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The accurate prediction of the electronic properties of materials at a low computational expense is a
necessary condition for the development of effective high-throughput quantum-mechanics (HTQM)
frameworks for accelerated materials discovery. HTQM infrastructures rely on the predictive capability of
density functional theory (DFT), the method of choice for the first-principles study of materials properties.
However, DFT suffers from approximations that result in a somewhat inaccurate description of the
electronic band structure of semiconductors and insulators. In this article, we introduce ACBN0, a
pseudohybrid Hubbard density functional that yields an improved prediction of the band structure of
insulators such as transition-metal oxides, as shown for TiO2, MnO, NiO, and ZnO, with only a negligible
increase in computational cost.
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I. INTRODUCTION

High-throughput quantum-mechanics (HTQM) compu-
tation of materials properties by ab initio methods has
become the foundation for an effective approach to materi-
als design, discovery, and characterization [1]. This data-
driven approach to materials science currently presents
the most promising path to the development of advanced
technological materials that could solve or mitigate impor-
tant social and economic challenges of the 21st century
[1–11]. In order for this approach to be successful,
however, one needs the confluence of three key factors:
(i) improved computational methods and tools, (ii) greater
computational power, and (iii) heightened awareness of the
power of extensive databases in science [3]. While the last
two are driven by technological advances in computing
and research and development needs, the development of
improved computational tools appropriate for HTQM
frameworks is a grand challenge that is still in need of
considerable advances.
Most HTQM infrastructures rely on the predictive

capability of density-functional theory (DFT), the method

of choice for the first-principles study of materials proper-
ties. However, despite the enormous success of DFT in
describing many physical properties of real systems, its
limitations in correctly describing the electronic band
structure of insulators are well known. The method is
limited by the presence of an unknown correlation term
that represents the difference between the true energy of the
many-body system of the electrons and the approximate
energy that we can compute. The common approximations
based on a nearly homogeneous electron-gas treatment
of the electron density, the local-density approximation
(LDA), and the generalized-gradient approximation (GGA)
are extremely successful in the description of many physical
properties of materials but dramatically underestimate the
electron energy gap in insulators and semiconductors and
thus fail to satisfactorily describe the electronic properties
of these systems. Higher-order levels of theory exist that are
able to predict, with great accuracy, the energy gaps (the
GW approximation [12] and dynamical mean-field theory
[13–15], among others), but they are computationally
expensive and unsuitable for extensive high-throughput
materials characterization [16,17], even when machine
learning methods are employed to simplify the complexity
of the task, especially when seeking for new materials
systems [18,19]. In order to address the energy-gap problem
at a lower computational cost, the two most common
corrections to traditional local and nonlocal approxima-
tions to DFT are “hybrid functionals” and DFTþ U. Both
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approaches aim to reduce, at some level, the self-interaction
error [20] and introduce the derivative discontinuity in the
exchange-correlation functional [21–23] responsible for the
underestimation of the energy gap [24].
Hybrid functionals are based on the idea of computing

the exact exchange energy from the Kohn-Sham wave
functions and to mix it with the (semi)local approximation
of exchange energy of DFT [25]. The method is very
successful in predicting the energy gap with good accuracy,
and it points to the importance of introducing some degree
of exact exchange in traditional DFT for a proper descrip-
tion of the electronic structure. However, the level of
mixing is not determined from first principles, so the
method suffers from some level of empiricism and, even
after the introduction of range-separated functionals suit-
able for periodic system calculations [26,27], it is more
computationally demanding than LDA or GGA.
The treatment of systems with strongly localized

(correlated) electrons is another outstanding issue that
limits the predictive power of (semi)local approximations
to DFT for systems where localization is important, such
as transition-metal insulators, and it directly impacts the
energy-gap problem. The DFTþU method introduced by
Liechtenstein and Anisimov [28,29] aims at preserving the
information of orbital localization from being averaged out
as in LDA or GGA in order to improve the description of
the band structure with a very modest increase in computa-
tional effort. Since, in this paper, we are mainly concerned
with an extension of this approach, let us discuss its guiding
principles in some detail.
Within the DFTþU ansatz, localized states φi largely

retain their atomic nature and, therefore, can be expanded
in term of an atomic-orbital basis set fϕmg≡ fmg. The
Coulomb and exchange energy associated with these states
is explicitly evaluated using the Hartree-Fock (HF) frame-
work via electron repulsion integrals (ERI, also know as
two-electron integrals), with a screened (renormalized)
Coulomb interaction Vee, and added to the original
DFT energy after the removal of double-counting terms
in the energy expansion, in a spirit similar to the hybrid
functionals approach.
The HF Coulomb and exchange energy of the localized

states is given by [28]

E
fmg
HF ¼ 1

2

X

fmg;σ
fhmm00jVeejm0m000inσ

mm0n−σm00m000

þ ðhmm00jVeejm0m000i − hmm00jVeejm000m0iÞ
× nσ

mm0nσm00m000g; ð1Þ

where nσ is the spin-density matrix nσ of the atomic orbitals
ϕm. This equation can be simplified via the introduction of
the phenomenological parameters Ū and J̄ that describe the
on-site Hubbard-like interactions as expressed by Dudarev
et al. [30]:

E
fmg
HF ≈

Ū

2

X

fmg;σ
Nσ

mN
−σ
m0 þ

Ū − J̄

2

X

m≠m0;σ

Nσ
mN

σ
m0 : ð2Þ

Here, Nσ
m is the spin occupation number of the atomic

orbital ϕm.
From the equations above, it clearly follows that the new

parameters, Ū and J̄, contain the information of all the ERIs
in an averaged scenario. In physical terms, Ū is the strong
correlation experienced between localized electrons—
only subtly coupled to the sea of extended states in which
they live. Thus, the most akin definition of Ū (for the non-
spin-polarized case) is the average [31]

Ū ¼ 1

ð2lþ 1Þ2
X

i;j

hφiφjjVeejφiφji; ð3Þ

where 2lþ 1 is the total number of localized states φi,
and l ¼ 2; 3 for d; f orbitals, respectively. The exchange
contribution J̄ is given by a similar average [31].
Although the physical picture is clear, an unambiguous

procedure for computing fŪ; J̄g from ab initio does not
exist. Two factors need to be further clarified in Eq. (3):
(i) the screened (renormalized) Coulomb interaction Vee

arising from the “subtle coupling” to the background
extended states and (ii) the actual orbitals φi used to
represent the “localized electrons.”
Amongst the most common ab initiomethods to compute

