme events is of primary importance, other 

calibration techniques may prove more useful.  Also, as Lorenz (1969) noted, it is 

impossible to find global analogs for the current weather during a span of time as long as 

the recorded history of the atmosphere.   Hence, analogs must be found and applied only 

                                                
3 This is because there tend to be more light forecast precipitation events than heavier 
ones among the reforecasts, so the technique more commonly finds close analogs with 
slightly lighter forecast amounts than heavier amounts.  At short leads, there is skill in the 
raw numerical forecast; the observed precipitation associated with the forecast analogs 
with lighter amounts tends to be smaller than the observed precipitation associated with 
forecast analogs with larger amounts.  Hence, the observed ensemble has a dry bias. It is 
possible to choose analogs based upon the closeness of the rank of the precipitation 
forecast relative to the sorted reforecasts, so that there are as many analogs with heavier 
forecast precipitation as with lighter precipitation.  These forecasts are more reliable and 
slightly more skillful.  We expect to document this technique in a subsequent manuscript. 
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in geographically limited regions, so that the difference between the current forecast and 

a past forecast analog is a small fraction of the climatological forecast variance. Still, 

analog techniques should have very notable advantages.  They represent a conditional 

climatology given the forecast.  Hence, they should commonly have positive skill relative 

to the overall climatological forecast.  This is a property that raw forecasts from most 

numerical models commonly do not exhibit.  It is more typical for them to drift to a 

climatological distribution different from the observed distribution, so that longer-lead 

forecasts exhibit a skill worse than climatology.  Analog techniques also can be tailored 

to a wide range of user problems. For example, suppose a user requires probabilistic wind 

forecasts at a wind turbine.  If a large data set of past observations of wind at the turbine 

site is available, the basic technique can be repeated: find an ensemble of past forecast 

days where the meteorological conditions were similar to today’s forecast, produce a 

probabilistic forecast from the associated observed winds on the days of the analogs.  For 

another recent work on forecast analogs using this reforecast data set for hydrologic 

applications, see Gangopadhyay et al. (2004). 

 The analog technique demonstrated here is a proof of concept.  The technique can 

be improved in some respects, and the technique is also not a cure-all for all weather 

forecast problems.  If systematic errors are smaller, as they may be when, say, forecasting 

500 hPa geopotential, it is unlikely that statistical corrections of an older model will 

render the forecasts more skillful than those from newer, higher-resolution models 

(personal communication, Z. Toth).  Still, for many of the problems that users most care 

about – precipitation, surface temperature, wind speed – model biases can be large and 

reforecasts may prove to be a significant aid.  The lessons here were that a simple 
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statistical correction technique in conjunction with low-resolution reforecasts was able to 

produce probabilistic precipitation forecasts exceeding the skill of the higher-resolution 

NCEP global ensemble forecast system, and the long length of the reforecast training data 

set was apparently helpful in achieving this skill improvement.   

 This reforecast data and this particular application may be useful to others that are 

developing and testing new ensemble calibration methods. The precipitation forecast and 

observed data used in this section is freely available to the public, along with sample code 

for reading the data.  We encourage others to explore this data set and to compare their 

results against our own.  The data and code can be downloaded from 

http://www.cdc.noaa.gov/reforecast/testdata.html. 

 

b. Diagnosing model bias from reforecasts. 

 Suppose a model developer wanted to know the long-term mean bias of a 

particular variable in the forecast model, where bias is the mean forecast minus the mean 

verification.  Reforecasts are a useful tool for diagnosing this.  For example, Fig. 9a 

shows the bias of 850 hPa temperature forecasts at a location near Kansas City, Missouri.  

