
Chapter 13

Reformulation and Decomposition of Integer
Programs

François Vanderbeck and Laurence A. Wolsey

Abstract We examine ways to reformulate integer and mixed integer programs.
Typically, but not exclusively, one reformulates so as to obtain stronger linear pro-
gramming relaxations, and hence better bounds for use in a branch-and-bound
based algorithm. First we cover reformulations based on decomposition, such as
Lagrangean relaxation, the Dantzig-Wolfe reformulation and the resulting column
generation and branch-and-price algorithms. This is followed by an examination of
Benders’ type algorithms based on projection. Finally we discuss extended formu-
lations involving additional variables that are based on problem structure. These
can often be used to provide strengthened a priori formulations. Reformulations ob-
tained by adding cutting planes in the original variables are not treated here.

13.1 Introduction

Integer linear programs (IPs) and mixed integer linear programs (MIPs) are of-
ten difficult to solve, even though the state-of-the-art mixed integer programming
solvers are in many cases remarkably effective, and have improved radically in the
last ten years. These solvers typically use branch-and-cut involving cutting planes
to obtain improved linear programming bounds and branching to carry out implicit
enumeration of the solutions. However these systems essentially ignore problem
structure.

The goal in this chapter is to show the numerous ways in which, given an ini-
tial formulation of an IP, problem structure can be used to obtain improved prob-

François Vanderbeck
Institut de Mathématiques de Bordeaux (IMB) and INRIA, Université de Bordeaux, France
e-mail: fv@math.u-bordeaux1.fr

Laurence A. Wolsey
Center for Operations Research and Econometrics, Université Catholique de Louvain, Belgium
e-mail: laurence.wolsey@uclouvain.be

431

M. Jünger et al. (eds.), 50 Years of Integer Programming 1958-2008,
DOI 10.1007/978-3-540-68279-0_13, © Springer-Verlag Berlin Heidelberg 2010

432 François Vanderbeck and Laurence A. Wolsey

lem formulations and more effective algorithms that take the structure into account.
One common way to obtain reformulations is by adding valid inequalities (cutting
planes) in the original variables. This topic is treated in considerable detail in Chap-
ter 11. Here we consider other possibilities. The general motivation is to obtain a
reformulation for which the optimal value of the linear programming relaxation is
closer to the optimal value of the IP than that of the original formulation and that is
computationally tractable.

One approach is to introduce new variables so as to better model the structure
of the problem—the resulting extended formulations will be studied in detail. Intro-
ducing new variables typically permits one to model some combinatorial structure
more precisely and to induce integrality through tighter linear constraints linking the
variables. One such extended formulation is provided by the classical Minkowski
representation of a polyhedron in terms of its extreme points and extreme rays. An
alternative is to develop reformulations based on projection onto a subset of the
variables, based on Farkas’ lemma and/or Fourier-Motzkin elimination. Projection
allows one to reduce the number of variables so that calculations are typically faster:
thus for a mixed integer program one might project onto the integer variables, and
for an extended formulation giving an improved bound one might project so as to
obtain the tightened bound while working in the space of the original variables.

There are also other reasons leading us to look at alternative formulations. One
might be to treat or eliminate symmetry among solutions (see Chapter 17), another
might be to obtain variables that are more effective as branching variables, or vari-
ables for which one can develop effective valid inequalities.

Reformulations often rely on a decomposition of the problem. Given a hard inte-
ger program (IP) in the form

min{cx : x ∈ X} where X = {x ∈ Zn
+ : Ax ! a},

one typical way to obtain a set with structure is to decompose X into two (or more)
sets X = Y ∩ Z, where one or both of the sets Y,Z has structure and is a candi-
date for reformulation. In addition reformulations often require specific solution
methods: the reformulation may involve a very large number of variables and/or
constraints, in which case it becomes necessary to develop algorithms that treat the
corresponding columns or rows implicitly, Dantzig-Wolfe decomposition and Ben-
ders’ decomposition being the two classical examples.

The contents of this chapter are as follows. In Section 13.2 we introduce the
different concepts used later. We give definitions and simple examples of polyhedra,
formulations, extended formulations and reformulations obtained by projection. We
discuss how decomposition can be used to obtain simpler sets, and what we mean
by a set with structure.

In Section 13.3 we consider reformulations that are appropriate when the opti-
mization problem over a “simpler” set Z, obtained by dropping some “hard” con-
straints, is relatively easy to solve. In particular we consider the Lagrangean dual
approach to obtain tight bounds and related algorithms, and the Dantzig-Wolfe re-
formulation whose linear programming relaxation gives an identical bound. The ba-

13 Reformulation and Decomposition of Integer Programs 433

sic column generation algorithm to solve the linear programming relaxation of the
Dantzig-Wolfe reformulation is presented, as well as its integration into a branch-
and-bound algorithm to solve the integer problem. In Section 13.4 we consider for-
mulations and algorithms based on projection, in particular Benders’ reformulation.
Projection typically leads to formulations with a very large number of constraints,
so here the algorithms rely on cut generation.

The reformulations in Sections 13.3 and 13.4 are generic. In Section 13.5 we con-
sider sets with more structure for which it is possible to obtain interesting extended
formulations. In many cases optimization over the sets is polynomially solvable.
We show extended formulations a) based on variable splitting such as the multi-
commodity reformulation of single source fixed charge network flow problems, b)
for sets over which one can optimize by dynamic programming, c) for sets in the
form of disjunctions, and d) for a variety of other sets with structure.

In Section 13.6 we discuss hybrid reformulations and algorithms; for example
if X = Y ∩Z and both sets have some special structure, we might wish to combine
a (large) extended formulation for Y with a (large) cutting plane description for
Z. Section 13.7 consists of historical notes as well as a few references concerning
recent theoretical and computational developments.

13.2 Polyhedra, reformulation and decomposition

13.2.1 Introduction

Given a problem that has been formulated as a linear integer program, we are
interested in finding reformulations (alternative problem descriptions) that are more
effective in one way or another. We present some basic results about polyhedra,
and give definitions of formulations and extended formulations, with a couple of
examples to show how reformulations arise. Finally we discuss how decomposition
leads one to simpler subsets, and indicate how their structure can be exploited to
provide reformulations and possibly specialized algorithms.

Throughout we assume that our objective is to solve the integer program

(IP) min{cx : x ∈ X}

where X ⊆ Zn is a discrete solution set that can be modeled as the set of integer
points satisfying a set of linear inequalities

X = P∩Zn with P = {x ∈ Rn
+ : Ax ! a},

or the mixed integer program

(MIP) min{cx+hy : (x,y) ∈ XM}

434 François Vanderbeck and Laurence A. Wolsey

where XM ⊆ Zn ×Rp is given in the form

XM = PM ∩ (Zn ×Rp) with PM = {(x,y) ∈ Rn
+ ×Rp

+ : Gx+Hy ! b}.

P and PM will be referred to as the initial formulations of X and XM respectively.
For simplicity, results are presented for the integer set X , unless the presence of
continuous variables y is important.

13.2.2 Polyhedra and reformulation

Here we study the feasible solutions sets X and XM arising in IP and MIP re-
spectively. Throughout we will use the term reformulation informally to mean any
alternative description of problems IP or MIP.

Definition 13.1. A polyhedron P ⊆ Rn is the intersection of a finite number of half-
spaces. In other words there exists A ∈ Rm×n and a ∈ Rm such that P = {x ∈ Rn :
Ax ! a}.

Definition 13.2. A polyhedron P is a formulation for X if X = P∩Zn.

Sets such as X have many formulations. If P1,P2 are two formulations for X with
P1 ⊂ P2, we say that P1 is a stronger formulation than P2 because

z(c) = min{cx : x ∈ X} ! min{cx : x ∈ P1} ! min{cx : x ∈ P2} ∀c ∈ Rn

and thus the lower bound on z(c) provided by the linear programming relaxation
with formulation P1 is always greater than or equal to that provided by P2.

Definition 13.3. Given X ⊆Rn, the convex hull of X , denoted conv(X), is the small-
est closed convex set containing X .

The convex hull of an integer set X (or a mixed integer set XM defined by ra-
tional data) is a polyhedron. Thus the strongest possible formulation is provided by
conv(X) because z(c) = min{cx : x ∈ conv(X)}.

Given an initial formulation P of X , one classical way to obtain a stronger for-
mulation is to add valid inequalities (cutting planes) in the x variables so as to ob-
tain a better approximation to conv(X). This is discussed in Chapter 11. The main
concepts presented in this chapter, extended formulations and projection, are now
defined.

Definition 13.4. An extended formulation for a polyhedron P ⊆ Rn is a polyhedron
Q = {(x,w) ∈ Rn+p : Gx+Hw ! d} such that P = projx(Q).

Definition 13.5. Given a set U ⊆ Rn ×Rp, the projection of U on the first n vari-
ables, x = (x1, . . . ,xn), is the set

projx(U) = {x ∈ Rn : ∃ w ∈ Rp with (x,w) ∈U}.

13 Reformulation and Decomposition of Integer Programs 435

Minkowski’s representation of a polyhedron in terms of its extreme points and
extreme rays gives an extended formulation that can be useful for both linear and
integer programs.

Definition 13.6. Given a non-empty polyhedron P ⊆ Rn,

i) x ∈ P is an extreme point of P if x = λx1 + (1− λ)x2, 0 < λ < 1, x1,x2 ∈ P

implies that x = x1 = x2.
ii) r is a ray of P if r ̸= 0 and x ∈ P implies x+ µr ∈ P for all µ ∈ R1

+.
iii) r is an extreme ray of P if r is a ray of P and r = µ1r1 + µ2r2, µi > 0 (i = 1,2),

r1,r2 rays of P implies r1 = αr2 for some α > 0.

From now on we assume that rank(A) = n which is necessary for P to have
extreme points.

Theorem 13.1 (Minkowski). Every polyhedron P = {x ∈ Rn : Ax ! a} can be rep-

resented in the form

P = {x ∈ Rn : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1,λ ∈ R|G|
+ ,µ ∈ R|R|

+ }

where {xg}g∈G are the extreme points of P and {vr}r∈R the extreme rays of P.

Example 1 The polyhedron

P = {x ∈ R2
+ : 4x1 +12x2 ! 33,3x1 − x2 ! −1,x1 −4x2 ! −23}

has the extended formulation

Q = {(x,λ ,µ) ∈ R2 ×R3
+ ×R2

+ :

x =

(
33
4

0

)

λ1 +

(
21
40

103
40

)

λ2 +

(
19
11
68
11

)

λ3 +

(
1
0

)
µ1 +

(
4
1

)
µ2,

λ1 +λ2 +λ3 = 1},

see Figure 13.1.

The concept of extended formulation for a polyhedron generalizes to sets X of
integer points, and in particular one can apply Definition 13.4 to conv(X).

Definition 13.7. An extended formulation for an IP set X ⊆ Zn is a polyhedron
Q ⊆ Rn+p such that X = projx(Q)∩Zn.

Minkowski’s Theorem (Theorem 13.1) obviously provides an extended formula-
tion for X . Specifically take

Q = {(x,λ ,µ) ∈ Rn ×R|G|
+ ×R|R|

+ : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1}

where {xg}g∈G are the extreme points and {vr}r∈R the extreme rays of conv(X).

436 François Vanderbeck and Laurence A. Wolsey

0 5

5

1

2

3

4

6

7

1 2 3 4 6 7 8 9

(9,0)

(3,2)

(1,3)

(1,4)

(2,6)

(5,7)

(2,5)

(6,1)

(33/4,0)

(21/40,103/40)

(19/11,68/11)

Fig. 13.1 Extreme Points and Rays of P and conv(P∩Zn)

Definition 13.8. An extended formulation Q ⊆ Rn+p for an IP set X ⊆ Zn is tight if
projx(Q) = conv(X).

An extended formulation Q ⊆ Rn+p for an IP set X = P∩Zn is compact if the
length of the description of Q is polynomial in the length of the description of X

(i.e., the length of the description of the initial formulation P of X).

In general the number of extreme points and extreme rays of conv(X) is not polyno-
mial in the length of the description of X , so the extended formulation provided by
Minkowski’s Theorem is not compact. Similarly the number of inequalities in the x

variables required to describe conv(X) is usually not polynomial in the length of the
description of X .

In the framework of integer programs one also encounters more general reformu-
lations in which some of the additional variables are required to be integer, replacing
the integrality constraints on some of the original variables. It may then be possible
to drop the original variables.

Definition 13.9. An extended IP-formulation for an IP set X ⊆ Zn is a set QI =
{(x,w1,w2) ∈ Rn ×Zp1 ×Rp2 : Gx+H1w1 +H2w2 ! b} such that X = projx QI .

There is a somewhat similar result to Minkowski’s theorem concerning an ex-
tended IP-formulation. Again we assume rationality of the data in the case of mixed
integer sets.

Theorem 13.2. Every IP set X = {x ∈ Zn : Ax ! a} can be represented in the form

X = projx(QI), where

13 Reformulation and Decomposition of Integer Programs 437

QI = {(x,λ ,µ) ∈ Rn ×Z|G|
+ ×Z|R|

+ : x = ∑
g∈G

λgxg + ∑
r∈R

µrv
r, ∑

g∈G

λg = 1},

{xg}g∈G is a finite set of integer points in X, and {vr}r∈R are the extreme rays (scaled

to be integer) of conv(X).

Note that when X is bounded, all the points of X must be included in the set {xg}g∈G

and R = /0. When X is unbounded, the set {xg}g∈G includes all of the extreme points
of conv(X) and typically other points, see Example 2 below.

Theorem 13.2 provides an example of a common situation with extended IP-
formulations in which there is a linear transformation x = Tw linking all (or some)
of the original x variables and the additional variables w. In such cases IP can be
reformulated in terms of the additional variables in the form

min{cTw : ATw ! a,w ∈W},

where the set W provides an appropriate representation of the integrality of the orig-
inal x variables.

Example 2 The set of integer points X = P∩Z2 where

P = {x ∈ R2
+ : 4x1 +12x2 ! 33,3x1 − x2 ! −1,x1 −4x2 ! −23}

has an extended IP-formulation, based on Theorem 13.2:

Q = {(x,λ ,µ) ∈ R2 ×Z6
+ ×Z2

+ : x =

(
9
0

)
λ1 +

(
3
2

)
λ2 +

(
1
3

)
λ3 +

(
1
4

)
λ4+

(
2
6

)
λ5 +

(
5
7

)
λ6 +

(
2
5

)
λ7 +

(
6
1

)
λ8 +

(
1
0

)
µ1 +

(
4
1

)
µ2,

6

∑
p=1

λp = 1}.

Here the points (2,5)T and (6,1)T are not extreme points of conv(X). However they

cannot be obtained as an integer combination of the extreme points and rays of

conv(X), so they are necessary for this description. See Figure 13.1.

Given an IP set X or a MIP set XM , an alternative is to concentrate on a subset
of the more important variables (for instance the integer variables in an MIP). Here
projection is the natural operation and the lemma of Farkas a basic tool. From now
on, we typically assume that all the variables x or (x,y) encountered in IP or MIP
are non-negative.

Lemma 13.1 (Farkas [36]). Given A ∈Rm×n and a ∈Rm, the polyhedron {x ∈Rn
+ :

Ax ! a} ̸= /0 if and only if va " 0 for all v ∈ Rm
+ such that vA " 0.

This immediately gives a characterization of the projection of a polyhedron.
Specifically if Q = {(x,w) ∈ Rn

+ ×Rp
+ : Gx + Hw ! d}, it follows from the defini-

tion that x ∈ projx(Q) if and only if Q(x) = {w ∈ Rp
+ : Hw ! d −Gx} is nonempty.

Now Farkas’ Lemma, with A = H and a = d −Gx, gives:

438 François Vanderbeck and Laurence A. Wolsey

Theorem 13.3 (Projection). Let Q = {(x,w) ∈ Rn ×Rp
+ : Gx+Hw ! d}. Then

projx(Q) = {x ∈ Rn : v(d −Gx) " 0 ∀ v ∈V}

= {x ∈ Rn : v j(d −Gx) " 0 for j = 1, . . . ,J}

where V = {v ∈ Rm
+ : vH " 0} and {v j}J

j=1 are the extreme rays of V .

Example 3 Given the polyhedron Q = {(x,y) ∈ R2
+ ×R3

+ :
−2x1 − 3x2 − 4y1 + y2 − 4y3 ! −9
−7x1 − 5x2 − 12y1 − 2y2 + 4y3 ! −11},

we have that V = {v ∈ R2
+ : −4v1 − 12v2 " 0,v1 − 2v2 " 0,−4v1 + 4v2 " 0}. The

extreme rays are v1 = (1,1)T and v2 = (2,1)T . From Theorem 13.3, one obtains

projx(Q) = {x ∈ R2
+ : 9x1 +8x2 " 20,11x1 +11x2 " 29}.

The classical application of this approach is to reformulate mixed integer programs.

Now we illustrate by example the sort of reformulations that can arise using
additional variables and projection for a problem with special structure.

Example 4 Formulations of the Directed Steiner Tree Problem

Given a digraph D = (V,A) with costs c∈R|A|
+ , a root r ∈V and a set T ⊆V \{r}

of terminals, the problem is to find a minimum cost subgraph containing a directed

path from r to each node in T .

One way to formulate this problem is to construct a subgraph in which one re-

quires |T | units to flow out from node r and one unit to flow into every node of T .

This leads one to introduce the variables:

xi j = 1 if arc (i, j) forms part of the subgraph and xi j = 0 otherwise, and yi j is the

flow in arc (i, j). The resulting MIP formulation is

min ∑
(i, j)∈A

ci jxi j

− ∑
j∈V+(r)

yr j = −|T | (13.1)

− ∑
j∈V+(i)

yi j + ∑
j∈V−(i)

y ji = 1 for i ∈ T (13.2)

− ∑
j∈V+(i)

yi j + ∑
j∈V−(i)

y ji = 0 for i ∈V \ (T ∪{r}) (13.3)

yi j " |T |xi j for (i, j) ∈ A (13.4)

y ∈ R|A|
+ , x ∈ {0,1}|A|,

where V +(i) = { j : (i, j) ∈ A} and V−(i) = { j : (j, i) ∈ A}, (13.1) indicates that |T |
units flow out from node r, (13.2) that a net flow of one unit arrives at each node

i ∈ T , (13.3) that there is conservation of flow at the remaining nodes and (13.4)

that the flow on each arc does not exceed |T | and is only positive if the arc has been

installed.

13 Reformulation and Decomposition of Integer Programs 439

This problem has special network structure that we now exploit.

Multicommodity flow variables

To obtain an extended formulation, consider the flow directed towards node k as

a separate commodity for each node k ∈ T . Then wk
i j denotes the flow in arc (i, j) of

commodity k with destination k ∈ T . The resulting extended formulation is:

min ∑
(i, j)∈A

ci jxi j

− ∑
j∈V+(r)

wk
r j = −1 for k ∈ T (13.5)

− ∑
j∈V+(i)

wk
i j + ∑

j∈V−(i)

wk
ji = 0 for i ∈V \{r,k}, k ∈ T (13.6)

− ∑
j∈V+(k)

wk
k j + ∑

j∈V−(k)

wk
jk = 1 for k ∈ T (13.7)

wk
i j " xi j for (i, j) ∈ A, k ∈ T (13.8)

w ∈ R|T |×|A|
+ , x ∈ [0,1]|A|.

Constraints (13.5)–(13.7) are flow conservation constraints and (13.8) variable up-

per bound constraints for each commodity. The constraints yi j = ∑k∈T wk
i j (i, j)∈ A

provide the link between the original flow variables y and the new multi-commodity

flow variables w, but the y variables are unnecessary as there are no costs on the

flows.

The main interest of such an extended formulation is that the value of its linear

programming relaxation is considerably stronger than that of the original formu-

lation because the relationship between the flow variables yi j or wk
i j and the arc

selection variables xi j is more accurately represented by (13.8) than by (13.4).

Projection onto the binary arc variables

It is well-known (from the max flow/min cut theorem) that one can send flow of

one unit from r to k in a network (V,A) with capacities if and only if the capacity

of each cut separating r and k is at least one. Considering the arc capacities to

be xi j, this immediately validates the following formulation in the arc variables x.

Equivalently one can apply Theorem 13.3 to the extended formulation Q = {(x,w)∈

[0,1]|A|×R|T |×|A|
+ satisfying (13.5)–(13.8)} and project out the w variables. In both

cases one obtains the formulation:

440 François Vanderbeck and Laurence A. Wolsey

min ∑
(i, j)∈A

ci jxi j

∑
(i, j)∈δ+(U)

xi j ! 1 for U ⊆V with r ∈U, T \U ̸= /0

x ∈ {0,1}|A|,

where δ+(U) = {(i, j) ∈ A : i ∈ U, j /∈ U} is the directed cut set consisting of arcs

with their tails in U and their heads in V \U.