Ū are the constrained random-phase approximation (cRPA)
[32] and the linear-response constrained DFT (or cLDA)
[33,34]. The former computes the screened Coulomb
interaction as the bare Coulomb interaction renormalized
by the inverse dielectric function, which is calculated using
the random phase approximation. The latter circumvents the
ambiguity of Vee by indirectly determining Ū as the second
derivative of the total energy with respect to constrained
variations of the atomic charge qI of the chosen Hubbard
center I, Ū ¼ ∂2E=∂qI

2. E is the total energy of a supercell
large enough to converge to the bulk environment for
the atom I. It is assumed that the charge perturbation on
atom I does not disturb the local environment. In DFTwith a
linear-combination-of-atomic-orbital (LCAO) basis, this is
enforced by suppressing the hopping integrals to prevent
charge rehybridization or transfer with its environment [33]
and, in the case of plane-wave DFT, by subtracting a
correcting term from ∂2E=∂qI

2 as given in Ref. [34].
This method has been widely used for open-shell systems;
nonetheless, the numerical reliability becomes challenging
for closed-shell systems where the localized bands are
completely full, thus exhibiting very small response to
the linear perturbation [35,36].
Regarding the representation of the φi states, e.g., d or f

electrons of transition metals, localized orbitals—obtained
either from the linear-muffin-tin-orbital (LMTO) method
[37] or from the Nth-order muffin-tin-orbital (NMTO)
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method [38]—can be used with both the cLDA and cRPA
to obtain Ū. Recently, maximally localized Wannier func-
tions (MLWF), an invariant choice suitable for plane-wave
calculations, have also been employed [31,39]. By con-
struction, these functions are associated with a given
angular momentum (l; m), and the direct correspondence
makes them convenient to represent the localized d or f
electrons. Ultimately, pinpointing a single localized state
within the solid is arbitrary—any of these options are
equally valid. In principle, the options should be equivalent
for very localized states; nonetheless, the physical signifi-
cance and construction become more ambiguous when
bands corresponding to localized states are not fully
disentangled [39]. Despite attempting the computation of
the same physical entity, the cLDA and cRPA methods do
not yield the same value of Ū [40]. Considering the number
of assumptions taken in numerical implementations, the
outcome is unsurprising.
In this article, we introduce an alternative ab initio

method to compute Ū and J̄, which parallels the calculation
of the HF energy for molecules and solids and follows
closely the original definition of Anisimov et al. [Eq. (1)]:
the Agapito-Curtarolo-Buongiorno Nardelli (ACBN0)
pseudohybrid Hubbard density functional. In ACBN0,
the Hubbard energy of DFTþ U is calculated via the
direct evaluation of the local Coulomb (Ū) and exchange
(J̄) integrals in which the screening of the bare Coulomb
interaction is replaced by a renormalization of the density
matrix. Through this procedure, the values of Ū and J̄ are
thus functionals of the electron density and depend directly
on the chemical environment and crystalline field, intro-
ducing an effective procedure of giving the proper descrip-
tion of Mott insulators and other strongly correlated
transition-metal oxides (TMOs). As a first application,
we discuss the electronic properties of a series of
transition-metal oxides that show good agreement with
hybrid functionals, the GW approximation, and experi-
mental results at a fraction of the computational cost.
In particular, we demonstrate that the ACBN0 functional
satisfies the rather ambitious criteria outlined by Pickett
et al. in one of the first seminal articles on LDAþU [41]:
(i) ACBN0 reduces to (LDA)PBE when (LDA)PBE is
known to be good, (ii) the energy is given as a functional
of the density, (iii) the method specifies how to obtain
the local orbital in question, (iv) the definition of Ū and J̄
is provided unambiguously, and (v) the method predicts
antiferromagnetic insulators when appropriate.
The article is organized as follows: The methodology is

discussed in Sec. II. The application of the method for four
prototypical transition-metal oxides is presented in Sec. III,
and the results are compared against available experimental
and theoretical data. Section IV discusses the important
features of the method and suggests extensions of potential
significance to the goal of discovering novel functional
materials. Conclusions are summarized in Sec. V.

II. METHODOLOGY

The foundations of the approach for evaluating the
on-site Coulomb and exchange parameters are as follows.

(i) Ū and J̄ are on-site quantities derived from the
energy in the Hartree-Fock method. The HF theory
considers pairwise interactions of only two electrons
at the time, and therefore, it misses the concept of
screening. Because of this approximation, the HF
theory is known to be inappropriate in describing
delocalized metallic systems; however, it is quali-
tatively sound for molecules and insulators (espe-
cially in the strong localization regime) [42–45]. The
on-site energies are derived from the HF energies
following the ansatz of Mosey and Carter [46,47] in
which the occupied molecular orbitals (MO), which
are needed for the computation of the HF energy, are
considered populated only in the subspace fmg.

(ii) No localized orbitals φi need to be explicitly
computed. As in the Hartree-Fock method, all the
MOs, or crystalline wave functions for the case of
solids, are used. This eliminates the indeterminacy in
finding the subset of MOs that better corresponds to
the localized states, which can lead to wide fluctua-
tions of the calculated Ū [48]. During the calculation
of the on-site HF energies, the localized orbitals
are implicitly taken as a linear combination of the
basis functions of interest, fmg, with the expansion
coefficients included in the renormalized density
matrix coming directly from the solution of the
Kohn-Sham equations projected onto the localized
basis of choice (see below).

(iii) A plane-wave basis set is the natural choice for DFT
calculations of periodic systems, but on-site HF
energies are more efficiently computed in a localized
basis set. Electron-repulsion integrals are evaluated
using pseudo-atomic orbitals (PAO) expressed as a
linear combination of Gaussian-type functions,
which we define as the PAO-3G minimal basis
set. This is possible by the projection procedure
that we have recently developed [11], which seam-
lessly maps the plane-wave electronic structure onto
a localized atomic-orbital basis set (see AppendixA).
However, it is important to note that the construction
of Ū and J̄ outlined below is completely general and
can be applied to any choice of basis, localized or
otherwise.