These biases were calculated by subtracting the NCEP-NCAR analyses from the 

ensemble-mean forecasts using 1979-2001 data and a 31-day window centered on the day 

of interest. There is a large cold bias at shorter lead times in the winter and warm biases 

in late summer, especially at longer leads. And though not shown here, different locations 

have very different bias characteristics; for example, near San Francisco, there is a strong 

cold bias at longer leads during mid-summer.  
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 Can the long-term bias be properly estimated from a much shorter data set of 

reforecasts?  Figure 9b suggests that often they cannot.  This panel shows the standard 

deviation of the yearly bias estimates.  To generate this figure, the bias was estimated for 

each year, day, and forecast lead using just a 31-day window centered on the day of 

interest. From the 23 bias estimates from 1979 to 2001, the standard deviation was 

calculated and plotted.  Note that the standard deviation grows with increasing forecast 

lead and is generally larger in the winter than in the summer.  This is due to the larger 

variability of the forecasts during the wintertime at longer leads.  At most forecast leads 

and times of the year the spread in the yearly bias estimate is larger than the magnitude of 

the bias in Fig. 9a. For a numerical modeler, this indicates that the long-term average bias 

is liable to be misestimated using a single year of data, especially at long leads.  

 

c. Studying predictability using reforecasts. 

Forecasts of individual weather systems during the first week are generally 

referred to as “weather” forecasts, the skill of which requires an accurate initial condition.  

Long-lead predictions, such as those associated with El-Nino/Southern Oscillation 

(ENSO) are generally referred to as “climate” forecasts, and their skill is primarily driven 

by to sensitivity to boundary conditions such as sea-surface temperatures.  In between 

these two extremes lies the boundary between weather and climate forecasts, in which 

individual weather systems may not be predictable, but larger-scale flow patterns which 

influence those weather systems may retain some sensitivity to initial conditions and may 

also be influenced by persistent boundary forcing.   The phenomena that yield skill in the 

second week of an ensemble forecast are generally large scale and low frequency, and 
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hence there may be only a few independent samples of these events each season.  In 

addition, the predictable signal may be small compared to the uncertainty in a single 

forecast, so ensembles may be needed to extract that signal.  Quantifying the nature of the 

predictable signal in week two therefore requires a large sample of ensemble forecasts, 

spanning many years.   The reforecast data set is one of the first to satisfy these 

requirements.    Very basic questions, like “how much skill is there in week 2?” and 

“where does that skill come from?” remain largely unanswered. In this section we show a 

few simple diagnostics using the reforecast data set which provide some insight into these 

questions.  They illustrate the utility of the reforecast data set in investigations of 

atmospheric predictability. 

Figure 10 shows a map of the temporal correlation between the time series of 

ensemble mean forecast and observed 500 hPa height for all day 10 forecasts in the 

reforecast data set initialized during December-February 1979-2003.  Values locally 

exceeded 0.6 in the central Pacific, while the hemisphere average was 0.47.  While these 

values may seem low, they do indicate that skillful probabilistic forecasts are possible at 

day 10.  Hamill et al. (2004, Fig. 6d) showed that a correlation of 0.5 can be translated 

into a Ranked Probability Skill Score of 0.15 for terciles of the climatological probability 

distribution; small, but useful. 

What are the skillfully predicted patterns in these day-10 forecasts?  To answer 

this question, we have performed a statistical analysis of the 25-year data set of 

wintertime day-10 500 hPa height forecasts in order to identify the most predictable 

patterns.  The technique used was Canonical Correlation Analysis (CCA; Bretherton et 

al., 1992), which seeks to isolate the linear combination of data from a predictor field and 
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the linear combination of data from a predictand field that have the maximum linear 

correlation.  The analysis was performed in the space of the truncated principal 

components, or PCs (Barnett and Preisendorfer, 1987).  Here the predictor field consisted 

of the leading 20 PCs of ensemble-mean week two forecast 500 hPa height, while the 

predictand field consisted of the leading 20 PCs of the corresponding weekly mean 

verifying analyses.  The analysis was similar in spirit to that performed by Renwick and 

Wallace (1995), using 14 years of day-10 forecasts from the European Centre for 

Medium-Range Weather Forecasts.  Although their ‘most predictable pattern’ is very 

similar to the one shown here, interpretation of their results was hampered by the fact that 

the forecasts were from a single deterministic run (not an ensemble) and there were 

significant changes in the forecast model over the span of their forecast archive. 