The potential interest of this reformulation is that the number of variables re-

quired is as small as possible and the value of the linear programming relaxation is

the same as that of the multi-commodity extended formulation. In Section 13.5 we

will consider the more general problem in which there are also costs on the flow

variables yi j.

13.2.3 Decomposition

When optimizing over the feasible set X of IP is too difficult, we need to address
the question of how to “decompose” X so as to arrive at one or more sets with
structure, and also indicate what we mean by “structure”.

We first present three ways of decomposing.

1. Intersections. X = Y ∩ Z. Now if the set Z has structure, we can consider re-
formulations for the set Z. More generally, one might have X = X1 ∩ · · ·∩XK

where several of the sets Xk have structure. Another important variant is that
in which X = Y ∩ Z and Z itself decomposes into sets Zk each with distinct
variables, namely Z = Z1 × · · ·×ZK .

2. Unions (or Disjunctions). X = Y ∪Z where Z has structure. Again one might
have X = X1 ∪ · · ·∪XK where several of the sets Xk have structure.

3. Variable Fixing. Suppose that X ⊂ Zn ×Rp. For fixed values x̄, let Z(x̄) =
{(x,y) ∈ X : x = x̄}. This is of interest if Z(x̄) has structure for all relevant
values of x̄. Again an important case is that in which Z(x̄) decomposes into sets
with distinct variables, i.e., Z(x̄) = Z1(x̄1)× · · ·×ZK(x̄K) and each set Zk(x̄k)
just involves the variables yk, where y = (y1, . . . ,yK).

Now we indicate in what circumstances we say that the set Z obtained above has
structure.

i) Either there is a polynomial algorithm for the optimization problem min{cx : x∈
Z}, denoted OPT(Z,c), or OPT(Z,c) can be solved rapidly in practice. Based
on decomposition by intersection, ways to reformulate and exploit such sets are
the subject of the next section.

ii) There is a polynomial algorithm for the separation problem, SEP(Z,x∗), defined
as follows:
Given the set Z ⊆Rn and x∗ ∈Rn, is x∗ ∈ conv(Z)? If not, find a valid inequality

13 Reformulation and Decomposition of Integer Programs 441

πx ! π0 for Z cutting off x∗ (i.e., πx ! π0 for all x ∈ Z and πx∗ < π0). More
generally there is a polyhedron P′ (often P′ = conv(Z′) where Z ⊆ Z′) for which
there is a separation algorithm (exact or heuristic) that can be solved rapidly in
practice.
Such sets are amenable to reformulation by the addition of cutting planes. A
special case of this type, treated in Section 13.4, is that in which the set Z(x̄),
obtained by variable fixing, has structure of type i). Combined with projection,
this leads to reformulations and algorithms in the space of the x variables.

iii) Set Z has specific structure that can be exploited by introducing new variables
that better describe the integrality of the variables. Examples of sets with inter-
esting extended formulations include network design problems with 0-1 vari-
ables to indicate which arcs are open, such as the Steiner tree problem in Ex-
ample 4, and scheduling problems in which it is useful to model start times in
detail. Problems that can be solved by dynamic programming and problems of
optimizing over sets defined by disjunctions are also candidates for reformu-
lation through the introduction of new variables. Extended formulations for a
wide variety of such problems are presented in Section 13.5.

13.3 Price or constraint decomposition

Consider a (minimization) problem of the form

(IP) z = min{cx : x ∈ X}

that is difficult, but with the property that a subset of the constraints of X defines a
set Z (X ⊂ Z) over which optimization is “relatively easy”. More specifically,

(IP) z = min{cx : Dx ! d,Bx ! b,x ∈ Zn
+︸ ︷︷ ︸

x∈X

} (13.9)

where the constraints Dx ! d represent “complicating constraints” that define the
integer set Y = {x ∈ Zn

+ : Dx ! d}, while the constraints Bx ! b define a set Z =
{x ∈ Zn

+ : Bx ! b} that is “tractable”, meaning that min{cx : x ∈ Z} can be solved
rapidly in practice.

Here we examine how one’s ability to optimize over the simpler set Z can be
exploited to produce dual bounds by relaxing the complicating constraints and pe-
nalizing their violation in the objective function (a procedure called Lagrangean
relaxation). The prices associated to each constraint placed in the objective function
are called Lagrange multipliers or dual variables, and the aim is to choose the prices
to try to enforce satisfaction of the complicating constraints Dx ! d. An alternative
is to view the problem of optimizing over X as that of selecting a solution from
the set Z that also satisfies the constraints defining Y . This leads to the so-called
Dantzig-Wolfe reformulation in which variables are associated to the points of the

442 François Vanderbeck and Laurence A. Wolsey

set Z as specified in Theorems 13.1 or 13.2. The LP solution to this reformulation
provides a dual bound that is typically tighter than that of the LP relaxation of the
original formulation of X and is equal to the best bound that can be derived by
Lagrangean relaxation of the constraints Dx ! d. This will be demonstrated below.

In many applications of interest Bx ! b has block diagonal structure: i.e., Z =
Z1 × · · ·×ZK in which case the integer program takes the form

(IPBD) min{
K

∑
k=1

ckxk : (x1, . . . ,xK) ∈ Y, xk ∈ Zk for k = 1, . . . ,K}

and can be written explicitly as:

(IPBD) min c1x1 + c2 x2 + · · · + cK xK

D1 x1 + D2 x2 + · · · + DK xK ! d

B1 x1 ! b1

B2 x2 ! b2

. . . !
...

BK xK ! bK

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . ,xK ∈ ZnK
+ .

Here relaxing the constraints ∑K
k=1 Dkxk ≥ d allow one to decompose the problem

into K smaller size optimization problems: min{ckxk : xk ∈ Zk}.
Another important special case is the identical sub-problem case in which Dk =

D, Bk = B, ck = c, Zk = Z∗ for all k. In this case the “complicating” constraints only
depend on the aggregate variables

y =
K

∑
k=1

xk , (13.10)

so the complicating constraints correspond to a set of the form Y = {y ∈ Zn
+ : Dy !

d}. The problem can now be written as:

(IPIS) min{cy : Dy ! d,y =
K

∑
k=1

xk, xk ∈ Z∗ for k = 1, . . . ,K} . (13.11)

Example 5 (The bin packing problem)
Given an unlimited supply of bins of capacity 1 and a set of items indexed by i =
1, . . . ,n of size si ∈ (0,1], the problem is to find the minimum number of bins that

are needed in order to pack all the items. Let K be an upper bound on the number

of bins that are needed (K = n, or K is the value of any feasible solution). A direct

IP formulation is

13 Reformulation and Decomposition of Integer Programs 443

min
K

∑
k=1

uk (13.12)

K

∑
k=1

xik = 1 for i = 1, . . . ,n (13.13)

∑
i

sixik " uk for k = 1, . . . ,K (13.14)

x ∈ {0,1}nK (13.15)

u ∈ {0,1}K (13.16)

where uk = 1 if bin k is used and xik = 1 if the item of size i is placed in bin k. This

is a natural candidate for price decomposition. Without the constraints (13.13), the

problem that remains decomposes into K identical knapsack problems.

In this section,

i) we review the Lagrangean relaxation and Dantzig-Wolfe reformulation approa-
ches, showing the links between them and the fact that both provide the same
dual bound;

ii) we then discuss algorithms to compute this dual bound: sub-gradient methods
and the column generation procedure, as well as stabilization techniques that
are used to improve convergence, and

iii) we consider the combination of column generation with branch-and-bound to
solve problems to integer optimality: deriving branching schemes when using a
Dantzig-Wolfe reformulation can be nontrivial in the case of a block diagonal
structure with identical sub-problems.
For simplicity, most of these developments are presented for the case of a sin-
gle subsystem involving only bounded integer variables. However the develop-
ments easily extend to the case of a mixed integer or unbounded subsystem Z,
or to a subsystem with block diagonal structure. The case where these blocks
are identical will be discussed separately. The economic interpretation of the
algorithms reviewed here will justify the use of the terminology “price decom-
position”.

13.3.1 Lagrangean relaxation and the Lagrangean dual

The Lagrangean relaxation approach to a problem IP with the structure outlined
above consists of turning the “difficult” constraints Dx ! d into constraints that can
be violated at a price π , while keeping the remaining constraints describing the set
Z = {x ∈ Zn

+ : Bx ! b}. This gives rise to the so-called Lagrangean sub-problem:

L(π) = min
x
{cx+π(d −Dx) : Bx ! b,x ∈ Zn

+} (13.17)

444 François Vanderbeck and Laurence A. Wolsey

that by assumption is relatively tractable. For any non-negative penalty vector π ! 0,
the dual function L(π) defines a dual (lower) bound on the optimal value z of IP:
indeed the optimal solution x∗ of IP satisfies cx∗ ! cx∗+π(d−Dx∗) ! L(π) (the first
inequality results from x∗ being feasible for IP and π ! 0 and the second because
x∗ is feasible in (13.17)). The problem of maximizing this bound over the set of
admissible dual vectors is known as the Lagrangean dual:

(LD) zLD = max
π!0

L(π) = max
π!0

min
x∈Z

{cx+π(d −Dx)}. (13.18)

We now reformulate the Lagrangean dual as a linear program, assuming that the
constraint set Z is non-empty and bounded. The Lagrangean sub-problem achieves
its optimum at an extreme point xt of conv(Z), so one can write

zLD = max
π!0

min
t=1,...,T

{cxt +π(d −Dxt)} , (13.19)

where {xt}t=1,...,T is the set of extreme points of conv(Z), or alternatively {xt}t=1,...,T

is the set of all points of Z. Introducing an additional variable σ representing a lower
bound on the (c−πD)xt values, we can now rewrite LD as the linear program:

zLD = max πd +σ (13.20)

πDxt +σ " cxt for t = 1, . . . ,T (13.21)

π ! 0,σ ∈ R1. (13.22)

Taking its linear programming dual gives:

zLD = min
T

∑
t=1

(cxt)λt (13.23)

T

∑
t=1

(Dxt)λt ! d (13.24)

T

∑
t=1

λt = 1 (13.25)

λ ∈ RT
+. (13.26)

From formulation (13.23)–(13.26), one easily derives the following result.

Theorem 13.4 (Lagrangean duality).

zLD = min{cx : Dx ! d,x ∈ conv(Z)}. (13.27)

Indeed, by definition of the set of points {xt}T
t=1, conv(Z) = {x = ∑T

t=1 xtλt :

∑T
t=1 λt = 1, λt ! 0 t = 1, . . . ,T}. Thus, the value of the Lagrangean dual is equal to

the value of the linear program obtained by minimizing cx over the intersection of
the “complicating” constraints Dx ! d with the convex hull of the “tractable” set Z.

13 Reformulation and Decomposition of Integer Programs 445

Example 6 (Lagrangean relaxation for the bin packing problem).
Continuing Example 5, consider an instance of the bin packing problem with n = 5
items and size vector s = (1

6 , 2
6 , 2

6 , 3
6 , 4

6). Dualizing the constraints (13.13), the La-

grangean subproblem (13.17) takes the form: min{∑K
k=1 uk −∑n

i=1 πi(1−∑K
k=1 xik) :

(13.14)− (13.16}. Arbitrarily taking dual variables π = (1
3 , 1

3 , 1
3 , 1

2 , 1
2) and using

the fact that this problem splits up into an identical knapsack problem for each k,

the Lagrangean sub-problem becomes:

L(π) =
5

∑
i=1

πi +K min(u−
1

3
x1 −

1

3
x2 −

1

3
x3 −

1

2
x4 −

1

2
x5)

1

6
x1 +

2

6
x2 +

2

6
x3 +

3

6
x4 +

4

6
x5 " u

x ∈ {0,1}5, u ∈ {0,1}.

The optimal solution is x = (1,1,0,1,0),u = 1. For K = n (a trivial solution is to

put each item in a separate bin), the resulting lower bound is 12
6 − 5

6 = 7
6 . The best

Lagrangean dual bound zLD = 2 is attained for π = (0,0,0,1,1), x = (0,0,0,0,1)
and u = 1.

13.3.2 Dantzig-Wolfe reformulations

Here we consider two closely related extended formulations for problem IP:
min{cx : Dx ! d,x∈ Z}, and then we consider the values of the corresponding linear
programming relaxations.

We continue to assume that Z is bounded. The Dantzig-Wolfe reformulation re-
sulting from Theorem 13.1 (called the convexification approach) takes the form:

(DWc) zDWc = min ∑
g∈Gc

(cxg)λg (13.28)

∑
g∈Gc

(Dxg)λg ! d (13.29)

∑
g∈Gc

λg = 1 (13.30)

x = ∑
g∈Gc

xgλg ∈ Zn (13.31)

λ ∈ R|Gc|
+ (13.32)

where {xg}g∈Gc are the extreme points of conv(Z).
The Dantzig-Wolfe reformulation resulting from Theorem 13.2 (called the dis-

cretization approach) is

446 François Vanderbeck and Laurence A. Wolsey

(DWd) zDWd = min ∑
g∈Gd

(cxg)λg (13.33)

∑
g∈Gd

(Dxg)λg ! d (13.34)

∑
g∈Gd

λg = 1 (13.35)

λ ∈ {0,1}|G
d | (13.36)

where {xg}g∈Gd are all the points of Z.
As pointed out above, the extreme points of conv(Z) are in general a strict subset

of the points of Z (Gc ⊆ Gd). Note however that the distinction between the two
approaches disappears when considering the LP relaxations of the Dantzig-Wolfe
reformulations: both sets allow one to model conv(Z) and they provide a dual bound
that is equal to the value of the Lagrangean dual.

Observation 1

i) The linear program (13.23)–(13.26) is precisely the linear programming relax-

ation of DWc.

ii) It is identical to the linear programming relaxations of DWd (any point of Z can

be obtained as a convex combination of extreme points of conv(Z)). Hence

zDWc
LP = zDWd

LP = min{cx : Dx ! d,x ∈ conv(Z)} = zLD,

where zDWc
LP and zDWd

LP denote the values of the LP relaxations of DWc and DWd

respectively.

In addition there is no difference between DWc and DWd when Z ⊂ {0,1}n as
every point x ∈ Z is an extreme point of conv(Z). In other words

x = ∑
g∈GC

xgλg ∈ {0,1}n in DWc if and only if λ ∈ {0,1}|G
d | in DWd.

To terminate this subsection we examine the form DWd takes when there is block
diagonal structure. Specifically the multi-block Dantzig-Wolfe reformulation is:

min

{ K

∑
k=1

∑
g∈Gd

k

(cxg)λkg :
K

∑
k=1

∑
g∈Gd

k

(Dxg)λkg ! d, (13.37)

∑
g∈Gd

k

λkg = 1 for k = 1, . . . ,K, λ ∈ {0,1}∑k |G
d
k |

}
.

where Zk = {xg}g∈Gd
k

for all k and xk = ∑g∈Gd
k

xg λkg ∈ Zk.

13 Reformulation and Decomposition of Integer Programs 447

Identical subproblems

When the subproblems are identical for k = 1, . . . ,K, the above model admits
many different representations of the same solution: any permutation of the k indices
defines a symmetric solution. To avoid this symmetry, it is normal to introduce the
aggregate variables νg = ∑K

k=1 λkg. Defining Z∗ = Z1 = · · ·= ZK and Z∗ = {xg}g∈G∗ ,
one obtains the reformulation:

(DWad) min ∑
g∈G∗

(cxg)νg (13.38)

∑
g∈G∗

(Dxg)νg ! d (13.39)

∑
g∈G∗

νg = K (13.40)

ν ∈ Z|G∗|
+ , (13.41)

where νg ∈ Z+ is the number of copies of xg used in the solution. The projection
of reformulation solution ν into the original variable space will only provide the
aggregate variables y defined in (13.10):

y = ∑
g∈G∗

xgνg . (13.42)

Example 7 (The cutting stock problem)
An unlimited number of strips of length L are available. Given d ∈ Zn

+ and s ∈ Rn
+,

the problem is to obtain di strips of length si for i = 1, . . . ,n by cutting up the smallest

possible number of strips of length L.

Here Z∗ = {x ∈ Zn
+ : ∑n

i=1 sixi " L}, each point xg of Z∗ corresponds to a cutting

pattern, D = I and c = 1, so one obtains directly the formulation

min

{

∑
g∈G∗

νg : ∑
g∈G∗

(xg)νg ! d,ν ∈ Z
|G∗|
+

}

in the form DWad, without the cardinality constraint (13.40). The bin packing prob-

lem is the special case in which di = 1 for all i and each cutting pattern contains

each strip length at most once.

To complete the picture we describe how to solve the linear programming relax-
ation of the Dantzig-Wolfe reformulation in the next subsection and how to use this
reformulation in a branch-and-bound approach to find an optimal integer solution
(subsection 13.3.5).

448 François Vanderbeck and Laurence A. Wolsey

13.3.3 Solving the Dantzig-Wolfe relaxation by column generation

Here we consider how to compute the dual bound provided by the “Dantzig-
Wolfe relaxation” using column generation. Alternative ways to compute this dual
bound are then discussed in the next subsection.

Consider the linear relaxation of DWc given in (13.28)–(13.32) or DWd given in
(13.33)–(13.36) which are equivalent as noted in Observation 1. This LP is tradition-
ally called the (Dantzig-Wolfe) master problem (MLP). It has a very large number
of variables that will be introduced dynamically in the course of the optimization by
the revised simplex method. We assume that Z is a bounded integer set. Let {xg}g∈G

be either the extreme points of conv(Z) or all the points of Z. Suppose that, at iter-
ation t of the simplex algorithm, only a subset of points {xg}g∈Gt with Gt ⊂ G are
known. They give rise to the restricted master linear program:

(RMLP) zRMLP = min ∑
g∈Gt

(cxg)λg (13.43)

∑
g∈Gt

(Dxg)λg ! d (13.44)

∑
g∈Gt

λg = 1 (13.45)

λ ∈ R|Gt |
+ .

The dual of RMLP takes the form:

max πd +σ (13.46)

πDxg +σ " cxg for g ∈ Gt (13.47)

π ! 0, σ ∈ R1. (13.48)

Let λ ′ and (π ′,σ ′) represent the primal and the dual solutions of the restricted mas-
ter program RMLP respectively.

The column generation algorithm follows directly from the following simple ob-
servations exploiting both primal and dual representations of the master problem.

Observation 2

i) Given a current dual solution (π ′,σ ′), the reduced cost of the column associated

to solution xg is cxg −π ′Dxg −σ ′.

ii) ζ = ming∈G(cxg −π ′Dxg) = minx∈Z(c−π ′D)x. Thus, instead of examining the

reduced costs of the huge number of columns, pricing can be carried out im-

plicitly by solving a single integer program over the set Z.

iii) The solution value of the restricted Master problem zRMLP = ∑g∈Gt (cxg)λ ′
g =

π ′d + σ ′ gives an upper bound on zMLP. MLP is solved when ζ −σ ′ = 0, i.e.,

when there is no column with negative reduced cost.

iv) The pricing problem defined in ii) is equivalent to the Lagrangean sub-problem

given in (13.17); hence, each pricing step provides a Lagrangean dual bound.

13 Reformulation and Decomposition of Integer Programs 449

v) For another view point on iv), note that the dual solution π ′ of RMLP, completed

by ζ , forms a feasible solution (π ′,ζ) for the dual of MLP:

{maxπd +σ : πDxg +σ " cxg for g ∈ G; π ! 0, σ ∈ R1},

and therefore π ′d +ζ gives a lower bound on zMLP.

vi) If the solution λ ′ to RMLP is integer, the corresponding value of zRMLP provides

a valid primal (upper) bound for problem IP.

Point ii) is crucial as our motivation for the Dantzig-Wolfe reformulation was
the assumption that solving an optimization problem over Z is relatively tractable.
Point vi) highlights a strong point of the column generation approach: it may pro-
duce primal integer solutions in the course of the solution of MLP.

Column Generation Algorithm for a master program of the form (13.23)–(13.26):

i) Initialize primal and dual bounds PB = +∞, DB = −∞. Generate a subset of
points xg so that RMLP is feasible. (Master feasibility can be achieved using ar-
tificial columns. It is standard to combine Phases 1 and 2 of the simplex method
to eliminate these artificial columns from the LP solution).

ii) Iteration t:

a) Solve RMLP over the current set of columns {xg}g∈Gt ; record the primal
solution λ t and the dual solution (π t ,σ t).

b) Check whether λ t defines an integer solution of IP; if so update PB. If PB =
DB, stop.

c) Solve the pricing problem

(SPt) ζ t = min{(c−π tD)x : x ∈ Z}.