(iv) E
fmg
HF is a true functional of the electron density in

the spirit of the Hohenberg-Kohn theorems. This
leads to the definition of the ACBN0 pseudohybrid
Hubbard density functional.

A. Calculation of the electron repulsion integrals

The enormous quantity of ERIs needed in the calculation
of the HF exchange energy is the fundamental bottleneck in

AGAPITO, CURTAROLO, AND BUONGIORNO NARDELLI PHYS. REV. X 5, 011006 (2015)

011006-3



the use of hybrid DFT functionals. In DFT calculations
based on LCAO (PAO) basis sets, the problem is made
more tractable when the PAOs are expressed as linear
combinations of Gaussian-type functions, as is commonly
done in commercial packages such as Gaussian09 [49] and
Crystal06 [50].
The electron repulsion integrals used in Eq. (1) are

defined as four PAOs interacting under the bare Coulomb
interaction V ¼ jr1 − r2j−1 as

ERI≡ðmm0jm00m000Þ
≡ hmm00jVjm0m000i

≡

Z

dr1dr2ϕ
�
mðr1Þϕm0ðr1ÞVϕ�

m00ðr2Þϕm000ðr2Þ: ð4Þ

The real-space evaluation of these integrals is not
directly possible when using a plane-wave basis set, which
is the preferred choice for periodic systems. For this reason,
we employ the auxiliary space of PAOs naturally included
in the definition of the pseudopotentials. Given that the
radial and angular parts of the PAO basis functions,

ϕlmðrÞ≡ ðRlðrÞ=rÞYmfc;sg
l ðθ;φÞ, are separable, they can

be directly fitted using linear combinations of spherical-
harmonic Gaussian functions. For efficiency, the latter
functions are then further expanded as a linear combination
of Cartesian Gaussians defining the PAO-3G minimal basis
set. (See Appendix A for more technical details on these
transformations). Once expressed in the PAO-3G basis
set, the ERIs can be efficiently evaluated using any
optimized quantum-chemistry library. We use the C rou-
tines included in the open-source quantum-chemistry pack-
age PyQuante [51].

B. Hartree-Fock Coulomb and exchange energies

The knowledge of the ERIs and the molecular
(or crystal) orbitals allows the calculation of the HF
Coulomb and exchange energies EHF. For isolated systems
(molecules or clusters) and in the restricted case,

Emolec
HF ¼

X

ij

Nψ i
Nψj

½2ðψ iψ ijψ jψ jÞ − ðψ iψ jjψ jψ iÞ�

¼
X

μνκλ

PμνPκλ½2ðμνjκλÞ − ðμλjκνÞ�: ð5Þ

Here, ψσ
i ðrÞ ¼

P

i;μc
σ
μiϕμðrÞ are occupied molecular orbi-

tals expanded in the PAO basis; Nσ
ψ i
≡

P

iμνc
σ�
μi Sμνc

σ
νi ¼ 1

is the charge of ψσ
i , and Sμν is the overlap integral between

the PAOs ϕμ and ϕν. The last line of Eq. (5) is expressed
in the basis of atomic orbitals ϕμ with the density
matrix Pσ

μν ¼
P

iN
σ
ψ i
cσ�μi c

σ
νi.

The expression of the Coulomb and exchange HF
energies for a periodic system is analogous to the molecular
case (see Pisani et al. [52]):

Esolid
HF ¼

X

μνκλ
g;l;m

P
g
μνP

l
κλ½2ðμ0νgjκmλmþlÞ − ðμ0κmjνgλmþlÞ�;

ð6Þ

where g, m, and l are lattice vectors and 0 refers to the
primitive unit cell. However, the mapping of the crystalline
wave functions ψkσ

i in a local basis (i.e., the expansion
coefficients ckσμi ) is not readily available when using a
plane-wave basis to solve for the electronic structure of
the material as is common for solids. We circumvent this
problem by projecting the plane-wave solution into the
chosen auxiliary space of PAOs following the method
described in Ref. [11]. This projection procedure is a
noniterative scheme to represent the electronic ground state
of a periodic system using an atomic-orbital basis, up to a
predictable number of electronic states, and with control-
lable accuracy by filtering out high-kinetic-energy plane-
wave components. See Appendix B for a summary of this
procedure to calculate the expansion coefficients ckσμi and

the real-space density matrices of the solid, Pσ;R
μν .

C. Ū and J̄ as functionals of the density:

The ACBN0 functional

The energy functional for the DFTþU method is
given by

EDFTþU ¼ EDFT þ EU;

where EDFT is the DFT energy calculated using a LDA or
GGA functional. The energy correction EU is given either
in the original Anisimov-Liechtenstein formulation [28,29]
or in the simplified Dudarev [30] formulation as

EAnisimov
U ¼

�

P

I

E
fmg;I
HF

�

− EDC; ð7aÞ

EDudarev
U ¼ Ū − J̄

2

X

I

X

m;σ

�

nIσmm −
X

m0
nIσ
mm0nIσm0m

�

; ð7bÞ

with E
fmg;I
HF defined in Eq. (1) for a given atom I. EDC

corrects for a possible double counting of the localized-
state interaction energy already captured (in an averaged
way) in EDFT. The second formulation defines an effective
on-site Coulomb interaction Ueff ¼ Ū − J̄ (henceforth
referred to simply asU). It should be noticed that numerical
implementations of the Anisimov DFTþU functional
[Eq. (1)], for instance, in QUANTUM ESPRESSO [53] or
VASP [54], do not compute the ERIs explicitly. They are
evaluated from tabulated Slater integrals, which ultimately
depend on the provided values of Ū and J̄, or from
phenomenological considerations (e.g., Refs. [9,55]).
On the contrary, we evaluate Ū and J̄ by directly

computing the on-site Coulomb and exchange energies
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on the chosen Hubbard center, from the Coulomb and
exchange Hartree-Fock energies of the solid. The following
assumptions are used.