Figure 11 shows the three most predictable patterns identified by the CCA 

analysis for day-10 forecasts, while Figure 12 shows the correlation between the time 

series of these patterns as a function of forecast lead. The patterns were computed for 

day-10 forecasts, but we have projected the forecasts for all other forecast leads on to 

these same patterns to see how the forecast skill evolves during the forecast period.  The 

most predictable patterns are similar to well-known recurring persistent circulation 

anomalies, often called ‘teleconnection patterns’ (Barnston and Livezey, 1987).  The first 

pattern is similar to the Tropical/Northern Hemisphere pattern, so named by Mo and 

Livezey (1986), which are often observed to appear in Northern Hemisphere wintertime 

seasonal means during El Nino/Southern Oscillation (ENSO) events.  Indeed, the model 

forecast tropical precipitation during the first week regressed on the time series of this 

pattern (not shown) shows a significant relationship between precipitation in the central 
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equatorial Pacific and the amplitude of the most predictable pattern at day 10.  However, 

values of this correlation were less than 0.3, indicating that only a modest fraction of the 

variance of this pattern in day 10 forecasts is directly related to variations in tropical 

convection.  The second most predictable pattern was similar to the Pacific/North 

American pattern (Wallace and Gutzler, 1981), while the third resembled the classical 

North Atlantic Oscillation (ibid).  Regression analysis shows that neither of these patterns 

had a strong relationship with the model forecast precipitation in equatorial regions 

during week one, implying that slow variations in tropical convection were not primarily 

responsible for their predictability.  The ability of the ensemble system to forecast these 

patterns is remarkable, with correlation skill exceeding 0.7 at day 10 for all three patterns, 

and skill exceeding 0.6 at day 15 for the most predictable pattern.  The skill of a forecast 

which simply persists the projection of these patterns in the 1 day forecast to day 10 is 

much lower than the actual 10 day forecast from the ensemble system (Figure 12), 

indicating the forecast model is skillfully predicting the tendency of these patterns during 

the first week of the forecast.  Diagnosing the mechanisms responsible for the skillful 

prediction of the those tendencies is beyond the scope of this article, but would certainly 

be a likely candidate for further research using this dataset. 

These results show that the reforecast data set provides a new opportunity to 

address basic predictability questions which were previously out of reach due to the 

sample size limitations and questions concerning the impact of model changes in existing 

operational forecast data sets. 
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4. How can reforecasts be integrated into operational numerical weather 

prediction? 

 

 This paper has demonstrated some of the benefits of “reforecasts,” a companion 

data set to reanalyses.  As with reanalyses, a fixed model is used, and forecasts for 

retrospective cases are computed with the fixed model.   Use of reforecasts improved 

probabilistic precipitation forecasts dramatically, aided the diagnosis of model biases, and 

provided enough forecast samples to answer some interesting questions about 

predictability in the forecast model. 

 Weather prediction facilities like the Environmental Modeling Center at NCEP 

already totally utilize the available computational resources, and planned model upgrades 

will utilize most of the newly available resources in the near future.   How then can 

reforecasts be integrated into operational numerical weather prediction? 

 One possible interim solution is that the reforecasts could be run with a less than 

state-of-the-art version of the forecast model. Our results suggest that substantial forecast 

improvements were possible even with the T62 model output.  Consider then the scenario 

where the “flagship” product at the weather production facility is a 50-level, 50-member 

global ensemble of a T300 model. The operational production of a 25-level, 25-member, 

T150 forecast could be produced at 1/64 the computational expense of the flagship 

product.   Hence, if 16 years of reforecasts were computed, this would require computer 

resources equivalent to producing the operational forecasts for 3 months.  If the 

companion reforecasts were computed offline on another computer, then the reforecast 

computations would barely affect operations.   We suggest that this is an appropriate, 
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conservative model to follow in the near future.  A timely forecast would be generated 

from a fixed, reduced-resolution version of the model, one where a companion reforecast 

data set had been generated.  Forecast products would be generated through statistical 

techniques such as those demonstrated here, and the reforecast-based products would be 

compared to products based on the flagship product.   If they were deemed to improve 

weather forecast capabilities, then every few years the reforecast would be updated, 

utilizing a newer, improved version of the forecast model at higher resolution, 

maintaining the same relative usage of operational CPU resources relative to the updated 

flagship product.  