Let xt be an optimal solution.
If ζ t −σ t = 0, set DB = zRMLP and stop; the Dantzig-Wolfe master problem
MLP is solved.
Otherwise, add xt to Gt and include the associated column in RMLP
(its reduced cost is ζ t −σ t < 0).

d) Compute the dual bound: L(π t) = π td +ζ t ; update DB = max{DB,L(π t)}.
If PB = DB, stop.

iii) Increment t and return to ii).

When problem IP has a block diagonal structure with the kth subproblem hav-
ing optimal value ζ k, the corresponding upper bounds on the unrestricted master
LP value zMLP are of the form π ′d + ∑K

k=1 σ ′
k and the lower bounds of the form

π ′d + ∑K
k=1 ζ k. When the K subsystems are identical these bounds take the form

π ′d +Kσ ′ and π ′d +Kζ respectively. The typical behavior of these upper and lower
bounds in the course of the column generation algorithm is illustrated in Figure 13.2.
Example 8 demonstrates the column generation procedure on an instance of the bin
packing problem.

450 François Vanderbeck and Laurence A. Wolsey

844

0 100 200 300 400 500 600 700 800 900 1000

0

84

169

253

338

422

506

591

675

760

Fig. 13.2 Convergence of the column generation algorithm

Example 8 (Column generation for the bin packing problem)
Consider the same instance as in Example 6 with n = 5 items and size vector

s = (1
6 , 2

6 , 2
6 , 3

6 , 4
6). Initialize the restricted master RMLP with the trivial packings

in which each item is in a separate bin. The initial restricted master then takes the

form:

minν1 +ν2 +ν3 +ν4 +ν5

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

ν1

ν2

ν3

ν4

ν5

⎞

⎟⎟⎟⎟⎠
!

⎛

⎜⎜⎜⎜⎝

1
1
1
1
1

⎞

⎟⎟⎟⎟⎠
,ν ∈ R5

+

Its optimal value is Z = 5 with dual solution π = (1,1,1,1,1). The column genera-

tion sub-problem is

ζ = 1−max{x1 +x2 +x3 +x4 +x5 : x1 +2 x2 +2 x3 +3 x4 +4 x5 " 6, x ∈ {0,1}5}.

The optimal solution of the knapsack problem is x6 = (1,1,1,0,0) with value 3,

which gives the lower bound L(π) = ∑i πi + K (1− 3) = −5 (with K = 5). x6 is

added to the restricted master with associated variable ν6. The successive iterations

give

13 Reformulation and Decomposition of Integer Programs 451

t Zt master sol. π t L(π t) PB xt

5 5 ν1 = ν2 = ν3 = ν4 = ν5 = 1 (1,1,1,1,1) −5 5 (1,1,1,0,0)
6 3 ν4 = ν5 = ν6 = 1, (0,0,1,1,1) −2 3 (0,0,1,1,0)
7 3 ν1 = ν4 = ν5 = 1 (0,1,0,1,1) −2 3 (0,1,0,1,0)
8 3 ν1 = ν6 = ν7 = ν8 = 1

2 ,ν5 = 1 (1,0,0,1,1) −2 3 (1,0,0,0,1)
9 2.5 ν6 = ν7 = ν8 = 1

2 ,ν9 = 1 (0, 1
2 , 1

2 , 1
2 ,1) 0 3 (0,1,0,0,1)

10 2.33 ν6 = ν8 = ν10 = 1
3 ,ν7 = ν9 = 2

3 (1
3 , 1

3 , 1
3 , 2

3 , 2
3) 2

3 3 (1,1,0,1,0)
11 2.25 ν6 = ν11 = 1

4 ,ν9 = ν10 = 1
2 ,ν7 = 3

4 (1
4 , 1

4 , 1
2 , 1

2 , 3
4) 4

3 3 (0,0,1,0,1)
12 2 ν11 = ν12 = 1 (0,0,0,1,1) 2 2 (0,0,0,0,1)

In this example, the master problem has an optimal solution that is integer, so this

is an optimal solution of the bin packing problem (the column generation procedure

ends with PB = DB).

The column generation algorithm has an appealing economic interpretation, de-
rived directly from linear programming duality. Dantzig-Wolfe decomposition can
be viewed as a procedure for decentralizing the decision-making process. The mas-
ter problem plays the role of the coordinator setting prices that serve as incentives
to meet the global constraints ∑k Dxk ! d. These prices are submitted to the subdi-
visions. Each independent subdivision uses these prices to evaluate the profitability
of its activities (xk ∈ Zk) and returns an interesting business proposal (with nega-
tive reduced cost). The procedure iterates until no more improving proposals can be
generated, and the given prices are optimal.

13.3.4 Alternative methods for solving the Lagrangean dual

By Observation 1, the above column generation algorithm solves the Lagrangean
dual zLD = maxπ!0 L(π). Alternatives to the column generation approach to solving
the Lagrangean dual can be related to the different formulations of the problem: its
max-min form (13.19) or the dual linear program (13.20)–(13.22). The dual point
of view is particularly important in the analysis of the convergence of methods for
solving the Lagrangean dual: convergence is driven by the successive dual solutions,
even for the column generation procedure. Dual analysis has inspired enhanced col-
umn generation algorithms making use of so-called stabilization techniques. A bet-
ter theoretical convergence rate can only be achieved by using non-linear program-
ming techniques such as the bundle method. On the other hand, simpler methods
(such as the sub-gradient algorithm), whose convergence in practice is worse than
that of the standard column generation approach, remain useful because of their
easy implementation and their ability to cope with large size problems.

Here we review some of the classical alternative approaches to solving the La-
grangean dual arising from the different formulations given in Section 13.3.1.

Note that L(π) = ming∈G(c− πD)xg + πd is a piecewise affine concave func-
tion of π , as illustrated in Figure 13.3. Solving the Lagrangean dual requires the

452 François Vanderbeck and Laurence A. Wolsey

Fig. 13.3 The Lagrangean dual function L(π) seen as a piecewise affine concave function; we
assume π ∈ R1 in this representation; each segment/hyperplane is defined by a vector xt .

maximization of this non-differentiable concave function. A simple method for this
is:

The sub-gradient algorithm (for solving the Lagrangean dual in its form (13.19)):

i) Initialize π0 = 0, t = 1.

ii) Iteration t,

a) Solve the Lagrangean subproblem (13.17) to obtain the dual bound L(π t) =
min{cx+π t(d −Dx)} and an optimal solution xt .

b) Compute the violation (d −Dxt) of the dualized constraints; this provides

a “sub-gradient” that can be used as a “potential direction of ascent” to

modify the dual variables.

c) Update the dual solution by making a small step in the direction of the sub-

gradient

π t+1 = max{0,π t + εt(d −Dxt)}

where εt is an appropriately chosen step-size.

iii) If t < τ , increment t and return to ii).

Central to this approach is the simple dual price updating rule of step ii.c). The
rule leads to an increase in the prices associated with violated constraints and a
decrease for non-tight constraints. Observe, however, that it ignores all previously
generated points xg for g = 1, . . . ,t − 1 when updating π . Not surprisingly this can
result in poor performance. Moreover, the convergence of the algorithm is quite
sensitive to the selection of the step size (choosing εt too large leads to oscillations
and possible divergence, choosing it too small leads to slow convergence or conver-
gence to a non-optimal point). It is usual to use a normalized step size: εt = αt

∥d−Dxt∥ .

Standard choices are:

13 Reformulation and Decomposition of Integer Programs 453

i) αt =C(PB−L(π t)) with C ∈ (0,2), where the primal bound PB acts as an over-
estimate of the unknown Lagrangean dual value zLD, so the step size reduces as
one gets closer to the optimal value zLD;

ii) the αt form a geometric series: αt = Cρ t with ρ ∈ (0,1) and C > 0;
iii) the αt form a divergent series: α t → 0 and ∑t α t → ∞; for instance, take αt = 1

t .

Convergence is guaranteed for i) if PB is replaced by a lower bound on zLD and
for ii) if C and ρ are sufficiently large. Step size iii) is always convergent, but conver-
gence is very slow because of the divergent sequence. Parameter τ in step iii) of the
algorithm allows one to limit the number of iterations. Another standard heuristic
termination rule is to stop when the dual bound DB = maxt L(π t) has not improved
for several iterations.

The sub-gradient approach can be used as a heuristic to produce a candidate
solution for the primal problem (13.27). However it is not guaranteed to satisfy
constraints Dx ! d while the primal solution of (13.23)–(13.26) does. The candidate,
denoted x̂, is obtained as a convex combination of previously generated points xg for
g = 1, . . . ,t. Possible choices of updating rules are:

i) x̂ = ∑t
g=1 xgλg where λg =

αg

∑t
g=1 αg

, or

ii) x̂ = α x̂+(1−α)xt with α ∈ (0,1).

The latter rule is of interest because it puts more weight on the points xt gen-
erated most recently. Using step size iii), the theory predicts the convergence of x̂

towards an optimal solution to (13.27). In practice however, one would first check
whether x̂ verifies Dx ! d and if so record the associated value as an upper bound on
zLD that can be helpful in monitoring convergence (although there is no monotonic
convergence of these upper bounds as in Figure 13.2). If furthermore x̂ verifies the
integrality conditions, then it defines a primal bound PB.

The volume algorithm is a variant of the sub-gradient method in which one uses
the information of all the previously generated Lagrangean subproblem solutions
to estimate both primal and dual solutions to (13.23)–(13.26), thus providing better
stopping criteria. At each iteration,

i) the estimate of a primal solution is updated using: x̂ = η x̂ + (1−η)xt with a
suitable η ∈ (0,1);

ii) the dual solution estimate π̂ is defined by the price vector that has generated the
best dual bound so far: π̂ = argmaxg=1,...,tL(πg);

iii) the “direction of ascent” is defined by the violation (d−Dx̂) of the dualized con-
straint by the primal solution estimate x̂ instead of using the latest Lagrangean
sub-problem solution xt ;

iv) the dual price updating rule consists in taking a step from π̂ instead of π t : π t+1 =
max{0, π̂ + εt(d −Dx̂)}.

The method is inspired by the conjugate gradient method. It is equivalent to mak-
ing a suitable correction vt in the dual price updating direction π t+1 = max{0,π t +
εt(d −Dxt)+ vt}. The name volume refers to the underlying theory saying that the
weight (1−η)ηg−1 of the gth solution xg in the primal solution estimate x̂ approx-
imates the volume under the hyperplane πDxt + σ = cxg in the dual polyhedron of

454 François Vanderbeck and Laurence A. Wolsey

Figure 13.3 augmented by the constraint σ ! π̂d. The algorithm stops when primal
feasibility is almost reached: ∥(d −Dx̂)∥ " ε and the duality gap is small enough:
∥cx̂− π̂d∥ " ε . The implementation of the method is as simple as that of the sub-
gradient algorithm, while its convergence performance is typically better.

The linear programming representation (13.20)–(13.22) of the Lagrangean dual
suggests the use of a cutting plane procedure to dynamically introduce the con-
straints associated with the different points xg. This procedure is a standard non-
linear programming approach to maximize a concave non-differentiable function,
known as Kelley’s cutting plane algorithm. It is identical to the above column gen-
eration procedure but seen in the dual space: point xg defines a violated cut for
(13.20)–(13.22) if and only if it defines a negative reduced cost column for (13.23)–
(13.26).

The convergence of the basic column generation algorithm (or its dual counter-
part) suffers several drawbacks, as illustrated in Figure 13.2: i) during the initial
stages, when few points xg are available, primal and dual bounds are very weak and
ineffective, ii) convergence can be slow with very little progress made in improving
the bounds, iii) the dual bounds can behave erratically as π jumps from one extreme
point solution to another at successive iterations, and iv) the upper bounds zRMLP

can remain stuck at the same value due to degeneracy (iterating between alternative
solutions of the same value).

Efforts have been made to construct more sophisticated and robust algorithms.
They combine several mechanisms:

i) proper initialization (warm start): what is essential is to have meaningful dual
solutions π from the outset (using a dual heuristic or a rich initial set of
points xg, produced for instance by the sub-gradient method);

ii) stabilization techniques that penalize deviations of the dual solutions from a
stability center π̂ , defined as the dual solution providing the best dual bound so
far: the dual problem becomes

max
π!0

{L(π)+S(π − π̂)},

where S is a penalty function that increases as π moves away from π̂;
iii) smoothing techniques that moderate the current dual solution based on previous

iterates: the price vector sent to the subproblem is

π t = απ t−1 +(1−α)π t ,

where π t is the current dual solution of RMLP, α ∈ (0,1) is a smoothing pa-
rameter, and π t−1 is the smoothed price of the previous iterate.

iv) an interior point approach providing dual solutions corresponding to points in
the center of the face of optimal solutions of RMLP as opposed to the extreme
points generated by simplex-based algorithms;

v) reformulation strategies to avoid degeneracy or symmetries. For instance, when
the MLP is a set covering problem, a dynamic row aggregation and disaggre-
gation procedure allows one to control degeneracy and to reduce the number

13 Reformulation and Decomposition of Integer Programs 455

of iterations. Another approach consists in adding valid dual cuts in (13.20)–
(13.22) to break dual symmetries. These mechanisms can be combined into
hybrid methods. For instance, combining ii) and iii) by smoothing around a
stability center:

π t = απ̂ +(1−α)π t . (13.49)

Stabilization techniques differ essentially in the choice of the penalty function.
Several typical penalty functions are pictured in Figure 13.4 for a 1-dimensional
vector π . When S is a piecewise linear function, the modified dual problem can still
be formulated as a linear program (with artificial variables). For instance, to model a
boxstep penalty function S(πi) = 0 if π ∈ [0,π i] and −∞ otherwise (for π i = 2∗ π̂i),
the master program (13.23)–(13.26) is augmented with artificial columns ρi for i =
1, . . .m, whose costs are defined by the upper bounds π i on the the dual prices. The
resulting primal-dual pair of augmented formulations of the master are:

min
T

∑
t=1

(cxt)λt +∑
i

π iρi max ∑
i

πidi +σ

T

∑
t=1

(Dix
t)λt +ρi ! di for all i ∑

i

πiDix
t +σ " cxt for all t

T

∑
t=1

λt = 1 πi " π i for all i

λ ∈ RT
+, ρ ∈ Rm

+ π ! 0, σ ∈ R1.

(13.50)

Properly setting the parameters that define this stabilization function may require
difficult experimental tuning.

In theory the convergence rates of all the LP-based methods (with or with-
out piece-wise linear penalty functions) are the same (although LP stabilization
helps in practice). However using a quadratic penalty allows one to benefit from
the quadratic convergence rate of Newton’s method to get an improved theoreti-
cal convergence rate. The bundle method consists in choosing the penalty function

S = ∥π−π̂∥2

η where η is a parameter that is dynamically adjusted to help convergence.
(In the case of equality constraints Dx = d, the bundle method has an intuitive in-
terpretation in the primal space: solving the penalized dual is equivalent to solving
the augmented Lagrangean subproblem: min{cx + π̂(d −Dx) + η∥d −Dx∥2 : x ∈
conv(Z)}.) The method calls for the solution of a quadratic program at each iter-
ation (the dual restricted master involves the maximization of a concave objective
under linear constraints). Experimentally use of the bundle method leads to a dras-
tic reduction in the number of iterations for some applications. The extra computing
time in solving the quadratic master is often minor.

Interior-point based solution approaches such as the Analytic Center Method
(ACCPM) can also be shown theoretically to have a better rate of convergence. Even
smoothing techniques can benefit from theoretical analysis: using rule (13.49), one
can show that at each iteration either the dual bound is strictly improved, or the col-
umn generated based on the smoothed prices π t has a strictly negative reduced cost
for the original prices π t .

456 François Vanderbeck and Laurence A. Wolsey

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π
π̂

S(π − π̂)

π

Fig. 13.4 Examples of penalty functions: the boxstep; three piece-wice linear penalty functions;
the quadratic penalty of the bundle method.

In practice, each of the above enhancement techniques has been shown to signifi-
cantly reduce the number of iterations in certain applications. However there may be
overheads that make each iteration slightly more time consuming. Another factor in
assessing the impact of the enhanced techniques is the time required by the pricing
subproblem solver: it has been observed that stabilized, smoothed or centered dual
prices π can make the pricing problem harder to solve in practice. Thus the benefits
from using stabilization techniques are context dependent.

13.3.5 Optimal integer solutions: branch-and-price

To solve problem IP based on its Dantzig-Wolfe reformulation, one must com-
bine column generation with branch-and-bound; the resulting algorithm is known as
branch-and-price or IP column generation. The issues are how to select branching
constraints and how to carry out pricing (solve the resulting subproblem(s)) after
adding these constraints. Note that a standard branching scheme consisting in im-
posing a disjunctive constraint on a variable λg of the Dantzig-Wolfe reformulation
that is currently fractional is not advisable. First, it induces an unbalanced enumera-
tion tree: rounding down a λg variable is weakly constraining, while rounding it up
is considerably more constraining, especially when the corresponding bounds are
0 and 1 respectively. Second, on the down branch it is difficult to impose an upper
bound on a λg variable: the associated column is likely to be returned as the solu-
tion of the pricing problem unless one specifically excludes it from the sub-problem

13 Reformulation and Decomposition of Integer Programs 457

solution set (essentially adding the constraint x ̸= xg in the sub-problem which de-
stroys its structure), or one computes the next best column. The alternative is to
attempt to express branching restrictions in terms of the variables of the original
formulation. In general, deriving an appropriate branching scheme in a column gen-
eration context can be non-trivial, especially when tackling problems with identical
subsystems.

Below we start by considering the case of a single subsystem. The branching
schemes developed for this case already indicate some of the issues and extend
directly to the case with multiple but distinct subsystems. We will then consider the
case of a set partitioning master program with multiple identical subsystems in 0-1
variables. In this case, a classical approach is the Ryan and Foster branching scheme.
We place it in the context of alternative schemes. From this discussion, we indicate
the basic ideas for dealing with the general case. In particular, we outline a general
branching and pricing scheme that is guaranteed to produce a finite branching tree
and to maintain the structure of the pricing problem when the set Z is bounded.

13.3.5.1 Branch-and-price with a single or multiple distinct subsystems

We describe the algorithm for a single subsystem, which extends to the case of
distinct subsystems. We suppose that λ ∗ is an optimal solution of the Dantzig-Wolfe
linear programming relaxation.

i) Integrality Test. If λ ∗ is integer, or more generally if x∗ = ∑g∈G xgλ ∗
g ∈ Zn,

stop. x∗ is an optimal solution of IP.
ii) Branching. Select a variable x j for which x∗j = ∑g∈G x

g
jλ

∗
g /∈ Z. Separate into

two subproblems with feasible regions X ∩ {x : x j " ⌊x∗j⌋} and X ∩ {x : x j !

⌈x∗j⌉}.
Let us consider just the up-branch (U); the down-branch is treated similarly.
The new IP for which we wish to derive a lower bound is the problem:

zU = min{cx : Dx ! d,x ∈ Z,x j ! ⌈x∗j⌉}.

There are now two options, depending whether the new constraint is treated as
a complicating constraint, or becomes part of the “tractable” subproblem.

Option 1. The branching constraint is dualized as a “difficult” constraint: YU
1 = {x∈

Zn : Dx ! d,x j ! ⌈x∗j⌉} and ZU
1 = Z.

458 François Vanderbeck and Laurence A. Wolsey

iii) Solving the new MLP: The resulting linear program is

(MLP1) zMLP1 = min ∑
g∈G

(cxg)λg

∑
g∈G

(Dxg)λg ! d

∑
g∈G

x
g
jλg ! ⌈x∗j⌉

∑
g∈G

λg = 1

λ ∈ R|G|
+ ,

where {xg}g∈G is the set of points of Z.
iv) Solving the new subproblem. Suppose that an optimal dual solution after iter-

ation t is (π t ,µ t ,σ t) ∈ Rm
+ ×R1

+ ×R1. The subproblem now takes the form:

(SPt
1) ζ t

1 = min{(c−π tD)x−µ t x j : x ∈ Z}.

Option 2. The branching constraint is enforced in the sub-problem: YU
2 = Y and

ZU
2 = Z ∩{x j ! ⌈x∗j⌉}.

iii) Solving the new MLP: The resulting linear program is

(MLP2) zMLP2 = min ∑
g∈GU

2

(cxg)λg

∑
g∈GU

2

(Dxg)λg ! d

∑
g∈GU

2

λg = 1

λ ∈ R
|GU

2 |
+ ,

where {xg}g∈GU
2

is the set of points of ZU
2 .

iv) Solving the new subproblem. Suppose that an optimal dual solution after iter-
ation t is (π t ,σ t) ∈ Rm

+ ×R1. The subproblem now takes the form:

(SPt
2) ζ t

2 = min{(c−π tD)x : x ∈ Z ∩{x : x j ! ⌈x∗j⌉}}.