(i) We follow a central ansatz, introduced by Mosey
et al. [46,47] for the case of cluster calculations,
that defines a “renormalized” occupation number
N̄σ

ψ i
≠ 1 for each MO ψσ

i :

N̄σ
ψ i
≡

X

μ∈fm̄g

X

ν

cσ�μi Sμνc
σ
νi; ð8Þ

which is the Mulliken charge of the basis fm̄g. The
set fm̄g includes all the atomic orbitals in the unit
cell that have the same quantum numbers as the
orbitals fmg of the Hubbard center of interest.
Correspondingly, we define a renormalized

density matrix as

P̄σ
μν ≡

X

i

N̄σ
ψ i
cσ�μi c

σ
νi: ð9Þ

The renormalized occupations can be interpreted as
weighting factors that specify the on-site occupation
of each electronic state.
The expressions in Eqs. (8) and (9) are applicable

to isolated systems (molecules and clusters). Solid-
state systems are periodic and calculated in reciprocal
k space that inherently applies periodic-boundary
conditions; thus, surface effects are avoided. Periodic
planewaves are the basis of choice for the solution of
solid-state systems. The k-space electronic-structure
information of the material can be projected into a
PAO basis directly from the plane-wave DFT sol-
ution. We take advantage of this to compute the
reduced density matrices and occupation number,
which are needed to calculate Ū and J̄, as follows

P̄σ
μν ¼ P̄0;σ

μν ¼ 1
ffiffiffiffiffiffiffi

Nk

p
X

k;i

N̄kσ
ψ i
ckσ�μi ckσνi ; ð10aÞ

N̄kσ
ψ i

¼
X

κ∈fm̄g

X

λ

ckσ�κi Skκλc
kσ
λi ; ð10bÞ

Nσ
m ¼ 1

ffiffiffiffiffiffiffi

Nk

p
X

k;i;ν

ckσ�mi S
k
mνc

kσ
νi : ð10cÞ

Here, Nk is the total number of k vectors in the first
Brillouin zone. See Appendix B for more details.
(ii) E

fmg
HF , the on-site HF energy associated with the basis

fmg is obtained from Eq. (5) by restricting the
summation indices to fmg. In the periodic case, it is
reduced from Eq. (6) considering the central unit
cell only, i.e., lattice vectors R ¼ g ¼ l ¼ m ¼ 0.
Combining (i) and (ii), we obtain, in the general
spin-unrestricted case,

E
fmg
HF ¼ 1

2

X

fmg
½P̄α

mm0P̄α
m00m000 þ P̄α

mm0P̄
β

m00m000

þ P̄
β

mm0P̄α
m00m000 þ P̄

β

mm0P̄
β

m00m000 �ðmm0jm00m000Þ

þ 1

2

X

fmg
½P̄α

mm0P̄α
m00m000 þ P̄

β

mm0P̄
β

m00m000 �

× ðmm000jm00m0Þ: ð11Þ

In this notation, each primed and unprimed index m
runs over the whole fmg set. Clearly, the above equation is
equivalent to Anisimov’s original DFTþ U functional
[Eq. (1)] after we replace nσ

mm0 with the renormalized
density matrix P̄σ

mm0 . σ ¼ fα; βg. However, while Eq. (1)
requires the knowledge of a subjective screened Coulomb
interaction Vee, Eq. (11) uses the bare Coulomb interaction.
Although screening is not considered in the HF theory,
the direct parallel between both equations shows that the
renormalization of the density matrix effectively introduces
a degree of screening.
The comparison of Eq. (2) with Eq. (11) leads to the

definitions of Ū and J̄ as density-dependent quantities in
the ACBN0 functional:

Ū ¼
P

fmg½P̄α
mm0P̄α

m00m000 þ P̄α
mm0P̄

β

m00m000 þ P̄
β

mm0P̄α
m00m000 þ P̄

β

mm0P̄
β

m00m000 �ðmm0jm00m000Þ
P

m≠m0Nα
mN

α
m0 þ

P

fmgN
α
mN

β

m0 þ
P

fmgN
β
mN

α
m0 þ

P

m≠m0N
β
mN

β

m0
; ð12Þ

J̄ ¼
P

fmg½P̄α
mm0P̄α

m00m000 þ P̄
β

mm0P̄
β

m00m000 �ðmm000jm00m0Þ
P

m≠m0Nα
mN

α
m0 þ

P

m≠m0N
β
mN

β

m0
: ð13Þ

There are essential and relevant differences between
Eqs. (12) and (13) and the similar framework of Mosey
et al. [47]: (i) Our on-site energy requires the computation
of a smaller number of electron-repulsion integrals, namely,

only those involving the fmg set (i.e., 54 integrals for the d
shell). This directly parallels the original definition of
Anisimov, in sharp contrast with the methodology of
Mosey et al. requiring ERIs between all basis functions
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contained in the cluster; (ii) we consider the larger set fm̄g
of localized orbitals (instead of fmg) in the calculation of
the reduced occupation number given in Eq. (8); (iii) in the
approach of Mosey et al. [47], the atom of interest is
embedded in a cluster of volume large enough to yield local
convergence to bulk conditions, thus requiring calculations
on clusters of increasing volume to ensure convergence,
which can become extremely computationally expensive;
(iv) finally, we do not solve the full Hartree-Fock problem
for the solid (Roothaan’s equations) but project the DFT
Kohn-Sham wave functions on the minimal PAO-3G basis
set, thus implicitly including, in the renormalized density
matrix, all the local screening effects that come from the
mean-field solution on the local set.