 Computing reforecasts is a task that is easily parallelized, so it can take advantage 

of massively parallel clusters of inexpensive computers. Individual ensemble member 

forecasts can be computed on different processors in the cluster, and forecasts for many 

different initial times can also be parallelized.  The cluster of personal computers and 

storage array used in this experiment cost approximately $90,000, a tiny fraction of the 

cost of the NCEP’s supercomputers.  
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List of Figures 

 

Figure 1: Screenshot of the reforecast data set download web page. 

 

Figure 2: Map of reforecast grid points used in determination of closest analog forecasts. 

The smaller dots denote where NARR data is available (a 32 km Lambert Conformal 

grid). Large blue dots denote where the T62 forecasts are available (interpolated from a 

global 2.5 degree grid to every eighth NARR grid point).  The analyzed fields associated 

with the closest pattern matches at the blue dots are extracted at the red dots.  The 

national forecast is then comprised of a tiling of similar regions from around the country.   

 

Figure 3:   (a) Raw ensemble-based probability of greater than 100 mm precipitation 

accumulated during days 4-6 for a forecast initialized 0000 UTC 26 December 1996 

(from 0000 UTC 29 December 1996 to 0000 UTC 1 January 1997). Dots indicate 

locations used in Fig. 4. (b) As in (a), but where probabilities have been estimated from 

relative frequency of historical NARR analogs.  (c) Observed precipitation from NARR 

(mm). 100 mm threshold highlighted. 

 

Figure 4: Ensemble forecast, reforecast analog, and observed analog data for three dots 

in Fig. 3a.   Histograms along tops of plots indicate the raw T62 ensemble forecast total 

amounts.  Histograms along right of plots indicate the frequency of NARR analog 

forecast amounts.  Scatterplots indicate the joint value of ensemble-mean analog forecasts 

taken from the reforecast data set (abscissa) and the value of the associated NARR 

historical analog (ordinate).  (a) Scatterplot from Mt. Shasta (northern California), (b) 
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scatterplot from Medford (southern Oregon), (c) scatterplot from Olympic Mountains, 

Washington. 

 

Figure 5: Brier Skill Score of 75-member analog and NCEP ensemble forecasts 

measured relative to climatology. (a) 2.5 mm skill, (b) 25 mm skill. 

 

Figure 6:  Reliability and resolution (scaled by the uncertainty), and Brier Skill Score 

(BSS) of the probability of precipitation occurring in the upper quintile of the 

climatological distribution, both for NCEP and 75-member analog forecasts.  The overall 

height of the bar for each day indicates the resolution, NCEP on the left and analogs on 

the right.  NCEP reliability is colored blue, analog reliability is colored green, NCEP BSS 

is red, and analog BSS is yellow. 

 

Figure 7: Brier Skill Scores of the analog reforecast technique for various lengths of the 

training data set. 

 

Figure 8: Map of Brier Skill Scores of 24-h accumulated precipitation forecasts between 

3 and 4 days lead at 2.5 mm threshold for JFM 1979-2002. 

 

Figure 9: (a) 850 hPa temperature bias at -95.0 W, 40.0 N, as a function of time of year 

and forecast lead. (b) Standard deviation of the yearly bias estimates. 
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Figure 10:  Correlation between time series of ensemble mean day-10 forecasts and 

corresponding verifying analyses (from the NCEP/NCAR reanalysis) at every grid point 

in the Northern Hemisphere for December to February 1979-2003. 

 

Figure 11 :  Ensemble mean day-10 forecast 500 hPa height regressed on to the time 

series of the three most predictable forecast patterns.  Contour interval 15 m.  The 

correlation of between the time series of the predictor pattern and the corresponding 

predictand pattern (r) is given for each pattern. 