Note that, with Option 2, branching on x j ! ⌈x∗j⌉ on the up-branch can be

viewed as partitioning the set Z into two sets Z \ZU
2 and ZU

2 : adding the constraint

∑g∈GU
2

λg = 1 is equivalent to adding ∑g∈G\GU
2

λg = 0 and thus the columns of Z\ZU
2

are removed from the master.

13 Reformulation and Decomposition of Integer Programs 459

Both Options 1 and 2 have certain advantages and disadvantages:

• Strength of the linear programming bound

zMLP1 = min{cx : Dx ! d,x ∈ conv(Z),x j ! ⌈x∗j⌉}

" zMLP2 = min{cx : Dx ! d,x ∈ conv(Z ∩{x : x j ! ⌈x∗j⌉})},

so Option 2 potentially leads to better bounds.
• Complexity of the subproblem

For Option 1 the subproblem is unchanged, whereas for Option 2 the subproblem
may remain tractable, or it may become more complicated if the addition of
bounds on the variables makes it harder to solve.

• Getting Integer Solutions

If an optimal solution x∗ of IP is not an extreme point of conv(Z), there is no
chance that x∗ will ever be obtained as an optimal solution of the subproblem
under Option 1. Under Option 2, because of the addition of the bound constraints,
one can eventually generate a column xg = x∗ in the interior of conv(Z).

The above pros and cons suggest that Option 2 may be preferable if the modified
subproblem remains tractable.

In the above we only consider branching at the root node and the modifications
to the column generation procedure after adding a single branching constraint. The
two options can be used throughout the branch-and-price tree, adding a new lower
or upper bound on a variable on each branch. Both schemes also extend to mixed
integer programs in which case branching is carried out only on the integer variables.

13.3.5.2 Branch-and-price with identical subsystems

In the case of identical subsystems the Dantzig-Wolfe reformulation is given
by DWad (13.38)–(13.41). Here the model variables result from an aggregation:
νg = ∑K

k=1 λkg with ∑g∈G νg = K. Hence, there is no direct mapping back to the

original distinct subsystem variables (x1, . . . ,xK). The projection (13.42) of refor-
mulation solution ν into the original variable space will only provide the aggregate
variables y defined in (13.10). The “Integrality Test” needs to be adapted. More-
over, branching on a single component of y is typically not enough to eliminate a
fractional solution. In particular, the Option 1 scheme typically does not suffice be-
cause one may have y∗j = ∑g∈G x

g
jλ

∗
g ∈ Z for all j even though the current master

solution does not provide an optimal integer solution to the original problem. The
extension consists in defining branching entities involving more than one variable
x j of the original formulation. This can be interpreted as defining auxiliary variables
on which to branch. The branching constraint can then either go in the master (as in
Option 1) or be enforced in the pricing problem (as in Option 2), which amounts to
branching on appropriately chosen subsets Ẑ ⊂ Z.

First, we provide an “Integrality Test” although its definition is not unique.

460 François Vanderbeck and Laurence A. Wolsey

Integrality Test. Sort the columns xg with ν∗
g > 0 in lexicographic order. Disaggre-

gate ν into λ variables using the recursive rule:

λ ∗
kg = min{1,νg −

k−1

∑
κ=1

λ ∗
κg,(k− ∑

γ≺g

ν∗
g)+} for g ∈ G, k = 1, . . . ,K, (13.51)

where g1 ≺ g2 if g1 precedes g2 in the lexicographic order. For all k, let (xk)∗ =
∑g∈Gc xgλ ∗

kg. If x∗ ∈ ZKn, stop. x∗ is a feasible solution of IP.

Note that if ν∗ is integer, the point x∗ obtained by the above mapping will be in-
teger. In general x∗ can be integer even when ν∗ is not. However, when Z ⊂ {0,1}n,
ν∗ is integer if and only if x∗ is integer.

Let us now discuss Branching. We first treat the special case of (13.11) in which
the master problem is a set partitioning problem. Then we present briefly possible
extensions applicable to the general case.
The Set Partitioning Case

For many applications with identical binary subsystems, one has Z ⊆ {0,1}n,
D = I,d = (1, . . . ,1), and the master takes the form of:

min{∑
g

(c xg)νg : ∑
g

x
g
j νg = 1 ∀ j, ∑

g

νg = K, νg ∈ {0,1}|G|}. (13.52)

One example is the bin packing problem of Example 8 in which Z is the set of
solutions of a 0-1 knapsack problem. Another is the graph (vertex) coloring problem
in which columns correspond to node subsets that can receive the same color and Z

is the set of stable sets of the graph.

Assume that the solution to the master LP is fractional with ν∗ ̸∈ {0,1}|G|.
Branching on a single component y j is not an option. Indeed, if Ĝ = {g : x

g
j = 1},

y∗j = ∑g∈G x
g
jν

∗
g = ∑g∈Ĝ ν∗

g = 1 for any master LP solution. However there must
exist a pair of coordinates i and j such that

w∗
i j = ∑

g:x
g
i =1,xg

j=1

ν∗
g = α with 0 < α < 1,

so that one can branch on the disjunctive constraint:

(wi j = ∑
g:x

g
i =1,xg

j=1

νg = 0) or (wi j = ∑
g:x

g
i =1,xg

j=1

νg = 1),

where wi j = ∑k xk
i xk

j is interpreted as an auxiliary variable indicating whether or not
components i and j are in the same subset of the partition.

We present three ways to handle the branching constraint, numbered 3, 4 and
5 to distinguish them from the Options 1 and 2 above. They are illustrated on the
up-branch wi j = ∑g:x

g
i =1,xg

j=1 νg = 1.

Option 3. The branching constraint is dualized as a “difficult” constraint: YU
3 =

{x ∈ Zn : Dx ! d,wi j ! 1} and ZU
3 = Z. Then the master includes the constraint

13 Reformulation and Decomposition of Integer Programs 461

∑g:x
g
i =1,xg

j=1 νg ! 1 with associated dual variable µ and the pricing subproblem

needs to be amended to correctly model the reduced costs of a column; it takes
the form:

ζ3 = min{(c−πD)x−µwi j : x ∈ Z,wi j " xi,wi j " x j,wi j ∈ {0,1}}.

If one wishes to enforce branching directly in the pricing subproblem, note that
one cannot simply set wi j = 1 in the subproblem because this branching constraint
must only be satisfied by one of the K subproblem solutions. Instead one must re-
strict the subproblem to Ẑ in such a way that any linear combination of its solutions
x ∈ Ẑ satisfies wi j = ∑g∈Ĝ:x

g
i =1,xg

j=1 νg = 1. This can be done through options 4 or 5:

Option 4. Let YU
4 = {x ∈ Zn : Dx ! d} and Ẑ = ZU

4 = Z ∩ {xi = x j}. The com-
bination of this restriction on the solution set with the set partitioning constraints

∑g∈Ĝ:x
g
i =1 νg = 1 and ∑g∈Ĝ:x

g
j=1 νg = 1 results in the output: ∑g∈Ĝ:x

g
i =1,xg

j=1 νg = 1.

With this option the master is unchanged, while the pricing subproblem is:

ζ4 = min{(c−πD)x : x ∈ Z,xi = x j}.

Option 5. Here on the up branch one works with two different subproblems: one
whose solutions have wi j = 1 and the other whose solutions have wi j = 0. Let YU

5 =
{x ∈ Zn : Dx ! d} and Ẑ = ZU

5A ∪ ZU
5B with ZU

5A = Z ∩ {xi = x j = 0} and ZU
5B =

Z ∩{xi = x j = 1}. Then, in the master program the convexity constraint ∑g∈G νg =
K is replaced by ∑g∈GU

5A
νg = K − 1 and ∑g∈GU

5B
νg = 1, and there are two pricing

subproblems, one over set ZU
5A and one over set ZU

5B:

ζ5A = min{(c−πD)x : x ∈ Z,xi = x j = 0}

and
ζ5B = min{(c−πD)x : x ∈ Z,xi = x j = 1}.

Option 3 can be seen as an extension of Option 1. Option 4 is known in the
literature as the Ryan and Foster branching scheme. Option 5 can be seen as an
extension of Option 2. The analysis of the advantages and disadvantages of Options
3, 4 and 5 provides a slightly different picture from the comparison of Options 1
and 2:

• Strength of the linear programming bound

zMLP3 = min{cx : Dx ! d,x ∈ conv(Z)K ,wi j ! 1}

" zMLP4 = min{cx : Dx ! d,x ∈ conv(ZU
2)K},

" zMLP5 = min{cx : Dx ! d,x ∈ (conv(ZU
5A)K−1 × conv(ZU

5B))},

• Complexity of the subproblem

The three options assume a change of structure in the subproblem (even Op-
tion 3). The Option 5 modifications of fixing some of the subproblem variables
are the least significant.

462 François Vanderbeck and Laurence A. Wolsey

• Getting Integer Solutions

Both Option 4 and 5 allow one to generate a column xg = x∗ in the interior of
conv(Z), but Option 5 is better in this regard.

The down-branch can be treated similarly: Y D
3 = {x ∈ Zn : Dx ! d,wi j = 0},

ZD
4 = Z ∩{xi + x j " 1}, ZD

5A = Z ∩{xi = 0} and ZD
5B = Z ∩{xi = 1,x j = 0}.

Note that the pricing problem modifications are easy to handle in some appli-
cation while they make the pricing problem harder in others. The Option 3 modi-
fications affect the cost structure in a way that is not amenable to standard pricing
problem solvers in both of our examples: bin packing and vertex coloring. The Op-
tion 4 modifications do not affect the structure of the stable set sub-problem for the
vertex coloring problem: addition of the inequality xi + x j " 1 on the down-branch
amounts to adding an edge in the graph, while adding xi = x j in the up-branch
amounts to aggregating the two nodes—contracting an edge. However, for the bin
packing application, a constraint of the form xi +x j " 1 in the down-branch destroys
the knapsack problem structure, so that a standard special purpose knapsack solver
can no longer be used, while the up-branch can be handled by the aggregation of
items. The Option 5 modifications are easily handled by preprocessing for both the
bin packing and vertex coloring problems.

The General Case with Identical Subsystems
For the general case, such as the cutting stock problem of Example 7, the Master

LP relaxation is

min{∑
g∈G

(cxg)νg : ∑
g∈G

(Dxg)νg ! d, ∑
g∈G

νg = K,ν ∈ R|G|
+ }.

If its solution ν does not pass the “Integrality Test”, one must apply an ad-hoc
branching scheme. The possible choices can be understood as extensions of the
schemes discussed in Options 1 to 5.

Option 1. Branching on the aggregate variables y does not guarantee the elimination
of all fractional solutions. As we have seen in the set partitioning case, no fractional
solutions can be eliminated in this way. However for the general case, in some (if
not all) fractional solutions, there exists a coordinate i for which yi = ∑g∈G x

g
i νg =

α /∈ Z. Then one can create two branches

∑
g∈G

x
g
i νg " ⌊α⌋ and ∑

g∈G

x
g
i νg ! ⌈α⌉.

This additional constraint in the master does not change the structure of the pricing
problem that becomes

ζ = min{(c−πD)x−µixi : x ∈ Z}

where µi (resp. −µi) is the dual variable associated to up-branch (resp. down-
branch) constraint.

13 Reformulation and Decomposition of Integer Programs 463

Options 3 and 4. If the original variables do not offer a large enough spectrum of
branching objects (i.e., if the integrality of the aggregate yi value does not yield an
integer solution x to the original problem), one can call on an extended formulation,
introducing auxiliary integer variables. Then one can branch on the auxiliary vari-
ables, either by dualizing the branching constraint in the master (Option 3) or, when
possible, by enforcing it in the subproblem (Option 4). A natural approach is to ex-
ploit the extended formulation that is implicit to the solution of the pricing problem.
For example, in the vehicle routing problem, solutions are the incidence vectors of
the nodes in a route, whereas the edges defining the routes implicitly define the costs
of the route; branching on the aggregated edge variables summed over all the vehi-
cles allows one to eliminate all fractional solutions. For the cutting stock problem,
solving the knapsack subproblem by dynamic programming amounts to searching
for a longest path in a pseudo-polynomial size network whose nodes represent ca-
pacity consumption levels (see Section 13.5.4). Branching on the associated edge
flows in this network permits one to eliminate all fractional solutions.

Options 2 and 5. For a general integer problem, a generalization of the Option 2
approach is to look for a pair consisting of an index j and an integer bound l j for
which ∑g:x

g
j!l j

νg = α ̸∈ Z, and then create the two branches:

∑
g∈Ĝ

νg ! ⌈α⌉ or ∑
g∈G\Ĝ

νg ! K −⌊α⌋ (13.53)

where Ẑ = Z∩{x j ! l j} = {xg}g∈Ĝ. Then pricing is carried out independently over

the two sets Ẑ and Z \ Ẑ = Z ∩ {x j " l j − 1} on both branches. As in the set parti-
tioning special case, one may have to consider sets Ẑ defined by more than a single
component bound. It is easy to show that if a solution ν does not pass the “Integral-

ity Test” there must exists a branching set Ẑ = Z∩{sx ! l}, where l ∈ Zn is a vector
of bounds and s ∈ {−1,1}n defines the sign of each component bound, such that

∑g:xg∈Ẑ νg = α ̸∈ Z. Then, branching takes a form generalizing (13.53) and pricing

is carried out independently for Ẑ and its complementary sets: the technicalities are
beyond the scope of this chapter (see the references provided in Section 13.7); in
particular, to avoid the proliferation of the number of cases to consider when pric-
ing, it is important to chose a branching set Ẑ that is either a subset of a previously
defined branching set or lies in the complement of all previously defined branching
sets.

Option 1 can always be tried as a first attempt to eliminate a fractional solution.
Although easy to implement, the resulting branching can be weak (low improvement
in the dual bound). Options 3 and 4 are application specific schemes (whether the
branching constraint can be enforced in the subproblem and whether this modifies
its structure are very much dependent on the application). By comparison Option 5 is
a generic scheme that can be applied to all applications for which adding bounds on
the subproblem variables does not impair its solution (i.e., it works if Z is bounded).
Typically it provides the strongest dual bound improvement.

464 François Vanderbeck and Laurence A. Wolsey

13.3.6 Practical aspects

In developing a branch-and-price algorithm, there are many practical issues such
as a proper initialization of the restricted master program, stabilization of the col-
umn generation procedure (as discussed in Section 13.3.4), early termination of the
master LPs, adapting primal heuristics and preprocessing techniques to a column
generation context, combining column and cut generation, and branching strategies.
Note that the branching schemes of Section 13.3.5 must be understood as default
schemes that are called upon after using possible branching on constraint strategies
that can yield a more balanced search tree.

Initialization is traditionally carried out by running a primal heuristic and using
the heuristic solutions as an initial set of columns. Another classical option is to
run a sub-gradient or a volume algorithm to obtain an initial bundle of columns
before going into the more computationally intensive LP based column generation
procedure. An alternative is to run a dual heuristic to estimate the dual prices. These
estimates are then used to define the cost of the artificial columns associated with
each of the master constraints as presented in (13.50).

The column generation approach is often used in primal heuristics. A branch-
and-price algorithm can be turned into a heuristic by solving the pricing problem
heuristically and carrying out partial branching. A classical heuristic consists in
solving the integer master program restricted to the columns generated at the root
node using a standard MIP solver (hoping that this integer program is feasible).
Another common approach is to apply iterative rounding of the master LP solution,
which corresponds to plunging depth-first into the branch-and-price tree (partial
backtracking yields diversification in this primal search). The branching scheme
underlying such a rounding procedure is simpler than for exact branch-and-price
(for instance one can branch directly on the master variables as only one branch is
explored).

13.4 Resource or variable decomposition

The “classical” problem tackled by resource decomposition is the mixed integer
program

(MIP) zMIP = mincx+hy

Gx+Hy ! d

x ∈ Zn, y ∈ Rp
+

where the integer variables x are seen as the “important” decision variables (possibly
representing the main investment decisions). One approach is then to decompose the
optimization in two stages: first choosing x and then computing the associated opti-
mal y. A feedback loop allowing one to adjust the x solution after obtaining pricing

13 Reformulation and Decomposition of Integer Programs 465

information from the optimization of y makes the Benders’ approach different from
simple hierarchical optimization.

In this section we first derive the Benders’ reformulation in the space of the x

variables and show how it can be solved using branch-and-cut. We then consider the
case in which the y variables are integer variables, as well as the case with block
diagonal structure in which the subproblem obtained when the x variables are fixed
decomposes, and finally we discuss one computational aspect.

13.4.1 Benders’ reformulation

The approach here is to rewrite MIP as a linear integer program just in the space
of the integer variables x. First we rewrite the problem as

zMIP = min{cx+φ(x) : x ∈ projx(Q)∩Zn}

where
Q = {(x,y) ∈ Rn ×Rp

+ : Gx+Hy ! d}

and
φ(x) = min{hy : Hy ! d −Gx,y ∈ Rp

+}

is the second stage problem that remains once the important variables have been
fixed in the first stage. This can in turn be written as

zMIP = min{cx+σ : x ∈ projx(Q)∩Zn,(σ ,x) ∈ Pφ}

where Pφ = {(σ ,x) : σ ! φ(x)}. Note that when x yields a feasible second stage
problem, i.e., x ∈ projx(Q), Pφ can be described by linear inequalities. By LP du-
ality, φ(x) = max{u(d − Gx) : uH " h,u ∈ Rm

+} = maxt=1,...,T ut(d − Gx) where
{ut}T

t=1 are the extreme points of U = {u ∈ Rm
+ : uH " h}. In addition a polyhedral

description of projx(Q) is given by Theorem 13.3. Thus we obtain the reformulation:

(RMIP) zMIP = mincx+σ

ut(d −Gx) ≤ σ for t = 1, . . . ,T

vr(d −Gx) " 0 for r = 1, . . . ,R

x ∈ Zn, σ ∈ R1,

where {ut}T
t=1 and {vr}R

r=1 are the extreme points and extreme rays of U respec-
tively.

RMIP is a linear integer program with a very large (typically exponential) num-
ber of constraints. With modern mixed integer programming software, the natural
way to solve such a problem is by branch-and-cut.

Specifically at each node of the enumeration tree, a linear programming relax-
ation is solved starting with a subset of the constraints of RMIP. If this linear pro-

466 François Vanderbeck and Laurence A. Wolsey

gram is infeasible, RMIP at that node is infeasible, and the node can be pruned. Oth-
erwise if (σ∗,x∗) is the current linear programming solution, violated constraints are
found by solving the linear programming separation problem

φ(x∗) = min{hy : Hy ! d −Gx∗,y ∈ Rp
+}, (13.54)

or its dual max{u(d −Gx∗) : uH " h,u ∈ Rm
+}. There are three possibilities:

i) The linear programming separation problem (13.54) is infeasible and one ob-
tains a new extreme ray vr with vr(d −Gx∗) > 0. (An extreme ray is obtained
as the dual solution on termination of the simplex algorithm). The violated con-
straint vr(d −Gx) " 0, called a feasibility cut, is added, and one iterates.

ii) ii) The linear programming separation subproblem is feasible, and one obtains
a new dual extreme point ut with φ(x∗) = ut(d −Gx∗) > σ∗. The violated con-
straint σ ! ut(d −Gx), called an optimality cut, is added, and one iterates.

iii) The linear programming separation subproblem is feasible with optimal value
φ(x∗) = σ∗. Then (x∗,σ∗) is a solution to the linear programming relaxation of
RMIP and the node is solved.

Example 9 Consider the mixed integer program

min −4x1 − 7x2 − 2y1 − 0.25y2 + 0.5y3

−2x1 − 3x2 − 4y1 + y2 − 4y3 ! −9
−7x1 − 5x2 − 12y1 − 2y2 + 4y3 ! −11

x " 3, x ∈ Z2
+, y ∈ R3

+

where the feasible region is similar to that of Example 3.

The extreme rays v1 = (1,1)T ,v2 = (2,1)T of the feasible region of the dual U =
{u∈R2

+ :−4u1−12u2 "−2,u1−2u2 "−0.25,−4u1 +4u2 " 0.5} were calculated

in Example 3. The extreme points are u1 = (1/32,5/32),u2 = (1/20,3/10), so the

resulting complete reformulation RMIP is:

min σ − 4x1 − 7x2

−9x1 − 8x2 ! −20
−11x1 − 11x2 ! −29

σ − 1.15625x1 − 0.875x2 ! −2
σ − 1.15x1 − 0.9x2 ! −2.1

x " 3, x ∈ Z2
+, σ ∈ R1.

Now we assume that the extreme points and rays of U are not known, and the prob-

lem is to be solved by branch-and-cut. One starts at the initial node 0 with only the

bound constraints 0 " x " 3 and dynamically adds Benders’ cuts during branch-

and-cut. We further assume that a lower bound of -100 on the optimal value of φ(x)
is given.