III. RESULTS

We selected four prototypical examples to benchmark
the ACBN0 density functional: TiO2 (rutile), MnO, NiO,
and ZnO (wurtzite) are technologically important TMOs
that have been extensively studied both theoretically and
experimentally. These materials pose a methodological
challenge to traditional energy functionals (LDA or
GGA) because of the strong localization of the TM-3d
electrons that results in significant errors in the description
of their electronic structure [56]. The set of chosen TMOs
covers a wide range of 3d shell fillings, namely, 3d2, 3d5,
3d8, and 3d10 in Ti, Mn, Ni, and Zn, respectively.
All our calculations use the Perdew-Burke-Ernzerhoff

(PBE) [57] functional as a starting point and a plane-
wave energy cutoff of 350 Ry with a dense Monkhorst-
Pack mesh to ensure good convergence of all quantities.
All DFTþ U calculations use the simplified rotational-
invariant scheme of Dudarev [30] and Cococcioni [34]
as implemented in the QUANTUM ESPRESSO package [53].
Notice that both the original DFTþU formulation of
Anisimov and the simplified rotationally invariant scheme
are equivalent within numerical errors for the same values
of Ū and J̄. For all elements, we used a scalar-relativistic
norm-conserving pseudopotential from the PSlibrary
1.0.0 [58].
Although the calculation of the effective values of Ū

and J̄ should be performed concurrently within the general
Kohn-Sham self-consistent loop for electronic conver-
gence, in this work we follow a simplified scheme: The
initial and objective guess for the first DFTþ U calculation

is U
ð0Þ
3d ¼ U

ð0Þ
2p ¼ 0 eV. Then, the resulting electronic

structure is used to compute Uð1Þ for the next DFTþ U
step [from Eqs. (12) and (13)]. The process is iterated
simultaneously for both transition metal and oxygen atoms
until the difference between two subsequent iterations is
jUðnÞ −Uðn−1Þj < 10−4 eV. This self-consistent scheme
ensures the internal consistency of the results, while the
true variational solution using the ACBN0 functional will
be implemented in the near future. The converged effective

values of U for the transition-metal oxides under study are
reported in Table I. All the band structures presented follow
the AFLOW standard integration paths [55].
In what follows, the ACBN0 results will be bench-

marked against experimental measurements and a higher
level of theory, whenever possible. Clearly, meaningful
comparisons between theory and photoemission spectra
require GW quasiparticle energies (and more for excitonic
effects), which go beyond DFT. Even if the DFTþ U
formalism has been shown to be a first-order approximation
to the GW method for localized states in the static limit
[29,59], in practice ACBN0 is clearly not nearly as
inclusive and accurate as GW, and a comparison between
the results of the two approaches provides us with the most
stringent test of the validity of our method.

A. Titanium dioxide (rutile)

Rutile, with space group P42=mnm (#136), is the
most common form of TiO2. We use the experimental
lattice constants and internal ordering parameter of
a ¼ b ¼ 4.594 Å, c ¼ 2.959 Å, and μ ¼ 0.305 [60].
The valence manifold is predominantly of O-2p char-

acter with small Ti-3d hybridization except at the top of the
manifold at Γ, where it takes almost exclusively an O-2p
character. Conversely, the unoccupied manifold is predomi-
nantly of Ti-3d character; the conduction-band minimum
(CBM) is at Γ, but in practice, it is degenerate with the
minima at R and M. Two regions are distinguishable in the
3d projected density of states (PDOS) in the unoccupied
manifold (Fig. 1), and they correspond to the octahedral-
type crystal-field splitting of eg (higher energy) and t2g
states (lower energy).
The use of an increasing on-site Coulomb potential U3d

on Ti alone (without correcting the oxygen) has been
shown to monotonically open the gap, which reaches
satisfactory accordance with the experimental value of
3.03 eV [61] only at values of U3d ∼ 10 eV [62,63].
However, Park et al. [64] have found that large values
of the Ti on-site Coulomb interaction (> 7) introduce
unphysical defect states in the study of vacancies, and
they suggested that a concomitant use of U2p ¼ 7 eV on
oxygen is necessary to achieve both the experimental band
gap and a good treatment of vacancy states.
With small Löwdin charges of 0.29e–0.45e (out of 2e)

per orbital [65], the Ti-3d states cannot be considered
localized, and therefore, the use of large values of U3d is

TABLE I. Converged values of the effective on-site Coulomb
parameter U (in eV) for the transition metal (TM) 3d and the
oxygen 2p states.

TiO2 MnO NiO ZnO

TM-3d 0.15 4.67 7.63 12.8
Oxygen 2p 7.34 2.68 3.0 5.29
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understood as an ad hoc fitting parameter without physical
basis. Instead, each oxygen 2p orbital charge is 1.66e (out
of 2e).
Our converged values for the rutile environment are Ti

U3d ¼ 0.15 eV and OU2p ¼ 7.34 eV. These values yield a
band gap of 2.83 eV close to the experimental range of
2.8–3.8 eV (Table II), which improves the DFT prediction
by 0.9 eV. Contrary to the predominant focus on the Ti-3d
states, our results show that a correction on the oxygen 2p
states can alone yield an equally satisfactory band gap.
More generally, this suggests that a correct treatment of
oxygen 2p states may be more relevant to the correct
modeling of TiO2 vacancies.
The occupied O-2p PDOS [red line in Fig. 1(a)] shows a

split into two regions, upper 0–3 eV and lower 3.5–6 eV,
which originates in the oxygen 2p crystal-field splitting.
The 2px and 2py states form sp2-like σ bonds contained in
the planar Y-shaped OTi3 subunits, whereas the 2pz states
remain as lone pairs perpendicular to the Y-shaped planes.
The higher-energy 2pz states correspond to the upper
PDOS region. These nonbonding lone pairs have been
explained with a simple empirical molecular-orbital model

[91,92], whereby the octahedral Oh symmetry of the local
environment of each Ti coordinated to six oxygen ligands
ðTiO6Þ8− frustrates the hybridization of the highest occu-
pied orbitals [93].
Applying the on-site Coulomb potential U2p on oxygen

increases the localization of the 2pz lone pairs, thus
increasing the splitting between the two 2p PDOS regions,
cf. Figs. 1(a) and 1(b). The main peak of the lower
PDOS region downshifts by 1 eV, to around 5.4 eV,
consistent with the value of 5 eV reported by the accurate
full-frequency-dependent GW calculation of Khan and
Hybertsen GW [94] and x-ray photoelectron spectroscopy
(XPS) measurements [95].
Examining the G0W0@GGA band structure reported

by Malashevich et al. [73], it is interesting to notice that
besides a scissor-shift operation, the main correction with
respect to the DFT bands is a downward energy shift of the
2px2py bands (lower region of the occupied manifold, −6
to −4 eV), whereas the upper region (−4 to 0 eV) remains
mostly unchanged. A possible mechanism is that the GW
approach implicitly applies a self-interaction correction that
increases the splitting between the 2pz and 2px2py states

(a) (b)

FIG. 1. Comparison between the band structures and projected density of states of TiO2 without on-site interactions U ¼ 0 (a) and
with the converged effective values of U ¼ 0.15 eV for Ti and 7.34 for O (b).