 

Figure 12:  Correlation between the time series of the first three most predictable 500 

hPa height day 10 forecast patterns and the time series of the corresponding patterns in 

the verifying analyses as a function of forecast lead time.  The three dots labeled 

‘persistence forecast’ indicate the skill of a forecast which persists the projections in the 

day 1 forecast to day 10. 
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Figure 1: Screenshot of the reforecast data set download web page.  
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Figure 2: Map of reforecast grid points used in determination of closest analog forecasts. 
The smaller dots denote where NARR data is available (a 32 km Lambert Conformal 
grid). Large blue dots denote where the T62 forecasts are available (interpolated from a 
global 2.5 degree grid to every eighth NARR grid point).  The analyzed fields associated 
with the closest pattern matches at the blue dots are extracted at the red dots.  The 
national forecast is then comprised of a tiling of similar regions from around the country.  
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Figure 3:   (a) Raw ensemble-based probability of greater than 100 mm precipitation 
accumulated during days 4-6 for a forecast initialized 0000 UTC 26 December 1996 
(from 0000 UTC 29 December 1996 to 0000 UTC 1 January 1997). Dots indicate 
locations used in Fig. 4. (b) As in (a), but where probabilities have been estimated from 
relative frequency of historical NARR analogs.  (c) Observed precipitation from NARR 
(mm). 100 mm threshold highlighted. 
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Figure 4: Ensemble forecast, reforecast analog, and observed analog data for three dots 
in Fig. 3a.   Histograms along tops of plots indicate the raw T62 ensemble forecast total 
amounts.  Histograms along right of plots indicate the frequency of NARR analog 
forecast amounts.  Scatterplots indicate the joint value of ensemble-mean analog forecasts 
taken from the reforecast data set (abscissa) and the value of the associated NARR 
historical analog (ordinate).  (a) Scatterplot from Mt. Shasta (northern California), (b) 
scatterplot from Medford (southern Oregon), (c) scatterplot from Olympic Mountains, 
Washington. 
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Figure 5: Brier Skill Score of 75-member analog and NCEP ensemble forecasts 
measured relative to climatology. (a) 2.5 mm skill, (b) 25 mm skill. 
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Figure 6:  Reliability and resolution (scaled by the uncertainty), and Brier Skill Score 
(BSS) of the probability of precipitation occurring in the upper quintile of the 
climatological distribution, both for NCEP and 75-member analog forecasts.  The overall 
height of the bar for each day indicates the resolution, NCEP on the left and analogs on 
the right.  NCEP reliability is colored blue, analog reliability is colored green, NCEP BSS 
is red, and analog BSS is yellow. 
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Figure 7: Brier Skill Scores of the analog reforecast technique for various lengths of the 
training data set.  Probabilistic forecasts were calculated for ensembles of size 10, 25, 50, 
and 75; the skill of the ensemble size that was most skillful is the only one plotted.  The 
color of the dot denotes the size of the most skillful ensemble that was plotted. 
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Figure 8: Map of Brier Skill Scores of 24-h accumulated precipitation forecasts between 
3 and 4 days lead at 2.5 mm threshold for JFM 1979-2002. 
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Figure 9: (a) 850 hPa temperature bias at -95.0 W, 40.0 N, as a function of time of year 
and forecast lead. (b) Standard deviation of the yearly bias estimates. 
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Figure 10:  Correlation between time series of ensemble mean day-10 forecasts and 
corresponding verifying analyses (from the NCEP/NCAR reanalysis) at every grid point 
in the Northern Hemisphere for December to February 1979-2003. 
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Figure 11 :  Ensemble mean day-10 forecast 500 hPa height regressed on to the time 
series of the three most predictable forecast patterns.  Contour interval 15 m.  The 
correlation of between the time series of the predictor pattern and the corresponding 
predictand pattern (r) is given for each pattern. 
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Figure 12:  Correlation between the time series of the first three most predictable 500 
hPa height day 10 forecast patterns and the time series of the corresponding patterns in 
the verifying analyses as a function of forecast lead time.  The three dots labeled 
‘persistence forecast’ indicate the skill of a forecast which persists the projections in the 
day 1 forecast to day 10. 
 