13 Reformulation and Decomposition of Integer Programs 467

Node 0. Iteration 1. Solve the Master linear program:

ζ = minσ −4x1 −7x2

σ ! −100
x1 " 3, x2 " 3, x ∈ R2

+, σ ∈ R1.

Solution of the LP Master ζ = −133,x = (3,3),σ = −100.

Solve the separation linear program

min −2y1 − 0.25y2 + 0.5y3

−4y1 + y2 − 4y3 ! −9+15
−12y1 − 2y2 + 4y3 ! −11+36

y ∈ R3
+.

The ray v = (1,1) shows that the separation LP is infeasible. The corresponding

feasibility cut −9x1 −8x2 ! −20 is added to the Master LP.

Node 0. Iteration 2.

Solution of the LP Master: ζ = −117.5,x = (0,2.5),σ = −100.

Solution of the Separation LP: φ(x) = 3/16 > σ . u = (1/32,5/32). The correspond-

ing optimality cut σ −1.15625x1 −0.875x2 ! −2 is added to the Master LP.

Node 0. Iteration 3.

Solution of the LP Master: ζ = −17 5
16 ,x = (0,2.5),σ = 3

16 .

Solution of the Separation LP: φ(x) = σ . The LP at node 0 is solved.

Create node 1 by branching on x2 " 2 and node 2 by branching on x2 ! 3, see

Figure 13.5.

Node 1. Iteration 1
The constraint x2 " 2 is added to the Master LP of Node 0, Iteration 3.

Solution of the LP Master: ζ = −15.514,x = (4/9,2),σ = 0.264.

Solution of the Separation LP: φ(x) = σ . The LP at node 1 is solved.

Create node 3 by branching on x1 " 0 and node 4 by branching on x1 ! 1.

Node 3. Iteration 1
The constraint x1 " 0 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −14.25,x = (0,2),σ = −0.25.

Solution of the Separation LP: φ(x) = σ . The LP at node 3 is solved. The solution is

integer. The value −14.25 and the solution x = (0,2),y = (0.25,0,0.5) are stored.

The node is pruned by optimality.

Node 4. Iteration 1
The constraint x1 ! 1 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −13.26. The node is pruned by bound.

Node 2. Iteration 1
The constraint x2 ! 3 is added to the Master LP of Node 0, Iteration 3.

468 François Vanderbeck and Laurence A. Wolsey

The LP Master is infeasible. The node is pruned by infeasibility.

All nodes have been pruned. The search is complete. The optimal solution is x =
(0,2),y = (0.25,0,0.5) with value −14.25. The branch-and-cut tree is shown in

Figure 13.5.

0

1 2

3 4

x2<=2 x2>=3

x1<=0 x1>=1

LP infeasible
x=(0.444,2)

ζ= -15.514

x=(0,2)

ζ= -14.25 ζ= -13.26

 x=(0,2.5)

 ζ= -17.3125

Fig. 13.5 Branch-and-Cut Tree for Benders’ Approach

13.4.2 Benders with integer subproblems

The Benders’ approach has also been found useful in tackling integer program-
ming models of the form

min{cx+hy : Gx+Hy ! d, x ∈ {0,1}n, y ∈ Y ⊆ Zp},

where the x variables are 0-1 and represent the “strategic decisions”, and the y vari-
ables are also integer. Once the x variables are fixed, there remains a difficult com-
binatorial problem to find the best corresponding y in the second stage. Typical ex-
amples are vehicle routing (or multi-machine scheduling) in which the x variables
may be an assignment of clients to vehicles (or jobs to machines) and the y vari-
ables describe the feasible tours of each vehicle (or the sequence of jobs on each
machine).

As before one can design a Benders’ reformulation and branch-and-cut algorithm
in the (σ ,x) variables:

zMIP = min{cx+σ ,σ ! φ(x),x ∈ Zn, σ ∈ R1},

where φ(x) = ∞ when x ̸∈ projx(Q). However the separation subproblem is no longer
a linear program, but the integer program:

13 Reformulation and Decomposition of Integer Programs 469

φ(x) = min{hy : Hy ! d −Gx,y ∈ Y}. (13.55)

Now one cannot easily derive a polyhedral description of the projection into the x-
space as in the continuous subproblem case. The combinatorial subproblem (13.55)
must be solved repeatedly at each branch-and-bound node. It is often tackled by con-
straint programming techniques, especially when it reduces to a feasibility problem
(in many applications h = 0).

A naive variant of the algorithm presented in Section 13.4.1 is to solve the mas-
ter problem to integer optimality before calling the second stage problem: one only
calls the separation algorithm when RMIP has an integer solution x∗ ∈ {0,1}n. The
separation is typically easier to solve in this case. This approach is often used when
the subproblem is handled by constraint programming. There are three possible out-
comes:

i) The separation subproblem is infeasible for the point x∗ ∈ {0,1}n, and one can
add the infeasibility cut

∑
j:x∗j=0

x j + ∑
j:x∗j=1

(1− x j) ! 1 (13.56)

that cuts off the point x∗.
ii) The separation subproblem is feasible for x∗, but φ(x∗) > σ∗. One can add the

optimality cut

σ ! φ(x∗)− (φ(x∗)−M)
(

∑
j:x∗j=0

x j + ∑
j:x∗j=1

(1− x j)
)

that cuts off the point (σ∗,x∗), where M is a lower bound on φ .
iii) The separation subproblem is feasible for x∗, and φ(x∗) = σ∗ = hy∗. Now

(x∗,y∗) is a feasible solution with value cx∗ + φ(x∗). The node can be pruned
by optimality.

This naive version has to be improved to have any chance of working in practice (for
instance, in some applications one can add certain valid inequalities in the x vari-
ables a priori). In particular it is important to find inequalities that cut off more than
just the point x∗. One case in which a slightly stronger inequality can be generated
is that in which x∗ ∈ {0,1} infeasible implies x infeasible whenever x ! x∗. In this
case one searches for a minimal infeasible solution x̃ " x∗ and the infeasibility cut
(13.56) is replaced by the inequality:

∑
j:x̃ j=1

(1− x j) ! 1

stating that in any feasible solution at least one variable with x̃ j = 1 must be set to
zero.

Finally note that one can also work with a relaxation of (13.55) as any feasibility
cut or optimality cut that is valid for the relaxation is valid for (13.55).

470 François Vanderbeck and Laurence A. Wolsey

13.4.3 Block diagonal structure

In many applications MIP has block diagonal structure of the form

min cx + h1y1 + h2y2 + · · · +hKyK

G1 x + H1 y1 ! d1

G2 x + H2 y2 ! d2

. . .
. . . !

...
GK x + HK yK ! dK

x ∈ X , yk ∈ Zk for k = 1, . . . ,K

Here the second stage subproblem breaks up into K subproblems

ζ k = min{hkyk : Hkyk ! dk −Gkx,yk ∈ Zk} for k = 1, . . . ,K.

One important and well-known case is that of two-stage stochastic linear and inte-
ger programming, where x represent the first stage decisions (discrete or otherwise).
Then depending on a discrete probability distribution, one observes the random vari-
ables involving one or more elements of (Gk,Hk,hk,dk) with probability pk before
taking an optimal second stage decision yk. Note that all the subproblems will have
a similar structure in the relatively common situation in which the matrices Hk,Gk

are independent of k.
We now consider an example in which all the costs are restricted to the x vari-

ables, but the subproblems are hard combinatorial problems.

Example 10 (Multi-Machine Job Assignment Problem)
There are K machines and n jobs. Each job j has a release date r j and a due date

d j. The processing time of job j on machine k is pk
j and the associated processing

cost is ck
j. The problem is to assign each job to one machine so that the jobs on each

machine can be scheduled without preemption while respecting the release and due

dates, and the sum of the assignment costs are minimized.

Letting xk
j = 1 if job j is assigned to machine k, the problem can be written as

zMIP = min
{ K

∑
k=1

n

∑
j=1

ck
jx

k
j :

K

∑
k=1

xk
j = 1 for j = 1, . . . ,n, xk ∈ Zk for k = 1, . . . ,K

}
,

where xk ∈ Zk if and only if the set Sk = { j : xk
j = 1} of jobs can be scheduled

on machine k. The set Zk can be represented as a linear integer program, but the

feasibility problem for each machine is well-solved in practice by the“Cumulative

Constraint” from Constraint Programming. Given a proposed assignment x∗, one

calls the Cumulative Constraint in turn for each of the K subproblems. Either x∗ is

a feasible assignment, or one or more infeasibility cuts

∑
j∈Sk

xk
j " |Sk|−1,

13 Reformulation and Decomposition of Integer Programs 471

are added (involving as small as possible a set Sk of infeasible jobs). Note that as

the costs are limited to the x variables, there are no optimality cuts for this problem.

Results are also significantly improved by the a priori addition of valid inequalities

in the xk
i variables.

13.4.4 Computational aspects

Much recent research has shown the importance of normalization in generating
cutting planes, and Benders’ algorithm is no exception. Returning to the algorithm
outlined in Subsection 13.4.1, given (x∗,σ∗), a violated feasibility or optimality cut
is generated if and only if there is no feasible point (x∗,y∗) attaining the present
lower bound cx∗ +σ∗, or equivalently the set

{y ∈ Rp
+ : Hy ! d −Gx∗,hy " σ∗} = /0.

By Farkas’ Lemma this holds if and only if

{(u,u0) ∈ Rm
+ ×R1

+ : u(d −Gx∗)−u0σ∗ > 0,uH −u0h " 0} ≠ /0.

Taking the normalization ∑m
i=1 ui + u0 = 1 motivated by the aim of generating a

minimal infeasible subsystem of inequalities and also the fact that this normalization
has been effective for other problems, the earlier separation problem (13.54) can be
replaced by the linear program:

ζ = max u(d −Gx∗)−u0σ∗

uH −u0h " 0
m

∑
i=1

ui +u0 = 1

u ∈ Rm
+,u0 ∈ R1

+.

Now if ζ > 0, the inequality u(d −Gx) " u0σ is violated by ζ . Note that this is a
feasibility cut when u0 = 0 and an optimality cut when u0 > 0. A recent computa-
tional study has shown that Benders’ algorithm is significantly more effective and
requires far fewer iterations when this normalized separation problem is used.

13.5 Extended formulations: problem specific approaches

We now consider the use and derivation of extended formulations based on ex-
plicit problem structure in more detail.

Typically we again have a decomposition X = Y ∩Z of the feasible region, and
Z has some specific structure that we wish to exploit. In nearly all such cases a

472 François Vanderbeck and Laurence A. Wolsey

minimal inequality description of conv(Z) in the original space of variables requires
a very large number of constraints. However there is the possibility that one can find
a compact extended formulation that is tight or at least considerably stronger than
the initial formulation for Z. This section is mainly about such reformulations.

First it is natural to ask when there is hope of finding such a compact and tight
extended formulation for Z. An important indication is given by the “Polynomial
Equivalence of Optimization and Separation”. Informally it states that, subject to
certain technical conditions:

A family of problems min{cx : x ∈ Z ⊆ Zn} is polynomially solvable if and only
if for all instances Z there is a polynomial separation algorithm for conv(Z).

Assuming P ̸= NP, this tells us that a tight and compact extended formulation
can only exist for a problem for which the optimization/separation problem is in P.
However it gives no guarantee of the existence of such a formulation.

Below we briefly discuss ways in which “relatively compact” extended formu-
lations can be used. Then we look at different ways to derive extended formula-
tions. We have attempted to classify them according to the method of derivation. In
particular we consider extended formulations based on variable splitting, dynamic
programming algorithms, unions of polyhedra, explicit convex hull descriptions or
the associated separation problem, and finally a couple of miscellaneous extended
IP-formulations are presented.

13.5.1 Using compact extended formulations

Here we consider briefly different ways to make use of extended formulations
that are compact or of “reasonable size”.

Intersection

Given an initial formulation P of X , the decomposition X =Y ∩Z and an extended
formulation Q for Z, then Q′ = P∩Q is an extended formulation for X . Assuming
that Q is compact, one simple option is to feed the reformulated problem

max{cx+0w : (x,w) ∈ Q′, x ∈ Zn}

to an MIP solver. Alternatively one might also try to improve the formulation of Y

and combine this with the extended formulation Q so as to produce an even stronger
reformulation, see Section 13.6.

13 Reformulation and Decomposition of Integer Programs 473

Projection

Again given the decomposition X = Y ∩Z and an extended formulation Q for Z,
one may wish to avoid explicit introduction of the new variables w ∈ Rp. One pos-
sibility is to use linear programming to provide a separation algorithm for projx(Q).

Separation Algorithm

Given Q = {(x,w) ∈ Rn
+ ×Rp

+ : Gx+Hw ! d} and x∗ ∈ Rn
+,

i) check whether Q(x∗) = {w ∈ Rp : Hw ! d −Gx∗} ̸= /0. This can be tested by
linear programming.

ii) If Q(x∗) ̸= /0, then x∗ ∈ projx(Q). Stop.
iii) If Q(x∗) = /0, then by Farkas’ lemma there exists v∗ ∈ V = {v ∈ Rm

+ : vH " 0}
with v∗(d −Gx∗) > 0 (v∗ is obtained as a dual solution of the linear program
used in i)). Then v∗Gx ! v∗d is a valid inequality for projx(Q) cutting off x∗.

Note that the Minkowski non-compact extended formulation of Z (see Sec-
tion 13.2) can be used in a similar manner to provide a separation algorithm for
conv(Z). However in this case a column generation approach (or some alternative)
must be used, and the resulting column generation subproblem is the optimization
problem over Z.

Inequality representation of projx(Q)

One can sometimes obtain an explicit polyhedral description of projx(Q) by way
of linear inequalities. In the simple cases the projection can be obtained directly
from inspection of Q. Otherwise given Q = {(x,w)∈Rn

+×Rp
+ : Gx+Hw ! d}, one

may be able to describe all the extreme rays {v1, . . . ,vT} of V = {v ∈ Rm
+ : vH "

0}. This immediately gives the polyhedral description {x ∈ Rn
+ : vtGx ! vtd, t =

1, . . . ,T} of projx(Q). Alternatively, a systematic method of projecting out variables
one at a time, known as “Fourier-Motzkin elimination”, can be used to eliminate the
w variables in certain cases.

13.5.2 Variable splitting I: multi-commodity extended formulations

Using a multi-commodity extended formulation of the flows as for the directed
Steiner tree problem presented in Example 4 is an example of variable splitting.
Here we consider a more general fixed charge network flow problem, and present
two further applications to the asymmetric traveling salesman problem and a lot-
sizing problem.

474 François Vanderbeck and Laurence A. Wolsey

Single-source fixed charge network flows

Given a directed graph or network D = (V,A), a root r ∈ V , a vector b ∈ R|V |

of demands with br < 0, bv ≥ 0 for all v ∈ V \ {r}, unit flow costs c ∈ R|A| and

fixed costs q ∈ R|A|
+ for the use of an arc, the problem is to find a feasible flow that

minimizes the sum of all the flow and fixed costs. This can be formulated as the
mixed integer program:

min ∑
(u,v)∈A

(quvxuv + cuvyuv)

∑
u∈δ−(v)

yuv − ∑
u∈δ+(v)

yvu = bv for v ∈V

yuv ≤ |br|xuv for (u,v) ∈ A

y ∈ R|A|
+ , x ∈ [0,1]|A|.

The linear programming relaxation of this model does not provide good bounds
because, when yuv > 0 for some arc (u,v), one typically has yuv ≪ |br|. Thus
xuv = yuv

|br |
≪ 1, which means that the fixed cost term quvxuv seriously underesti-

mates the correct fixed cost quv. One way to improve the formulation is to use a
multi-commodity reformulation.

Let T = {v ∈V \{r} : bv > 0} be the set of terminals, or commodities. We now
treat flow with destination t ∈ T as a distinct commodity and define the variable wt

uv

to be the flow in arc (u,v) with destination t ∈ T . The resulting reformulation is

min{qx+ cy : (x,y,w) ∈ Q, x ∈ Z|A|},

where Q is the polyhedron

∑
j

wt
jr −∑

j

wt
r j = −bt for t ∈ T

∑
j

wt
jv −∑

j

wt
v j = 0 for v ∈V \{r, t}, t ∈ T

∑
j

wt
jt −∑

j

wt
t j = bt for t ∈ T

wt
i j ≤ btxi j for (i, j) ∈ A, t ∈ T

yi j = ∑
t∈T

wt
i j for (i, j) ∈ A (13.57)

y ∈ R|A|
+ , w ∈ R|A|·|T |

+ , x ∈ [0,1]|A|.

Note that now the bound on the flow on the decision variable xi j is xi j !

maxt∈T
wt

i j

bt
. Again considering the linear programming relaxation, it is often the

case that wt
i j = bt for some commodity t, and this forces xi j = 1, so that in this case

the evaluation of the fixed cost for the arc (i, j) is exact.

13 Reformulation and Decomposition of Integer Programs 475

For the special case of the directed Steiner tree problem introduced in Sec-
tion 13.2.2, we noted that projection of the above formulation leads us to the re-
formulation min{qx : x ∈ P′, x ∈ Zn} where P′ is the polyhedron

{x ∈ [0,1]|A| : ∑
i∈U, j∈V\U

xi j ≥ 1, for U ⊆V with r ∈U, t ∈ T ∩ (V \U)}.

As P′ has an exponential number of constraints, one can use the max-flow/min-cut
theorem to provide a polynomial separation algorithm for the polyhedron P′. Note
that this is exactly the Benders’ separation problem. For this special case, the linear
programming relaxation has an optimal solution that solves the original problem in
certain cases, in particular when the network is Series Parallel, or when T = V \{r}
(minimum weight spanning tree) or |T | = 2 (shortest path).

More generally network design problems, in which the first stage variables are
the choice of open arcs (or the multiples of capacity installed) and the second stage
variables are the resulting flows, are often treated by Benders’ approach.

TSP and sub-tour polytope: a three-index flow reformulation

It is well known and follows directly from the last reformulation that the asym-
metric traveling salesman problem (AT SP) can be written as the integer program:

min ∑ci jxi j (13.58)

∑
j

xi j = 1 for i ∈V (13.59)

∑
i

xi j = 1 for j ∈V (13.60)

∑
i∈U

∑
j∈V\U

xi j ≥ 1 for U ⊂V with φ ⊂U (13.61)

x ∈ {0,1}|A|, (13.62)

where xi j = 1 if arc (i, j) lies on the tour. Let Z = {x ∈ Z|A| satisfying (13.61)
and (13.62)}. To model these connectivity constraints one can again use multi-
commodity flows to ensure that one unit can flow from some root node r ∈ V to
every other node. This leads to the extended formulation Q for conv(Z):

∑
j

wt
r j −∑

j

wt
jr = 1 for t ∈V \{r}

∑
j

wt
i j −∑

j

wt
ji = 0 for i ∈V \{r, t}, t ∈V \{r}

wt
i j ≤ xi j for (i, j) ∈ A, t ∈V \{r}

x ∈ [0,1]|A|, w ∈ [0,1]|A|(|V |−1)

476 François Vanderbeck and Laurence A. Wolsey

where wt
i j is the flow in (i, j) from node r to node t. Here Q is a tight and compact

extended formulation for Z.
For the symmetric traveling salesman problem on an undirected graph G =

(V,E), one can also make use of this reformulation by setting ye = xi j + x ji, and

adding wt
i j + wt ′

ji ≤ ye for all (i, j) ∈ E, t, t ′ ∈ T . Conversely it can be shown that
projection onto the edge variables y gives back the well-known sub-tour elimination
constraints ∑e∈E(S) ye " |S|−1, where E(S) = {e = (i, j) ∈ E : i, j ∈ S}.

Uncapacitated lot-sizing

The uncapacitated lot-sizing problem involves time periods t = 1, . . . ,n, demands
dt in period t, production costs pt , a set-up or fixed production cost qt and a unit
(end-of-period) storage cost ht .

Letting xt ,st be the production and end-stock in period t, and yt ∈ {0,1} indicate
if there is a set-up or not, a natural formulation as an MIP is given by:

min
n

∑
t=1

ptxt +
n

∑
t=0

htst +
n

∑
t=1

qtyt

st−1 + xt = dt + st for t = 1, . . . ,n (13.63)

xt ≤ Myt for t = 1, . . . ,n (13.64)

x ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0,1}n (13.65)

with feasible region XLS-U. We also use the notation dut ≡ ∑t
j=u d j

For this problem various polynomial algorithms are known, as well as a complete
description of the convex hull of solutions given by an exponential number of facet-
defining inequalities.

As this problem can be viewed as a special case of the fixed charge network
flow problem, it is easy to add an additional subscript to the production and stock
variables indicating the period t in which the units will be used to satisfy the demand.