TABLE II. Minimum direct and indirect energy band gaps (in eV).

TiO2 MnO NiO ZnO
Direct Indirect Direct Indirect Direct Direct

PBE 1.94 0.98 1.64 1.13 1.26 0.85
ACBN0 2.83 2.31 2.83 3.80 4.29 2.91
sX-LDA 3.1 [66] 2.5 [67] 3.0 [67] 4.04 [67] 4.3 [67] 3.1 [68], 3.41 [69]
HSE03 3.25 [70] 2.6 [71] 3.2 [71] 4.1 [71] 4.5 [71] 2.11 [72]
G0W0@GGA 3.18 [73], 3.4 [74] 1.7 [71] 2.1 [71] 1.1 [71] 1.4 [71] 2.12 [75]
G0W0@HSE03 3.73 [76]a 3.4 [71] 4.0 [71] 4.7 [71] 5.2 [71] 2.97 [72]
GW@LDA=GGA 3.5 [77] 4.8 [77] 2.92 [78], 3.2 [75]
Exp. (XAS-XES) 4.1 [79] 4.0 [79] 3.3 [80]
Exp. (PES-BIS) 3.3� 0.5 [81] 3.9� 0.4 [82] 4.3 [83]
Exp. (conductance) 3.8–4.2 [84] 3.7 [85]
Exp. (absorption) 3.03 [61] 3.6–3.8 [86] 3.44 [87]
Exp. (reflectance) 3.7 [88], 3.87 [89] 3.44 [90]

a@HSE06
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by further localizing the 2pz states, which can be captured
in the ACBN0 calculation.
In this regard, ACBN0 bands closely follow the

G0W0@GGA bands of Ref. [73] in the range from −4

to 8 eV. The most significant difference happens in the
remaining range of −7 to −4 eV, where our DFTþ U
bands are overdownshifted with respect to the
G0W0@GGA results. This can be expected from the
explicit emphasis of the on-site Coulomb interaction on
oxygen in the ACBN0 approach.

B. Manganese and nickel oxides

For MnO (NiO), we use the ideal rocksalt structure with
lattice constant a ¼ 4.4315 Å (a ¼ 4.1704 Å) [96]. The
presence of type-II antiferromagnetic spin coupling along
the [97] direction, below the Néel temperature, effectively
requires a rhombohedral primitive unit cell (RHL1 [55],
aRHL ¼ a

ffiffiffiffiffiffiffiffi

3=2
p

, α ¼ 33.557°) containing four atoms with
space group R3̄m (#166).
Our converged values for MnO are U3d ¼ 4.67 eV for

Mn and U2p ¼ 2.68 eV for O. This value is in the range
of other ab initio Us reported for Mn (3.6–6.04 eV)
[41,59,98–100]. Note that because of the different assump-
tions for the physical quantities (i.e., screening, localized
states), ab initio values of U are not expected to be unique.
A close empirical value of U3d ¼ 4.0 eV (albeit with no
correction on oxygen) has been reported to reproduce well
the experimental energy of formations of several manga-
nese oxides [101,102].
Both PBE and ACBN0 band structures are shown in

Fig. 2. The bottom of the conduction manifold is an
itinerant sp band with noticeable parabolic dispersion,
and it is predominantly of Mn-4s character at Γ. The set of
low-dispersion bands located above the CBM are predomi-
nantly Mn-3d t2g states. These bands are more narrowly
resolved in the case of NiO.
In the occupied manifold, the PBE results (gray lines)

distinctly show dispersionless Mn eg bands (separated from

the rest at the top of the manifold) centered at about
−0.5 eV and t2g bands at about−1.5 eV. These bands have
minor oxygen hybridization, whereas the bands below
them (≲ − 1.6 eV) have a strong O-2p character. With
the on-site repulsion correction in the ACBN0 results
(black lines), the hybridization between Mn-3d and
O-2p states increases. As a result, the 3d bands are pushed
down in energy while increasing their dispersion (more
noticeably on the t2g bands). This leads to (i) an increase of
the bandwidth of the occupied manifold to about 7.5 eV, in
good agreement with results from higher levels of theory
(7.6 eV GW@LDAþU [103] and 8 eV sX-LDA [67]),
(ii) an increase of the t2g bonding-antibonding splitting
across the band gap and, indirectly, the resolution of the 4s
parabolic band (i.e., the energy difference between the
parabolic CBM at Γ and the occupied t2e bands) to 2.21 eV,
which compares favorably with the more rigorous self-
consistent GW [77] and GW@LDAþ U [103] predictions
of 2.42 eV and 2.27 eV, and (iii) an increase of the energy
difference between the CBM at Γ and the unoccupied eg
bands, i.e., the band gap.
The indirect band gap improves from the PBE value of

0.98 eV to 2.31 eV; however, the experimental value of
3.6–4.1 eV (Table II) is still underestimated. On the other
hand, the magnetic moment is evaluated to be 4.79 μB
(Table III), which matches the experimental value (Fender
et al. [104]).
Franchini and coauthors [102] have performed calcu-

lations with a larger value of U3d ¼ 6.0 eV (without U on
oxygen) yielding, however, a band gap and magnetization
(2.1 eV, 4.67μB) smaller than our results. This evinces the
importance of having the on-site Coulomb interaction not
only on the TM but also on oxygen. Sakuma et al. [105]
have shown that O 2p orbitals are considerably localized
(as measured by the spread of their MLWFs) in TMOs;
correspondingly, cRPA ab initio calculations find the
Coulomb repulsion in oxygen Ū2p ≳ 4 eV [99], indepen-
dent of the TM. Moreover, multideterminant correlated
methods (complete active space self-consistent field,
CASSCF) have recently shown that, contrary to conven-
tional wisdom, the valence-band edge in NiO is a localized
O 2p state [106].
ACBN0’s MnO band gap is closer to the predictions

of hybrid functionals (sX-LDA 2.5 eV, HSE03 2.6 eV);
nonetheless, the more accurate G0W0@HSE03 and self-
consistent GW methods yield results of 3.4 and 3.5 eV,
much closer to the experimental range. This underperform-
ance of the hybrid functionals suggests that correlation
effects may be particularly predominant in the case of MnO
and, therefore, beyond the Hartree-exchange correction of
hybrid functionals.
For NiO, PBE incorrectly locates the parabolic 4s band

above the 3d ones, as seen in Fig. 3. With our values of U,
7.63 and 3.0 eV for Ni and O, the 4s CBM is correctly
positioned at the Γ point [107], yielding an indirect band