Rescaling the resulting production variable, one can define new variables wut to
be the fraction of the demand in period t satisfied by production in period u. This
leads immediately to the following extended formulation QLS-U for XLS-U

t

∑
u=1

wut = 1 for t = 1, . . . ,n (13.66)

wut ≤ yu for 1 ≤ u ≤ t ≤ n with dut > 0 (13.67)

w ∈ R(n−1)n/2
+ , y ∈ [0,1]n (13.68)

xu =
n

∑
t=u

dtwut for u = 1, . . . ,n (13.69)

st = ∑
u≤t

∑
t<ℓ

dℓwuℓ for t = 1, . . . ,n. (13.70)

13 Reformulation and Decomposition of Integer Programs 477

It can be shown that projx,s,y(Q) = conv(XLS-U). It follows that the linear program

min{px+hs+qy,(x,s,y,w) ∈ QLS-U}

has an optimal solution that solves the lot-sizing problem. Note that this formu-
lation can also be obtained from the complete multi-commodity reformulation by
elimination of the multi-commodity stock variables.

13.5.3 Variable splitting II

Here we present other reformulations obtained by variable splitting. Given an
integer variable x with 0 " x " C, it is possible to model it with binary variables,
either with a so-called unary expansion:

x =
C

∑
q=0

qzq,
C

∑
q=0

zq = 1,z ∈ {0,1}C+1,

or with a binary expansion

x =
P

∑
p=0

2pwp " C, w ∈ {0,1}P+1,

where P = log2⌊C⌋.

Time-indexed formulation

Machine scheduling problems are traditionally modeled using variables repre-
senting the starting time (or completion time) of the jobs. However, when using
these variables, sequencing constraints (enforcing that a machine can only process
one job at a time) are not easily modeled as linear mixed integer programs. Con-
sider a single machine scheduling problem, in which there are n jobs with process-
ing times p j, release dates r j and deadlines d j for job j. Let the variable y j ∈ R1

+
represent the start-time of job j, with r j " y j " d j − p j for all j. These variables
must satisfy the disjunctive constraints

y j ! yi + pi, or yi ! y j + p j for i ̸= j

which are often modeled in mixed integer programming by the introduction of so-
called big M constraints of the form y j ! yi + pi−M(1−δi j), where the 0-1 variable
δi j = 1 if job i precedes j.

Time-indexed variables, based on the unary decomposition of the y variables, al-
low one to build a linear IP-reformulation avoiding the big M constraints. Assuming

478 François Vanderbeck and Laurence A. Wolsey

integer processing times p j, one can discretize the time horizon into T periods. One

can then introduce new variables w
j
t where w

j
t = 1 if job j starts at the beginning of

the interval [t −1, t], and w
j
t = 0 otherwise. Then one obtains the IP-reformulation

T

∑
t=1

w
j
t = 1 for j = 1, . . . ,n

n

∑
j=1

t

∑
u=t−p j+1

w j
u " 1 for t = 1, . . . ,T − p j +1, j = 1, . . . ,n

w
j
t ∈ {0,1} for t = r j, . . . ,d j − p j +1, j = 1, . . . ,n

where the first constraint ensures that each job j is started once, the second that at
most one job is on the machine in each period, the range of definition of the variables
handles the release and due dates, and the original variables are obtained by setting
y j = ∑t(t −1)w j

t .
Many different objective functions and constraints, such as precedence con-

straints, are easily handled using such time-indexed variables. Though pseudo-
polynomial in size, the linear programming relaxation of this extended IP-formu-
lation typically provides a much stronger bound than that of a big-M formulation in
the (y,δ) variables.

Capacity-indexed variables

In capacitated vehicle routing problems with integral demands di and a vehicle
capacity C, it has been proposed to apply variable splitting to the arc indicator vari-
ables. Specifically if xa = 1 indicates that an arc a forms part of a vehicle route,
wa

q = 1 indicates that a = (i, j) forms part of the route and the total load of the vehi-
cle while traversing arc a is q. Now as a quantity di is delivered to client i, one must
have

∑
a∈δ−(i)

wa
q = ∑

a∈δ+(i)

wa
q−di

for di " q " C

and flow conservation becomes:

C

∑
q=0

∑
a∈δ−(i)

qwa
q −

C

∑
q=0

∑
a∈δ+(i)

qwa
q = di for i ∈V.

Summing over S ⊂ V and defining aggregate variables y−q (S) = ∑a∈δ−(S) wa
q and

y+
q (S) = ∑a∈δ+(S) wa

q, one obtains integer knapsack sets

C

∑
q=0

qy−q (S)−
C

∑
q=0

qy+
q (S) = ∑

i∈S

di, y−q (S), y+
q (S) ∈ ZC+1

+

13 Reformulation and Decomposition of Integer Programs 479

for which a variety of cutting planes can be generated. Here xa = ∑q wa
q provides the

link to the original arc variables.

Fractionality-indexed variables and network dual MIPs

A network dual set is a mixed integer set in which all the constraints have two
non-zero entries of +1 and −1 respectively. Thus we consider the set

XND = {x ∈ Rn : xi − x j ! bi j for i, j ∈ N, xi ∈ Z1 for i ∈ I ⊂ N}

where N = {1, . . . ,n}. Such sets have been studied recently motivated by research
on lot-sizing problems.

For the presentation here, we assume that each right-hand side value bi j is a

multiple of 1
K , so we can write bi j = ⌊bi j⌋+

hi j

K with hi j ∈Z1
+ and hi j ∈ {0,1, . . . ,K−

1}. As a consequence of this assumption, one can assume that Kxi ∈ Z1 for all i.
Following the idea of a unary expansion, we can write

Kxi = K⌊xi⌋+
K−1

∑
h=0

hzh,
K−1

∑
h=0

zh = 1, z ∈ ZK
+.

This in turn can be rewritten as

Kxi = ⌊xi⌋+(⌊xi⌋+ zK−1)+(⌊xi⌋+ zK−2 + zK−1)+ · · ·+(⌊xi⌋+ z1 + · · ·+ zK−1)

=
K−1

∑
h=0

(⌊xi⌋+
K−1

∑
j=K−h

z j)

=
K−1

∑
h=0

wh
i

where wh
i = ⌊xi⌋ if xi −⌊xi⌋ < K−h

K and wh
i = ⌈xi⌉ if xi −⌊xi⌋ ! K−h

K .
With these variables, one obtains the extended formulation

xi =
1

K

K−1

∑
h=0

wh
i i ∈ N (13.71)

wt
i −w

f (t)
j ! ⌊bi j⌋ for t = 0, . . . ,K −hi j −1, i, j ∈ N (13.72)

wt
i −w

f (t)
j ! ⌊bi j⌋+1 for t = K −hi j, . . . ,K −1, i, j ∈ N (13.73)

xi = wh
i for h = 0, . . . ,K −1, i ∈ I, (13.74)

where f (t) = t + hi j (mod K). For the integer variables xi with i ∈ I, one can use
(13.74) to eliminate the corresponding w variables. The important observation is that
this reformulation again has network dual structure, but with an integer right hand

480 François Vanderbeck and Laurence A. Wolsey

side. Thus the corresponding matrix is totally unimodular and the extremal solutions
are integer. So it provides a tight and compact extended formulation for XND.

We now indicate briefly how network dual sets arise in lot-sizing problems.

Example 11 Consider the set

sk−1 +
t

∑
u=k

Cyu + rt !
t

∑
u=k

du for 1 " k " t " n (13.75)

s ∈ Rn+1
+ ,r ∈ Rn

+,y ∈ [0,1]n, (13.76)

known as the constant capacity Wagner-Whitin relaxation with backlogging, where

st ,yt are the same stock and set-up variables introduced earlier for the lot-sizing

problem, and rt represents the backlog/shortage at the end of period t.

Introducing new variables: zt = ∑t
u=1 yu, σk−1 = −(sk−1 −Czk−1 + ∑k−1

u=1 du)/C

and ρt = (rt +Czt −∑t
u=1 du)/C, constraint (13.75) after division by C can be writ-

ten as ρt −σt−1 ! 0, 1
C sk−1 ! 0 becomes zk−1 −σk−1 ! (∑k−1

u=1 du)/C, 1
C rt ! 0 be-

comes ρt − zt ! −(∑t
u=1 du)/C, and 0 " yt " 1 becomes 0 " zt − zt−1 " 1.

Thus one obtains the reformulation:

ρt −σk−1 ! 0 for 1 " k " t " n

zk−1 −σk−1 !
(k−1

∑
u=1

du

)
/C for k = 1, . . . ,n

ρt − zt ! −
(t

∑
u=1

du

)
/C for t = 1, . . . ,n

−zt + zt−1 ! −1 for t = 1, . . . ,n

zt − zt−1 ! 0 for t = 1, . . . ,n

ρ,σ ∈ Rn,z ∈ Zn,

which is precisely a network dual MIP.

More generally when the bt take arbitrary values, the extended formulation
(13.71)–(13.74) can always be reduced to a size that is polynomial in F , the number
of distinct fractional values taken by the continuous variables in the extreme point
solutions. For the lot-sizing set (13.75)–(13.76), F is Θ(n2), corresponding to the
values 0 and ∑t

u=k du/C (mod 1), so that the extended formulation is both tight and
compact.

13.5.4 Reformulations based on dynamic programming

In many cases, solving a problem by dynamic programming can be interpreted as
transforming it to a shortest or longest path problem (in an appropriate network of
possibly very large size). It is then natural to look for a reformulation as a network

13 Reformulation and Decomposition of Integer Programs 481

flow problem. More generally, a dynamic programming recursion can often be writ-
ten as a linear program, and the dual of this linear program provides an extended
formulation in which the variables indicate which terms are tight in the dynamic
programming recursion. We demonstrate this with two examples, the first of which
illustrates the simple case in which the dynamic program corresponds to a longest
path algorithm.

The integer knapsack problem

Consider the integer knapsack problem:

z = max{
n

∑
j=1

c jx j :
n

∑
j=1

a jx j = b,x ∈ Zn
+}

with {a j}
n
j=1, b positive integers. (The standard inequality knapsack problem is ob-

tained by taking an = 1 and cn = 0). It is well-known that the dynamic programming
recursion:

G(t) = max
j=1,...,n:t−a j!0

{c j +G(t −a j)}

with G(0) = 0, can be used to find z = G(b) and then the corresponding optimal
solution. One can convert the recursion into a linear program in which the values
G(t) for t = 0, . . . ,b are the variables:

min G(b)

G(t)−G(t −a j) ! c j for t = a j, . . . ,b, j = 1, . . . ,n

G(0) = 0.

Defining dual variables w j,t−a j for all t, j with t − a j ! 0, the linear programming
dual is

max
n

∑
j=1

b−a j

∑
t=0

c jw jt

∑
j

w jt = +1 for t = 0

−∑
j

w j,t−a j +∑
j

w jt = 0 for t = 1, . . . ,b−1 (13.77)

−∑
j

w j,t−a j = −1 for t = b

w jt ! 0 for t = 0,1, . . . ,b−a j, j = 1, . . . ,n.

The resulting problem can be viewed as a longest path problem in a network D =
(V,A) with nodes V = {0,1, . . . ,b} and arcs (t, t +a j)∈A for all t ∈ {0,1, . . . ,b−a j}

482 François Vanderbeck and Laurence A. Wolsey

with weight c j for all j. Any path from 0 to b corresponds to a feasible solution of

the knapsack problem. Adding the equations x j = ∑
b−a j

t=0 w jt that count the num-
ber of times j-type arcs are used, one has that the polyhedron is a tight extended
formulation for Z = {x ∈ Zn

+ : ∑n
j=1 a jx j = b}.

An instance of the network corresponding to this extended formulation is shown
in Figure 13.5.4.

0 1 2 3 4 5 6 7

5 5 5 5 5 5

7 7 7 7 7 7

0 0 0 0 0 0 0

Fig. 13.6 Knapsack Longest Path: a = (2,3,1),b = 7,c = (5,7,0)

For this instance, the optimal linear programming solution x1 = 7
2 ,x2 = x3 = 0

is not integral and provides an upper bound on z of 17.5. The linear programming
relaxation of the extended formulation has an optimal solution w1

0 = w1
2 = w2

4 = 1,

w
j
t = 0 otherwise, giving the optimal solution x1 = 2,x2 = 1 of value 17.

Optimal cardinality constrained subtrees of a tree

The second example involves a somewhat different dynamic program. One is
given a rooted directed tree T = (V,A) with node weights c ∈ R|V |. Node 1 is the
root. The problem is to find an optimal rooted subtree with 1 as the root containing
at most K nodes. A natural IP formulation is given by

max

{

∑
v∈V

cvxv : xp(v) ! xv for v ∈V, ∑
v∈V

xv " K,x ∈ {0,1}|V |

}
,

where xv = 1 if v forms part of the subtree, p(v) is the predecessor of v on the path
from v to the root and xp(1) = 1 by definition. For simplicity, we suppose that it
is a binary tree and the left and right sons of node v are the nodes 2v and 2v + 1
respectively.

Let H(v,k) denote the maximum weight subtree with at most k nodes rooted at v.
The dynamic programming recursion is:

H(v,k) = max{H(v,k−1),cv + max
t=0,...,k−1

[H(2v, t)+H(2v+1,k−1− t)]},

where the first term in the maximization can be dropped for v ̸= 1. Replacing the
max by appropriate inequalities and taking the optimal value H(1,K) as the objec-
tive function leads to the linear program:

13 Reformulation and Decomposition of Integer Programs 483

min H(1,K)

H(1,k)−H(1,k−1) ! 0 for k = 1, . . . ,K

H(v,k)−H(2v, t)−H(2v+1,k−1− t) ! cv for v ∈V, 0 " t < k " K

H(v,k) ! 0 for v ∈V, k = 0, . . . ,K.

Taking y1,k and wv,k,t,k−1−t as dual variables, we obtain

max ∑
v∈V

cv

K

∑
k=1

k−1

∑
t=0

wv,k,t,k−1−t

∑
t

w1,K,t,K−1−t + y1,K " 1

∑
t

w1,k,t,K−1−t + y1,k − y1,k+1 " 1 for k = 1, . . . ,K −1

k−1

∑
t=0

wv,k,t,k−1−t − ∑
κ>k

wp(v),κ,k,κ−1−k " 0 for v > 1 even, k = 1, . . . ,K

k−1

∑
t=0

wv,k,t,k−1−t − ∑
κ>k

wp(v),κ,κ−1−k,k " 0 for v > 1 odd, k = 1, . . . ,K

w,y ! 0.

where p(v) = ⌊ k
2⌋. Here wv,k,t,k−1−t = 1 means that the optimal tree contains a sub-

tree rooted at v containing k nodes with t (resp k−1−t) nodes in the subtrees rooted
in its left (resp. right) successors, and y1k = 1 indicates that H(1,k) = H(1,k− 1).
Setting xv = ∑K

k=1 ∑k−1
t=0 wv,k,t,k−1−t allows us to complete the extended formulation.

13.5.5 The union of polyhedra

One of the very basic polyhedral results of relevance to integer programming
concerns the union of polyhedra. Assume P = conv(P1 ∪ · · ·∪PK) where Pk = {x ∈
Rn : Akx ≤ bk} and Ck = {x ∈ Rn : Akx ≤ 0} is the recession cone of Pk for all k.

Theorem 13.5 (Balas). If Pk ̸= φ and C = Ck for k = 1, . . . ,K, then

conv(∪K
k=1Pk) = projx{(x,w,δ) ∈ Rn ×RnK ×RK

+ : x = ∑K
k=1 wk,

Akwk ≤ bkδ k for k = 1, . . . ,K, ∑K
k=1 δ k = 1}.

Disjunctions arise frequently in integer programming. Given a 0-1 set X = P∩Zn

where P = {x ∈ Rn : Ax ≤ b, 0 " x " 1} it is natural to select some variable j and
consider the disjunction

P = P0
j ∪P1

j where Pi
j = {x ∈ P : x j = i} for i = 0,1.

484 François Vanderbeck and Laurence A. Wolsey

One use of extended formulations is to give tightened formulations that are then
projected back into the original space. One example using the above disjunction is
the lift-and-project approach presented in Chapter 11. Here we consider situations
in which a problem becomes easy when the value of one variable is fixed. Then, if
one can describe the convex hull of solutions when this variable is fixed, an extended
formulation is obtained for the original set by taking the convex hull of the union of
the convex hulls.

1− k configurations

A 1− k configuration is a special 0-1 knapsack set of the form

Y =
{
(x0,x) ∈ {0,1}n+1 : kx0 +

n

∑
j=1

x j " n
}
.

To describe its convex hull O(nk) valid inequalities are needed. Now observe that
Y = Y 0 ∪Y 1 where Y 0 = {x ∈ {0,1}n+1 : x0 = 0} and Y 1 = {x ∈ {0,1}n+1 : x0 =
1,∑n

j=1 x j " n− k}. To obtain the convex hulls of Y 0 and Y 1, it suffices to drop
the integrality constraints in their initial descriptions. Theorem 13.5 then gives the
extended formulation Q:

x j = x j0 + x j1 for j = 0, . . . ,n

x00 = 0, 0 " x j0 " δ0 for j = 1, . . . ,n

x01 = δ1, 0 " x j1 " δ1 for j = 1, . . . ,n
n

∑
j=1

x j1 " (n− k)δ1

δ0 +δ1 = 1, δ ∈ R2
+.

After renaming x j1 as w j, and replacing δ1 by x0 and x j0 by x j −w j for j = 1, . . . ,n,
the resulting tight extended formulation is:

0 " x j −w j " 1− x0 for j = 1, . . . ,n

0 " w j " x0 for j = 1, . . . ,n
n

∑
j=1

w j " (n− k)x0

x ∈ [0,1]n+1, w ∈ [0,1]n.

13 Reformulation and Decomposition of Integer Programs 485

Circular ones matrices

Consider the set X = {x ∈ {0,1}n : Ax " b} where A is a circular ones matrix,
i.e, each row is either of the form

0 0 0 1 1 1 1 0 0
with 0’s followed by 1’s followed by 0’s, or of the form

1 1 0 0 1 1 1 1 1
with 1’s followed by 0’s followed by 1’s.

Let Pk = {x ∈ [0,1]n : Ax " b,∑n
j=1 x j = k} for k = 0, . . . ,n. Observe first that

subtracting a row of the second type from a row of all 1’s gives a row of the first
type. Secondly a 0-1 matrix with only rows of the first type is known as a consecutive

1’s matrix, and is known to be totally unimodular. It follows that Pk = conv(Pk∩Zn)
and

conv(X) = conv(∪n
k=0Pk),

so a tight extended formulation is obtained immediately from Theorem 13.5.

13.5.6 From polyhedra and separation to extended formulations

Given the set X ⊆ Zn, suppose that a family of valid inequalities for X is known.
This family explicitly or implicitly describes a polyhedron P containing the feasible
region X . A first possibility is that the inequalities directly suggest an extended
formulation.

Uncapacitated lot-sizing

Let XLS-U be as described in (13.63)–(13.65). It has been shown that every non-
trivial facet-defining inequality for conv(XLS-U) is of the form

∑
j∈S

x j + ∑
j∈L\S

d jly j ! d1l (13.78)

where L = {1, . . . , l}, S ⊆ L, l = 1, . . . ,n and dut ≡ ∑t
j=u d j.

Let µ jl = min{x j,d jly j} for 1 " j " l " n. One sees that (13.78) is satisfied for

all S if and only if ∑l
j=1 min{x j,d jly j}! d1l . It follows immediately that a tight and

compact extended formulation is given by the polyhedron consisting of the original
constraints (13.63)–(13.65) less the integrality constraints, plus the constraints

l

∑
j=1

µ jl ! d1l for l = 1, . . . ,n

µ jl " x j for 1 ≤ j ≤ l ≤ n

µ jl " d jly j for 1 ≤ j ≤ l ≤ n.

486 François Vanderbeck and Laurence A. Wolsey

A second possibility is that the separation problem for P can be formulated as an
optimization problem that can be reduced to a linear program. Specifically suppose
that P = {x ∈ Rn : π t x ! π t

0, t = 1, . . . ,T}. Now x∗ ∈ P if and only if ζ ! 0 where
ζ = mint=1,...,T (π t x∗ − π t

0). Suppose now that the latter can be reformulated as a
linear program:

ζ = min
w

{gx∗ +hw−d0 : Gx∗ +Hw ! d,w ∈ Rp
+}.

By LP duality, ζ ! 0 if and only if there exists a dual feasible solution with a non-
negative value, namely

{u ∈ Rp : ud −uGx∗ ! d0 −gx∗,uH " h,u ∈ Rm
+} ≠ /0.

Finally letting x vary, this gives us an extended formulation

Q = {(x,u) ∈ Rn ×Rp : ud −uGx ! d0 −gx,uH " h,u ∈ Rm
+}

for which P = projx(Q).

Subtour elimination constraints

Consider the relaxation of the set of forests or symmetric traveling salesman tours
consisting of the set Y defined by the exponential family of subtour elimination
constraints. Specially set Z = ∩K

k=1Zk where Zk = Pk
Z ∩Z|E| and

Pk
Z =

{
x ∈ [0,1]|E| : ∑

e∈E(S)

xe " |S|−1 for S ⊆V with k ∈ S
}
.

Now consider the separation problem for x∗ ∈ [0,1]|E|. One sees that x∗ ∈ Pk
Z if and

only if

max
S:k∈S⊆V

{
∑

e∈E(S)

x∗e − |S\{k}|
}

" 0.

Letting v j = 1 if j ∈ S and ue = 1 if e = (i, j) ∈ E(S), this optimization problem
can be formulated as the IP

ζ = max ∑
e∈E

x∗eue − ∑
j∈V\{k}

v j (13.79)

ue " vi,ue " v j for e = (i, j) ∈ E (13.80)

ue ! vi + v j −1 for e = (i, j) ∈ E (13.81)

u ∈ {0,1}|E|, v ∈ {0,1}|V |, vk = 1. (13.82)

It can then easily be shown that the constraints (13.81) can be dropped, and in addi-
tion that the integrality and bounds can be relaxed. It follows that ζ " 0 if and only
if η " 0 where

13 Reformulation and Decomposition of Integer Programs 487

η = max ∑
e∈E

x∗eue − ∑
j∈V\{k}

v j

ue " vi,ue " v j for e = (i, j) ∈ E

u ∈ R|E|, v ∈ R|V |
+ .

In this last linear program, either η = 0 or it is unbounded, so the dual of this linear
program is feasible if and only if η " 0. In other words x∗ ∈ [0,1]|E| is in Pk

Z if and
only if Qk(x∗) ̸= /0, where Qk(x) is the polyhedron

wi jk +w jik = xe for e = (i, j) ∈ E

∑
j: j<i

w jik + ∑
j: j>i

wi jk " 1 for i ̸= k

∑
j: j<i

w jik + ∑
j: j>i

wi jk " 0 for i = k

x ∈ R|E|,wi jk, w jik ! 0 for e = (i, j) ∈ E.

13.5.7 Miscellaneous reformulations

There are several other reasons that might lead one to try an alterative formula-
tion. An important one, already discussed in Section 13.3, is the problem of symme-
try. A second is to find good branching directions for use in the context of branch-
and-bound and branch-and-cut, and a third as before is to derive stronger linear
programming bounds.

Symmetry-breaking in vertex coloring

Given a graph G = (V,E) with |V |= n and |E|= m, the textbook formulation for
vertex coloring is based on the variables:
yk = 1 if color k is used
xik = 1 if vertex i receives color k, where k = 1, . . . ,K are the permissible colors.

This leads to the formulation:

min ∑
k

yk

∑
k

xik = 1 for i ∈V

xik + x jk " yk for (i, j) ∈ E, k = 1, . . . ,K

xik " yk for i ∈V, k = 1, . . . ,K

x ∈ {0,1}|V |×K , y ∈ {0,1}K .

488 François Vanderbeck and Laurence A. Wolsey

Clearly given any coloring, any permutation of the colors leads to essentially the
same solution independently of the structure of the graph. To avoid this symmetry
and also to tighten the formulation, it suffices to observe that, given any feasible
coloring, each stable set can be assigned the color of its node of minimum index.
Hence one can eliminate all variables xik with k > i, and also eliminate yk by set-
ting yk = xkk. Note that a similar approach applies for the bin packing problem of
Example 5.

Boolean reformulation: 0-1 knapsack

Given two 0-1 knapsack sets of the form

Xi =
{

x ∈ {0,1}n :
n

∑
j=1

ai
jx j " ai

0

}
for i = 1,2

with {ai
j} positive integers, it is natural to ask when X1 = X2, or the two sets are

equal. In particular one might be interested in finding the set of integer coefficients
for which the right-hand side value ai

0 or the sum of the weights ∑n
j=1 ai

j is minimum.
It also seems likely that the corresponding formulation PXi is typically tighter when
the coefficients are smaller.

Example 12 Consider the knapsack set

X = P1 ∩Zn where P1 = {x ∈ [0,1]5 : 97x1 +65x2 +47x3 +46x4 +25x5 " 136}.

It can be verified that X can also be expressed as

X = P2 ∩Zn where P2 = {x ∈ [0,1]5 : 5x1 +3x2 +3x3 +2x4 +1x5 " 6}

and this is the reformulation with integer coefficients with the minimum possible

right hand-side value.

In addition it is easy to check that the extreme points of P2 all lie in P1 and thus

P2 ⊂ P1.

Improved branching variables for an equality integer program

Consider the set
X = {x ∈ Zn

+ : Ax = b}

with A ∈ Zm×n and b ∈ Zm. “Integer programming in a fixed number of variables is
polynomially solvable” is one of the most fundamental results in integer program-
ming. Lattice reformulations and the calculation of a reduced basis of a lattice play
an important role in the proof of this result. Here we indicate briefly how a lattice
reformulation can be used as a heuristic to look for effective branching variables.
See the references cited in Section 13.7 for the appropriate lattice definitions.

13 Reformulation and Decomposition of Integer Programs 489

Suppose that x0 ∈ Zn with Ax0 = b, then X can be rewritten as X = {x ∈ Zn
+ : x =

y + x0,Ay = 0}. Now given a matrix T ∈ Zn×(n−m) such that {y ∈ Zn : Ay = 0} =
{y ∈ Zn : y = Tw,w ∈ Zn−m}, then X = projx(W) where

W = {(x,w) ∈ Rn
+ ×Zn−m : x = x0 +Tw}.

Here the extended IP-formulation does not provide tighter bounds. However it is
possible to find an appropriate matrix T in polynomial time using a “reduced basis”
algorithm, and for certain instances the new integer variables w are much more
effective variables for branching than the original variables x.

Example 13 Consider the set X = {x ∈ Z5
+ : ax = b} where

a = (11737,7263,9086,32560,20823), b = 639253.

This has the extended formulation

⎛

⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

28
51

−40
17

−12

⎞

⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎝

−1 −1 7 239
0 0 −11 616

−1 0 −10 −445
0 1 4 33
1 −1 −2 −207

⎞

⎟⎟⎟⎟⎠
w, x ∈ R5

+, w ∈ Z4.

Here branching on w4, it is easily verified that X = /0, whereas this is very hard

to detect when branching on the x variables. In fact that the best MIP solvers all

require millions of nodes to prove infeasibility for this tiny instance when using the

original formulation.

13.5.8 Existence of polynomial size extended formulations

Yannakakis has shown that for the perfect matching polytope there is no extended
formulation that is “symmetric” in a very general sense. This includes formulations
in which one chooses a root, such as the extended formulation for the subtour poly-
tope in Subsection 13.5.2. Thus it appears very unlikely that every family of IPs:
min{cx : x ∈ X} that is polynomially solvable has a polynomial size extended for-
mulation whose projection in the original variables provides conv(X). It remains a
major challenge to discover necessary and/or sufficient conditions for the existence
of polynomial size extended formulations for such problems.

On the other hand it has very recently been shown that for the 0-1 knapsack
problem z = min{cx : ax ! b,x∈ {0,1}n}, given any ε > 0, there exists a polynomial
size extended formulation based on disjunctions for which the value zLP of the linear
programming relaxation is such that z " (1+ ε)zLP.

490 François Vanderbeck and Laurence A. Wolsey

13.6 Hybrid algorithms and stronger dual bounds

Here we consider ways to obtain stronger dual bounds for the problem z =
min{cx : x ∈ Y ∩Z} by using properties of both the sets Y and Z. Thus we assume
as before that optimizing over Z is relatively easy, and now we assume also that we
can either optimize over Y relatively easily, or that we have a cut generation routine
for Y or some polyhedron PY containing conv(Y).

13.6.1 Lagrangean decomposition or price-and-price

Here we assume that we can optimize efficiently over the set Z and also over the
set Y . We reformulate IP by duplicating the x variables giving the new formulation:

mincy

y− z = 0

y ∈ Y

z ∈ Z.

Applying Lagrangean relaxation, the subproblem with dual variables u ∈ Rn gives
two subproblems min{(c−u)y : y ∈ Y} and min{uz : z ∈ Z}, and by Theorem 13.4
the value of the resulting Lagrangean dual is min{cx : x ∈ conv(Y)∩conv(Z)}. This
model can be solved either by dual methods such as a basic subgradient approach,
or by a column generation approach (called Price-and-Price in this context).

In the latter case, the restricted master problem at iteration t is constructed from
a set {yi}i∈It−1 of extreme points of conv(Y) and a set {(z j)} j∈Jt−1 of extreme points
of conv(Z) giving the linear program:

(RMPP) min cx

x− ∑
i∈It−1

λiy
i = 0

∑
i∈It−1

λi = 1

x− ∑
j∈Jt−1

β jz
j = 0

∑
j∈Jt−1

β j = 1

λ ∈ RIt−1

+ , β ∈ RJt−1

+ ,

where the x variables can be easily eliminated. If (π,π0,µ ,µ0) are optimal dual
variables, one can solve the two pricing subproblems

13 Reformulation and Decomposition of Integer Programs 491

ζ 1 = min{πx−π0, x ∈ Y}

and
ζ 2 = min{µx−µ0,x ∈ Z}.

If ζ 1 < 0 or ζ 2 < 0, then the corresponding optimal solution provides a new column
to be added, and one updates RMPP. If ζ 1 = ζ 2 = 0, the algorithm terminates. In
practice, convergence (and dual instability) require an even more careful treatment
in price-and-price than in branch-and-price.

13.6.2 Cut-and-price

Here we assume that we can optimize efficiently over the set Z = {x ∈ Zn
+ : Bx !

b} and that there is a cut generation algorithm for Y = {x ∈ Zn
+ : Dx ! d}, or more

realistically for some polyhedron PY containing conv(Y).

The restricted master problem at iteration t.

This problem is constructed from a set {xi}i∈It−1 of extreme points of conv(Z) and

a set {(α j,α j
0)} j∈Jt−1 of valid inequalities for PY (or Y), including the constraints

Dx ! d, giving the linear program:

(RMCP) min cx

x− ∑
i∈It−1

λix
i = 0

∑
i∈It−1

λi = 1

∑
j∈Jt−1

α jx ! α j
0 for j ∈ Jt−1

λ ∈ RIt−1

+ ,

Let (x,λ) be a primal optimal solution and (π,π0,µ) ∈ Rn ×R1 ×R|Jt−1|
+ a dual

optimal solution. Here again, one can eliminate the x variables, observing that π =
c−∑ j∈Jt−1 µ t

jα
j from dual feasibility.

The order in which the two subproblems are solved below is arbitrary. We have
chosen to give priority to column generation.

The Optimization Subproblem – Adding Columns.
Solve ζ t = min{πx−π0 : x ∈ Z} with solution xt .
If ζ t < 0, the column corresponding to xt has negative reduced cost. Set It = It−1 ∪
{t}, set t ← t +1, and reoptimize RMCP.

Otherwise go to the (Constraint) Separation Subproblem.

492 François Vanderbeck and Laurence A. Wolsey

The Separation Subproblem – Adding Constraints.
Solve the separation problem to see if the point x = ∑i∈It−1

λix
i can be cut off.

If a cut (α t ,α t
0) is generated, set Jt = Jt−1∪{t}, set t ← t +1, and reoptimize RMCP.

Otherwise stop.

On termination x = ∑i∈It−1 λix
i ∈ PY ∩ conv(Z). If the separation routine is exact

for conv(Y), the optimal value on termination is min{cx : x ∈ conv(Y)∩ conv(Z)}
as with the other hybrid approaches.

Example 14 (The Vehicle Routing Problem)
Given a fleet of K identical vehicles of capacity C, and clients with demands di for

i = 1, . . . ,n, the problem is to determine a delivery route for each vehicle starting

and ending at the depot, so that the demand of each client is satisfied by exactly one

vehicle, the total amount delivered by a vehicle does not exceed its capacity and the

total travel costs are minimized. Consider a complete graph H = (V,E), where the

nodes V = {0, . . . ,n + 1} correspond to departure from the depot (node 0), the n

customers and arrival at the depot (node n+1). The travel cost on edge e is ce.

One possibility is to formulate the problem with K distinct vehicles based on the

variables xk
e such that xk

e = 1 if edge e is traversed by vehicle k. However as the

vehicles are identical, one can attempt to build a formulation using the variables xe

specifying the number of vehicles traversing edge e. Note that xe ∈ {0,1} for all e.

This leads to a standard formulation

min ∑
e∈E

ce xe (13.83)

∑
e∈δ (i)

xe = 2 for i ∈V \{0,n+1} (13.84)

∑
e∈δ (i)

xe = K for i ∈ {0,n+1} (13.85)

∑
e∈δ (S)

xe ! 2 B(S) for S ⊆V \{0,n+1} (13.86)

x ∈ {0,1}|E|, (13.87)

where B(S) denotes the minimum number of vehicles required to visit the set S of

clients. The value of B(S) is in fact the solution of a bin-packing problem, but a valid

formulation is obtained if one ensures that the number of vehicles traveling through

S is sufficient to satisfy the sum of the demands, i.e., ∑e∈δ (S) xe ! 2 (∑i∈S di)/C.

On the other hand the price decomposition approach leads to an extended for-

mulation in which one must select K feasible routes in such a way that each client

is visited exactly once, leading to the master problem

min {∑
g∈G

(∑
e

cexg
e)λg : ∑

g∈G

(∑
e∈δ (i)

xg
e)λg = 2 for i ∈V \{0,n+1}, (13.88)

∑
g∈G

λg = K, λ ∈ {0,1}|G|}

13 Reformulation and Decomposition of Integer Programs 493

where Z = {xg}g∈G is the set of edge incidence vectors of feasible routes.

Unfortunately optimizing over this set Z is a hard problem that is not tractable

in practice. This suggests using a relaxation of the set Z in which feasible routes are

replaced by “q-routes”, where a q-route is a walk beginning at node 0 and ending at

node n+1 (possibly visiting some client nodes more than once) for which the sum of

the demands at the nodes visited does not exceed the capacity. It is easily seen that

if the union of K q-routes satisfies the degree constraints (13.84)–(13.85), then one

has K feasible routes. However, in the LP relaxation of (13.88), inequalities (13.86)

are useful cuts. Thus, a hybrid cut-and-price approach can be implemented where

the master is

min ∑
e∈E

ce xe

x satisfies (13.84)(13.86)

xe = ∑
p∈P

qp
e λp for e ∈ E

∑
p∈P

λp = K,

x ∈ R|E|, λ ∈ {0,1}P

in a form ready to be tackled by a cut-and-price algorithm. The degree constraints

are kept throughout, the constraints (13.86) are generated by cutting planes, and the

q-routes are generated by column generation. Branching is dealt with by branching

on the original xe variables.

In practice one may choose to eliminate the original xe variables by substitution,

the cut generation problem is tackled using a heuristic because the calculation of the

exact bin-packing value B(S) is hard. Cuts of the form (13.86) can be generated by

identifying small sets S that require more than one vehicle, or else inequalities are

generated in which B(S) is replaced by a lower bound (∑i∈S di)/C or ⌈(∑i∈S di)/C⌉.

The separation problem for the inequalities with right hand side (∑i∈S di)/C is solv-

able by maximum flow algorithms. For the column generation problem, a dynamic

programming algorithm is used to find q-routes of minimum reduced cost.

13.7 Notes

Here we present notes providing some basic historical references, some refer-
ences for results or applications mentioned in the chapter, and a few recent refer-
ences concerning interesting extensions or examples of the ideas presented in the
different sections.

494 François Vanderbeck and Laurence A. Wolsey

13.7.1 Polyhedra

The result (Theorem 13.1) that every polyhedron is finitely generated by extreme
points and extreme rays is due to Minkowski [73] and its converse, Theorem 13.3, to
Weyl [95]. Meyer [72] showed that for integer programs and mixed integer programs
with rational data the convex hull of solutions is a polyhedron. Theorem 13.2 on the
representation of integer sets is proved in Giles and Pulleyblank [47]. For Farkas’
lemma, see [36], and the earlier work of Fourier [40, 41].

13.7.2 Dantzig-Wolfe and price decomposition

The first use of an optimization subproblem to price out an exponential num-
ber of non-basic variables can be found in a paper of Ford and Fulkerson [39] on
multi-commodity flows. Specifically they used a path-flow formulation, and then
using the LP dual variables on the arcs, they solved shortest path problems for each
commodity to find a path with negative reduced cost to enter the basis. This was
closely followed by the Dantzig-Wolfe decomposition algorithm [22]. The first ap-
plications to discrete problems were the two papers on the cutting stock problem of
Gilmore and Gomory [48, 49], introduced in Example 7, in which the subproblem
was a knapsack problem. Eisenbrand and Shmonin [30] have recently shown that an
optimal solution of the cutting stock problem is of polynomial size. Another early
application was the model of Dzielinski and Gomory [28] on multi-item lot-sizing
in which the subproblem was a single item lot-sizing problem.

Lagrangean relaxation

Early work showing the effectiveness of Lagrange multipliers in optimization
can be found in Everett [35]. The first demonstration of the effectiveness of La-
grangean relaxation were the seminal papers of Held and Karp [54, 55] on the
symmetric traveling salesman problem, based on the 1-tree relaxation that can be
solved by a greedy algorithm. The survey of Geoffrion [45] clarified the properties
of Lagrangean relaxation as applied to integer programs, including the integrality
property, and Fisher [38] was one of several researchers to popularize the approach.
See also Lemaréchal [65]

Later dual heuristics, or approximate algorithms for the Lagrangean dual, were
proposed by numerous authors, including Bilde and Krarup [12] and Erlenkot-
ter [33] for uncapacitated facility location, Wong [97] for directed Steiner trees
and Balakrishnan, Magnanti and Wong [2] for multicommodity uncapacitated fixed
charge network flows.

13 Reformulation and Decomposition of Integer Programs 495

Solving the Lagrangean dual

The subgradient algorithm was proposed in Uzawa [86], Ermolev [34] and
Polyak [78]. For early applications to integer programming, see Held and Karp
[54, 55] and Held et al. [56]. Its variant, the volume algorithm, is due to Barahona
and Anbil [5]. The cutting plane algorithm applied to the LP form of the Lagrangean
dual is known as the method of Kelley [60] or Cheney-Goldstein [18]. It is the equiv-
alent of the column generation approach but carried out in the dual space. The piece-
wise linear stabilization of column generation is studied in du Merle et al. [27] and
Ben Amor et al. [8]. Stabilization based on smoothing dual prices was introduced
by Neame [74] (using a convex combination of the current master dual solution and
that of the previous iterate) and Wenges [94] (using a convex combination of the
current dual solution and the dual solution that yielded the best Lagrangean bound).
Recently Pessoa et al [76] have proved that at each iteration either the column gen-
erated with the smoothed prices has a strictly negative reduced cost for the restricted
master, or one gets a strictly improving dual bound and a new associated stability
center. Rousseau et al. [82] consider interior point stabilization.

The Bundle method, in which a quadratic term is introduced in the restricted
master dual problem to penalize the deviation from a stability center, was developed
by Lemaréchal [63], see also [64, 61]. There has been a large amount of research
on such methods in the last few years. In many cases, and particular for very large
problems in which the column generation approach is much too slow, the proximal
bundle method has been effective. See Borndorfer et al. [13, 14] for applications to
vehicle and duty scheduling in public transport and airline crew scheduling. Bun-
dle’s numerical performance is compared to LP based column generation in [16],
and many references can be found in the thesis of Weider [93].

The analytic center cutting plane method (ACCPM) is due to Goffin and Vial [50].

Branching and column generation

For some of the first successful applications of integer programming column gen-
eration to routing problems, see Desrochers, Soumis et al. [26, 24] and Desrochers
and Soumis [25]. See Soumis [84] for an annotated bibliography. The branching
rule of Ryan and Foster appears in [83]. Vanderbeck and Wolsey [91, 89] discuss
different branching strategies (extending the scheme of Ryan and Foster to cases
where the master is not a set partitioning problem) and their inherent difficulties. Vil-
leneuve et al. [92] suggest that one can always proceed by using standard branching
in an “original” formulation and re-apply Dantzig-Wolfe reformulation to the prob-
lem augmented with branching constraints, but this leads to problems of symmetry
in the case of multiple identical subproblems. Examples of branching on auxiliary
variables, implicitly using an extended formulation as presented in Options 3 and
4 can be found in Belov et al. [7], Campêlo et al. [17] and Carvalho [23]. Elhal-
laoui et al. [31] consider the dynamic aggregation of set partitioning constraints.
The scheme presented in Option 2 and its extension presented in Option 5 has been

496 François Vanderbeck and Laurence A. Wolsey

proposed as a generic all-purpose scheme by Vanderbeck [90] (although it normally
assumes a bounded subproblem, it is can also be used in some application specific
contexts in which the subproblem is unbounded).

13.7.3 Resource decomposition

The resource decomposition approach that became known as Benders’ algorithm
was proposed by Benders [9]. Geoffrion [43] produced the first important surveys
on different ways to create decomposition algorithms, as well as an extension to
nonlinear programs [44]. Geoffrion and Graves [46] reported a successful appli-
cation of Benders’ algorithm to a large distribution problem. Magnanti and Wong
[68] studied ways to obtain strong Benders cuts. Since branch-and-cut algorithms
became a practical possibility, this allows one to solve the Benders’ reformulation
directly by solving LP subproblems to generate cuts at the nodes rather than having
to solve an integer program at each iteration, as proposed originally. Applications of
Benders’ algorithm to two stage stochastic programs are numerous, see for example
Van Slyke and Wets [87]. The case with integer variables at both stages was treated
by Laporte and Louveaux [62] among others. The multi-machine job assignment
problem was first treated by Jain and Grossman [57]. The importance of normaliza-
tion and the computational effectiveness of using a modified linear program to solve
the separation problem is demonstrated in Fischetti et al. [37].

13.7.4 Extended formulations

Apart from Minkowski’s representation of a polyhedron, extended formulations
were not considered systematically as a tool for modeling integer programs until the
70’s.

Grötschel, Lovasz and Schrijver’s paper on the equivalence of optimization and
separation [52] implies that, unless P = NP, one can only hope to find tight and
compact extended formulations for integer programs if the corresponding optimiza-
tion problem is polynomially solvable. Balas and Pulleyblank [4] gave an extended
formulation for the perfectly matchable subgraph polytope of a bipartite graph and
extended formulations have been proposed for a variety of combinatorial optimiza-
tion problems in the last twenty years.

Variable splitting I: multi-commodity extended formulations

Rardin and Choe [81] explored the effectiveness of multi-commodity reformu-
lations, and Wong [96] showed that the multi-commodity reformulation gives the
spanning tree polytope. For the Steiner problem on series parallel graphs, see Prodon

13 Reformulation and Decomposition of Integer Programs 497

et al. [80]. Bilde and Krarup [11] showed that the extended facility location refor-
mulation for uncapacitated lot-sizing was integral, and later Eppen and Martin [32]
proposed an alternative formulation. The book of Pochet and Wolsey [77] contains
numerous reformulations for different single and multi-item lot-sizing problems.

Variable splitting II

Pritsker et al. [79] contains one of the first uses of a time-indexed formulation for
a scheduling problem. Gouveia [51] demonstrates the use of capacity indexed vari-
ables. The reformulation of network dual MIPs was studied in Conforti et al. [19],
and the specific formulation proposed here is from Conforti et al. [21]. The first
compact extended formulation for the constant capacity Wagner-Whitin relaxation
with backlogging is due to Van Vyve [88].

Extended formulations based on dynamic programming

Martin [69] and Eppen and Martin [32] show how dynamic programs can be
used to derive extended formulations. The longest/shortest path formulations for
knapsack problems were known in the early 70’s and probably date from the work
of Gilmore and Gomory [48] on knapsack functions or Gomory on group problems.
For dynamic programs that are not of the shortest path type, see Martin et al. [71].
The cardinality constrained problem is a natural generalization of the problem of
finding an optimal subtree of a tree.

The union of polyhedra

The characterization of the convex hull of the union of polyhedra is due to
Balas [3]. Recently Conforti and Wolsey [20] show how the union of polyhedra can
be used to develop compact and tight extended formulations for several problems
whose complexity was not previously known.

1 − k configurations are studied by Padberg [75]. Circular ones matrices are
treated in Bartholdi et al. [6], see also Eisenbrand et al. [29].

From polyhedra and separation to extended formulations

Martin [70] demonstrates how LP separation algorithms can lead to extended
formulations.

498 François Vanderbeck and Laurence A. Wolsey

Miscellaneous

Equivalent knapsack problems are studied in Bradley et al. [15]. The polynomi-
ality of IP with a fixed number of variables is due to H.W. Lenstra, Jr., [67] and
the lattice reformulation demonstrated in the example was proposed by Aardal and
A.K. Lenstra [1]. See Lenstra, Lenstra and Lovász [66] for properties of reduced
bases and a polynomial algorithm to compute a reduced basis.

Existence of polynomial size extended formulations

Yannakakis [98] presents lower bounds on the size of an extended formulation
for a given class of problems, and shows that even though weighted matching is
polynomially solvable, it is most unlikely that there is a tight and compact extended
formulation. The existence of polynomial size extended formulations approximating
the convex hull of the 0-1 knapsack polytope is from Bienstock and McClosky [10].

13.7.5 Hybrid algorithms and stronger dual bounds

For Lagrangean decomposition, see Jornsten and Nasberg [59] and Guignard and
Kim [53]. For cut-and-price, recent papers include Fukasawa et al. [42] on vehicle
routing and Ochoa et al. [85] on capacitated spanning trees. In the latter paper use
was also made of the capacity-indexed variables from subsection 13.5.3. Jans and
Degraeve [58] combine an extended formulation and column generation for a multi-
item lot-sizing problem.

References

1. K. Aardal and A.K. Lenstra, Hard equality constrained integer knapsacks, Erratum: Mathe-
matics of Operations Research 31, 2006, page 846, Mathematics of Operations Research 29
(2004) 724–738.

2. A. Balakrishnan, T.L. Magnanti, and R.T. Wong, A dual ascent procedure for large-scale
uncapacitated network design, Operations Research 37 (1989) 716–740.

3. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, origi-
nally as GSIA Management Science Research Report MSRR 348, Carnegie Mellon Univer-
sity,1974, Discrete Applied Mathematics 89 (1998) 1–44.

4. E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite
graph, Networks 13 (1983) 495–516.

5. F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a subgra-
dient method, Mathematical Programming 87 (2000) 385–399.

6. J.J. Bartholdi, J.B. Orlin, and H. Ratliff, Cyclic scheduling via integer programs with circular
ones, Mathematical Programming 28 (1980) 1074–1085.

7. G. Belov, A.N. Letchford, and E. Uchoa, A node-flow model for the 1D stock cutting: robust
branch-cut-and-price, Tech. report, University of Lancaster, 2005.

13 Reformulation and Decomposition of Integer Programs 499

8. H. Ben Amor, J. Desrosiers, and A. Frangioni, On the choice of explicit stabilizing terms in
column generation, Discrete Applied Mathematics 157 (2009) 1167–1184.

9. J.F. Benders, Partitioning procedures for solving mixed variables programming problems, Nu-
merische Mathematik 4 (1962) 238–252.

10. D. Bienstock and B. McClosky, Tightening simple mixed-integer sets with guaranteed bounds,
Tech. report, Columbia University, New York, July 2008.

11. O. Bilde and J. Krarup, Plant location, set covering and economic lot sizes: An O(mn) al-
gorithm for structured problems, Optimierung bei Graphentheoretischen und Ganzzahligen
Probleme (L. Collatz et al., ed.), Birkhauser Verlag, Basel, 1977, pp. 155–180.

12. O. Bilde and J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant
location problem, Annals of Discrete Mathematics 1 (1977) 79–97.

13. R. Borndörfer, A. Löbel, and S. Weider, A bundle method for integrated multi-depot vehicle
and duty scheduling in public transit, ZIB Report 04-14, Konrad-Zuse Zentrum, Berlin, 2004.

14. R. Borndörfer, U. Schelten, T. Schlechter, and S. Weider, A column generation approach to
airline crew scheduling, ZIB Report 05-37, Konrad-Zuse Zentrum, Berlin, 2005.

15. G.H. Bradley, P.L. Hammer, and L.A. Wolsey, Coefficent reduction for inequalities in 0-1
variables, Mathematical Programming 7 (1974) 263–282.

16. O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck, Com-
parison of bundle and classical column generation, Mathematical Programming 113 (2008)
299–344.

17. M. Campêlo, V. Campos, and R. Corréa, On the asymmetric representatives formulation for
the vertex coloring problem, Notes in Discrete Mathematics 19 (2005) 337–343.

18. E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheff ap-
proximations, Numerische Mathematik 1 (1959) 253–268.

19. M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey, Network formulations of mixed
integer programs, Mathematics of Operations Research 34 (2009) 194–209.

20. M. Conforti and L.A. Wolsey, Compact formulations as a union of polyhedra, Mathematical
Programming 114 (2008) 277–289.

21. M. Conforti, L.A. Wolsey, and G. Zambelli, Projecting an extended formulation for mixed
integer covers on bipartite graphs, Tech. report, University of Padua, November 2008.

22. G.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Research
8 (1960) 101–111.

23. J.V. de Carvalho, Exact solution of bin packing problems using column generation and branch-
and-bound, Annals of Opererations Research 86 (1999) 629–659.

24. J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis, Time constrained routing and
scheduling, Network Routing (C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser,
eds.), Handbooks in Operations Research and Management Science, Vol. 8, Elsevier, 1995.

25. J. Desrosiers and F. Soumis, A column generation approach to the urban transit crew schedul-
ing problem, Transportation Science 23 (1989) 1–13.

26. J. Desrosiers, F. Soumis, and M. Desrochers, Routing with time windows by column genera-
tion, Networks 14 (1984) 545–565.

27. O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Stabilized column generation, Dis-
crete Mathematics 194 (1999) 229–237.

28. B. Dzielinski and R. Gomory, Optimal programming of lot-sizes, inventories and labor allo-
cations, Management Science 11 (1965) 874–890.

29. F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura, Circular ones matrices and the stable set
polytope of quasi-line graphs, Integer Programming and Combinatorial Optimization, IPCO
2005 (M. Jünger and V. Kaibel, eds.), Lecture Notes in Computer Science 3509, Springer,
2005, pp. 291–305.

30. F. Eisenbrand and G. Shmonin, Carathéodory bounds for integer cones, Operations Research
Letters 34 (2006) 564–568.

31. I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers, Dynamic aggregation of set-
partitioning constraints in column generation, Operations Research 53 (2005) 632–645.

32. G.D. Eppen and R.K. Martin, Solving multi-item capacitated lot-sizing problems using vari-
able definition, Operations Research 35 (1987) 832–848.

500 François Vanderbeck and Laurence A. Wolsey

33. D. Erlenkotter, A dual-based procedure for uncapacitated facility location, Operations Re-
search 26 (1978) 992–1009.

34. Y.M. Ermol’ev, Methods of solution of nonlinear extremal problems, Kibernetica 2 (1966) 1–
17.

35. H. Everett III, Generalized lagrange multiplier method for solving problems of optimal allo-
cation of resources, Operations Research 11 (1963) 399–417.

36. Gy. Farkas, On the applications of the mechanical principle of Fourier, Mathematikai és
Természettudományi Értesotö 12 (1894) 457–472.

37. M. Fischetti, D. Salvagnin, and A. Zanette, Minimal infeasible subsystems and Benders’ cuts,
Mathematical Programming to appear (2009).

38. M.L. Fisher, The lagrangean relaxation method for solving integer programming problems,
Management Science 27 (1981) 1–18.

39. L.R. Ford, Jr. and D.R. Fulkerson, A suggested computation for maximal multi-commodity
network flows, Management Science 5 (1958) 97–101.

40. J.B.J. Fourier, Solution d’une question particulière du calcul des inégalités, Nouveau Bulletin
des Sciences par la Société Philomatique de Paris (1826) 317–319.

41. J.B.J. Fourier, from 1824, republished as Second extrait in oeuvres de fourier, tome ii (G. Dar-
boux, ed.), Gauthier-Villars, Paris, 1890, see D.A. Kohler, Translation of a report by Fourier
on his work on linear inequalities, Opsearch 10 (1973) 38–42.

42. R. Fukosawa, H. Longo, J. Lysgaard, M. Reis, E. Uchoa, and R.F. Werneck, Robust branch-
and-cut-and-price for the capacitated vehicle routing problem, Mathematical Programming
106 (2006) 491–511.

43. A.M. Geoffrion, Elements of large scale mathematical programming I and II, Management
Science 16 (1970) 652–691.

44. A.M. Geoffrion, Generalized Benders’ decomposition, Journal of Optimization Theory and
Applications 10 (1972) 237–260.

45. A.M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical Program-
ming Study 2 (1974) 82–114.

46. A.M. Geoffrion and G.W. Graves, Multicommodity distribution design by Benders’ decompo-
sition, Management Science 20 (1974) 822–844.

47. R. Giles and W.R. Pulleyblank, Total dual integrality and integral polyhedra, Linear algebra
and its applications 25 (1979) 191–196.

48. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem,
Operations Research 9 (1961) 849–859.

49. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem:
Part ii, Operations Research 11 (1963) 863–888.

50. J.-L. Goffin and J.-P. Vial, Convex non-differentiable optimization: a survey focused on the
analytic center cutting plane method, Optimization Methods and Software 17 (2002) 805–
867.

51. L. Gouveia, A 2n constraint formulation for the capacitated minimal spanning tree problem,
Operations Research 43 (1995) 130–141.

52. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1 (1981) 169–197.

53. M. Guignard and S. Kim, Lagrangean decomposition for integer programming: Theory and
applications, RAIRO 21 (1987) 307–323.

54. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Oper-
ations Research 18 (1970) 1138–1162.

55. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part
II, Mathematical Programming 1 (1971) 6–25.

56. M. Held, P. Wolfe, and H.P. Crowder, Validation of subgradient optimization, Mathematical
Programming 6 (1974) 62–88.

57. V. Jain and I.E. Grossman, Algorithms for hybrid milp/clp models for a class of optimization
problems, INFORMS J. Computing 13 (2001) 258–276.

58. R. Jans and Z. Degraeve, Improved lower bounds for the capacitated lot sizing problem with
set-up times, Operations Research Letters 32 (2004) 185–195.

13 Reformulation and Decomposition of Integer Programs 501

59. K. Jornsten and M. Nasberg, A new Lagrangian relaxation approach to the generalized as-
signment problem, European Journal of Operational Research 27 (1986) 313–323.

60. J.E. Kelley, The cutting plane method for solving convex programs, SIAM Journal 8 (1960)
703–712.

61. K.C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathe-
matical Programming 27 (1983) 320–341.

62. G. Laporte and F.V. Louveaux, The integer L-shaped method for stochastic integer programs
with complete recourse, Operations Research Letters 13 (1993) 133–142.

63. C. Lemaréchal, An algorithm for minimizing convex functions, Information Processing ’74
(J.L. Rosenfeld, ed.), North Holland, 1974, pp. 552–556.

64. C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. report, IIASA, 1978.
65. C. Lemaréchal, Lagrangean relaxation, Computational Combinatorial Optimization (M.

Jünger and D. Naddef, eds.), Lecture Notes in Computer Science 2241, Springer, 2001, pp.
112–156.

66. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coeffi-
cients, Mathematische Annalen 261 (1982) 515–534.

67. H.W. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of
Operations Research 8 (1983) 538–547.

68. T.L. Magnanti and R.T. Wong, Accelerated Benders’ decomposition: Algorithmic enhance-
ment and model selection criteria, Operations Research 29 (1981) 464–484.

69. R.K. Martin, Generating alternative mixed integer programming models using variable defi-
nition, Operations Research 35 (1987) 820–831.

70. R.K. Martin, Using separation algorithms to generate mixed integer model reformulations,
Operations Research Letters 10 (1991) 119–128.

71. R.K. Martin, R.L. Rardin, and B.A. Campbell, Polyhedral characterization of discrete dy-
namic programming, Operations Research 38 (1990) 127–138.

72. R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming
problems, Mathematical Programming 7 (1974) 223–235.

73. H. Minkowski, Geometrie der Zahlen (erste Lieferung), Teubner, Leipzig, 1986.
74. P.J. Neame, Nonsmooth dual methods in integer programing, Ph.D. thesis, Depart. of Math.

and Statistics, The University of Melbourne, 1999.
75. M.W. Padberg, (1,k)-configurations and facets for packing problems, Mathematical Program-

ming 18 (1980) 94–99.
76. A. Pessoa, E. Uchoa, M. Poggi de Aragao, and R. Rodrigues, Algorithms over arc-time in-

dexed formulations for single and parallel machine scheduling problems, Tech. report, Rio de
Janeiro, 2009.

77. Y. Pochet and L.A. Wolsey, Production planning by mixed-integer programming, Springer
Series in Operations Research and Financial Engineering, Springer, New York, 2006.

78. B.T. Polyak, A general method for solving extremum problems, Soviet Mathematic Doklady 8
(1967) 593–597.

79. A.A.B. Pritsker, L.J. Watters, and P.J. Wolfe, Multiproject scheduling with limited resources:
a zero-one programming approach, Management Science 16 (1969) 93–108.

80. A. Prodon, T.M. Liebling, and H. Gröflin, Steiner’s problem on 2-trees, Tech. Report RO
850351, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1985.

81. R.L. Rardin and U. Choe, Tighter relaxations of fixed charge network flow problems, Tech.
Report report J-79-18, School of Industrial and Systems Engineering, Georgia Institute of
Technology, 1979.

82. L.-M. Rousseau, M. Gendreau, and D. Feillet, Interior point stabilization for column genera-
tion, Tech. report, University de Montreal, 2003.

83. D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, Computer
Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (A. Wren,
ed.), North-Holland, Amsterdam, 1981, pp. 269–280.

84. F. Soumis, Decomposition and column generation, Annotated Bibliographies in Combinato-
rial Optimization (F. Maffioli M. Dell’Amico and S. Martello, eds.), Wiley, Chichester, 1997,
pp. 115–126.

502 François Vanderbeck and Laurence A. Wolsey

85. E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M.P. Aragao, and D. Andrade, Robust branch-
and-cut-and-price for the capacitated minimum spanning tree problem over an extended for-
mulation, Mathematical Programming 112 (2008) 443–472.

86. H. Uzawa, Iterative methods for concave programming, Studies in Linear and Nonlinear Pro-
gramming (K. Arrow, L. Hurwicz, and H. Uzawa, eds.), Stanford University Press, 1959.

87. R.M. Van Slyke and R. Wets, L-shaped linear programs with applications to optimal control
and stochastic programming, SIAM J. of Applied Mathematics 17 (1969) 638–663.

88. M. Van Vyve, Linear programming extended formulations for the single-item lot-sizing prob-
lem with backlogging and constant capacity, Mathematical Programming 108 (2006) 53–78.

89. F. Vanderbeck, On Dantzig-Wolfe decomposition in integer programming and ways to perform
branching in a branch-and-price algorithm, Operations Research 48 (2000) 111–128.

90. F. Vanderbeck, Branching in branch-and-price: a generic scheme, Research Report Inria-
00311274, University Bordeaux I and INRIA, 2006, revised 2008.

91. F. Vanderbeck and L.A. Wolsey, An exact algorithm for IP column generation, Operations
Research Letters 19 (1996) 151–159.

92. D. Villeneuve, J. Desrosiers, M.E. Lübbecke, and F. Soumis, On compact formulations for
integer programs solved by column generation, Annals of Operations Research 139 (2006)
375–388.

93. S. Weider, Integration of vehicle and duty scheduling in public transport, Ph.D. thesis, Faculty
of Mathematics and Sciences, The Technical University, Berlin, 2007.

94. P. Wentges, Weighted dantzig-wolfe decomposition for linear mixed-integer programming, In-
ternational Transactions on Operational Research 4 (1997) 151–162.

95. H. Weyl, The elementary theory of convex polyhedra, Contributions to the Theory of Games I
(H.W. Kuhn and A.W. Tucker, eds.), Princeton University Press, Princton N.J, translated from
1935 original in German, 1950, pp. 3–18.

96. R.T. Wong, Integer programming formulations of the traveling salesman problem, Proceed-
ings of IEEE International Conference on Circuits and Computers, 1980, pp. 149–152.

97. R.T. Wong, Dual ascent approach for Steiner tree problems on directed graphs, Mathematical
Programming 28 (1984) 271–287.

98. M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal
of Computer and System Sciences 43 (1991) 441–466.

Part III

Current Topics

Six survey talks on current hot topics were given at the 12th Combinatorial Op-
timization Workshop, Aussois, France, 7–11 January 2008, in the days follow-
ing the celebration of 50 Years of Integer Programming 1958–2008. The speakers
were Fritz Eisenbrand, Andrea Lodi, François Margot, Franz Rendl, Jean-Philippe
P. Richard, and Robert Weismantel. For the written versions, Robert Weismantel has
been joined by the co-authors Raymond Hemmecke, Matthias Köppe, and Jon Lee,
and Jean-Philippe P. Richard has been joind by the co-author Santanu S. Dey.