FIG. 2. Band structure (spin up) of manganese oxide. All
energies are relative to the valence-band maximum EV. Effective
values of U ¼ 4.67 eV for the Mn-3d states and 2.68 eV for the
O-2p states are used in the ACBN0 calculation.
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gap (Z-Γ) of 3.8 eV and a direct gap of 4.29 eV.
Considering that the 4s CBM has low spectral weight,
the direct gap can well account for the dominant first peak
at 4.3 eV observed with bremsstrahlung isochromat spec-
troscopy (BIS) [83]. Our value of Ni U3d ¼ 7.63 eV is in
the same range as the effective value reported by Anisimov
et al. of 7.1 eV [108], obtained with the cLDA method,
widely used for ab initio calculation of U. Similar to the
TiO2 case, the bands around the bottom region of the
NiO-occupied manifold are strongly of O-2p character
and are noticeably downshifted by the use of O U2p with
respect to the PBE bands. The manifold bandwidth increases
by 1.5 eV to 9 eV as seen in Fig. 3. Most band structures
reported in the literature do not find an increase of the
bandwidth; nonetheless, the same value of 9 eV is obtained
with the self-consistent GW reported by Li et al. [107] who
argued that such broader bandwidth accounts well for the
presence of strong satellite structures observed experimen-
tally in that range of energy [83,109]. Admittedly, these
satellites are not captured in other approximations such as
the model GW of Massidda et al. [110]. As pointed out by
Gillen and Robertson [67], a bandwidth of 9 eV in NiO is
in agreement with experimental measurements of 8–8.5 eV
(x-ray emission spectroscopy XES [79]) and 8.5–9.5 eV
(ultraviolet photoemission spectroscopy UPS [111]).

C. Wurtzite zinc oxide

We use a hexagonal lattice (space group #186) with
relaxed lattice constants a ¼ b ¼ 3.1995 Å, c ¼ 5.1330 Å,
μ ¼ 0.3816, taken from the AFLOWLIB database [56]
(Ref. [97], auid ¼ aflow∶b4819e0e63f994a8).
In the strongly ionic ZnO, the bands can be readily

identified by their dominant orbital character. The bands
in Fig. 4 (black lines) from 0 to −6 eV are mostly of O-2p
character. The low-dispersion bands around −9 eV corre-
spond to the Zn-3d states. The conduction bands are
predominantly of Zn-4s character.

Within PBE, the 3d bands incorrectly overlap with the
2p manifold introducing spurious hybridizations, as shown
in Fig. 4 with gray lines, which in turn leads to a strong
underestimation of the band gap. The PBE gap is 0.85 eV,
while the experimental gap is 3.3 eV [80]. Zinc oxide
highlights the underlying failure of LDA or GGA in
treating materials with localized electrons and thus con-
stitutes a case study for the application of the DFTþ U
method.
Our converged values are Zn U3d ¼ 12.8 eV and O

U2p ¼ 5.29 eV, and they yield a band gap of 2.91 eV,
which compares favorably to the experimental value. The
bandwidth of the O-2p manifold shown in Fig. 4 is about
6 eV, in accordance with the angle-resolved photoemission
spectroscopy (ARPES) value of around 6.05 eV [78].
Although seemingly high, our parameters agree with

values reported by Calzolari et al. [112] (U3d ¼ 12.0,
U2p ¼ 6.5 eV) and Ma et al. [113] (U3d ¼ 10,
U2p ¼ 7 eV), both of which were found by fitting to
reproduce the experimental band gap and position of the
3d bands.
It is established that the 3d bands downshift monoton-

ically with increasing values of U3d. As the 3d bands
downshift, the p-d repulsion with the O-2p bands is
decreased, which in turn lowers the energy of the
valence-band maximum (VBM) and, thus, monotonically
increases the gap [114]. After the 3d bands have been
fully disentangled from the 2p manifold, however, the 2p
bands are well resolved and remain mostly insensitive to a
further increase of U3d. Consequently, the band gap
becomes progressively independent of U3d, and after the
3d bands are fully disentangled, the application of an on-
site Coulomb interaction on oxygen becomes necessary to
further reach the experimental band gap [113].
For illustration, Fig. 5 shows a comparison of the band

structure with different values ofU3d (12.8 and 9 eV), while

FIG. 3. Band structure (spin up) of nickel oxide. All energies
are relative to the valence-band maximum EV. The effective
values of U3d ¼ 7.63 eV for nickel and U2p ¼ 3.0 eV for oxy-
gen are used in the ACBN0 calculation.

FIG. 4. Comparison between the PBE (gray) and ACBN0
(black) band structures for ZnO. The converged effective Cou-
lomb interactions are Zn U3d ¼ 12.8 eV and O U2p ¼ 5.29 eV.
The horizontal grid lines show the DFT (0.85 eV) and ACBN0
(2.91 eV) band gaps. The panel on the right shows the projected
DOS for the ACBN0 calculation.
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the U2d is kept fixed at the converged value 5.29 eV. The
unusual rigid shift of the U3d bands seen by comparing
Figs. 5(a) and 5(b) arises from a singularity particular to the
case of the fully occupied 3d10 bands of Zn in ZnO that is
rooted in the definition of the Hubbard correction to the
energy functional:

EU ¼ U

2

X

I;σ

X

m

½λIσm ð1 − λIσm Þ�;

which is equivalent to Eq. (7b) [34], and the corresponding
Hubbard potential is

VU ¼ U

2

X

I;σ

X

m

ð1 − 2λIσm ÞjϕI
mihϕI

mj;

where 0 ≤ λIσm ≤ 1 is the occupation of the orbital ϕm.
For fully occupied orbitals such as Zn-3d in ZnO (Löwdin
charge 9.97e out of 10e), i.e., λm ≈ 1, the Hubbard energy
reduces to EU ≈ 0, and the Hubbard potential becomes a
rigid shift VU ≈ −U=2 applied to the localized orbitals. In
principle, at this limit, the value of U3d does not change the
energy of the material, and it becomes irrelevant in pinning
the position of the 3d bands.
The experimental position of the center of the 3d bands

is at −7.5 eV [78,115], measured with respect to the VBM
(EV). Other experimental values have also been reported,
−8.81 eV [116], −8.6 eV [117], and −7.8 eV [118]. Our
value of U3d underestimates the position of the 3d bands at
around −9 eV. As discussed above, for fully disentangled
and occupied 3d states, the energy of the system becomes
almost independent of U3d because of a singularity of the
DFTþ U energy functional.
Similarly, the GW method and hybrid functionals, while

correcting the band gap and fully disentangling the 2p and
3p manifolds, consistently miss the position of the 3d
bands by about 1 eV [78]. Recently, Lim et al. [78]

proposed an assisted GW þ Vd approach in which the
3d bands are shifted by an ad hoc on-site potential
Vd ¼ 1.5 eV in the GW self-energy operator.
Analogously, the cLDA method fails in the case of Zn in

ZnO. Because of the full occupancy of the 3d states, they
become rather insensitive to small linear perturbations,
yielding unreliable numerical values of U [36,119]. Lee
and Kim [35] have proposed an extension to cLDA method
for systems with closed-shell localized electrons. They
found U3d ¼ 5.4 eV for Zn by applying a large perturba-
tion potential and correcting for the excess potential needed
to reach the onset of the electron-density response.

IV. DISCUSSION

Indeed, the ACBN0 functional satisfies the rather ambi-
tious criteria outlined by Pickett et al. [41]:

(I) ACBN0 reduces to (LDA)PBE when (LDA)PBE is

known to be good.—The reduction of U → 0 arises
with the introduction of the “renormalized” density
matrix P̄ (instead of the regular density matrix P),
which makes U dependent on the degree of locali-
zation of the Bloch states.
A toy model with two basis functions m and

m0 reveals the scaling of Eq. (12) as Ū ∼
1

4
NmNm0ðmmjm0m0Þ, in contrast to Ū ∼

ðmmjm0m0Þ when using the regular density matrix
instead. Delocalized Bloch states are assumed to be
properly described at the LDA(PBE) level. The more
delocalized a state, the lower the charge projected
inside the atomic sphere (Nm ≈ Nm0 → 0), and
thereby U vanishes quadratically. See, for instance,
the case of Ti U3d in TiO2, or silicon where ACBN0
yields U2p ≈ 0 eV.

(II) The energy is given as a functional of the density.—

The value of U in ACBN0 depends only on the
electron density, with a set of fixed PAOs fmg
chosen a priori to define U. The ACBN0 functional
can be considered a zeroth-order pseudohybrid
density functional in the sense that it includes an
on-site form of the Hartree-Fock exchange. The
results for the test systems studied here follow
closely the more established and far computationally
more expensive sX-LDA hybrid functional. More-
over, the methodology presented in this work can
be immediately generalized to evaluate the nonlocal
exchange energy for solids by computing the full set
of required two-electron integrals. Thus, one could
have a hybrid-functional plane-wave DFT calcula-
tion that is as fast as LCAO hybrid functionals while
still benefitting from the robust parallel fast-Fourier-
transform algorithms and systematic basis-set con-
vergence of plane waves.

(III) The method specifies how to obtain the local orbital

in question.—ACBN0 directly parallels the original

(a) (b)

FIG. 5. Effect of the zinc on-site Coulomb repulsion U3d on the
occupied 3d bands. An ad hoc value of U3d ¼ 9.0 eV (a) is
compared against the converged value of 12.8 eV (b). Both cases
use the converged values of U2d ¼ 5.29 eV for oxygen.
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orbital-dependent DFTþ U functional of Anisimov
that uses atomic orbitals fmg. Conceptually, the
localized states φ are linear combinations of fmg
with the expansion coefficients obtained self-
consistently. Thus, they reflect the chemical envi-
ronment of the site; however, the expansion
coefficients need not be explicitly known. Even
though the information of the coefficients is con-
ceptually included in the renormalized density ma-
trix, they are not individually resolved. Such LCAO
expansion is more general and suitable for cases
where the localized bands are not readily disen-
tangled from other bands, which happens when the
orbitals φ are not thoroughly well localized.

(IV) ThedefinitionofŪ and J̄ isprovidedunambiguously.—
See Eqs. (12) and (13).

(V) The method predicts antiferromagnetic insulators

when appropriate.—This is demonstrated by the
results presented for TiO2, MnO, NiO, and ZnO. The
flexibility of ACBN0 is that it allows the calculation
of Ū and J̄ for any atom in the system of interest,
yielding, for instance, non-negligible values for the
2p lone pair of oxygen in transition-metal oxides
or for the p states of the anion in transition-metal
chalcogenides. Through the inclusion of these terms,
ACBN0 corrects both the band gap and the relative
position of the different bands, in particular, the ones
deriving from the d orbitals of transition-metal
atoms. This characteristic of ACBN0 is crucial for
improving the agreement with experimental results.
Generally, the experimental band gap of TMOs
cannot be reached if considering only the TM.
Paudel and Lambrecht [120] suggested the simulta-
neous use of U on both the 3d and 4s orbitals of Zn
to reach the experimental gap; however, a large value
on Zn U4s ¼ 43.5 eV was needed. Finally, our
results predict the stability of the antiferromagnetic
phases of both MnO and NiO. However, a more
thorough discussion on the relative stability of
different magnetic phases will be the subject of a
forthcoming publication [121].

V. CONCLUSIONS

In conclusion, we have introduced ACBN0, a pseudo-
hybrid density functional that incorporates the Hubbard
correction of DFTþU as a natural function of the electron
density and chemical environment. The values of Ū and J̄
are functionals of the electron density, and they provide a
variational way of obtaining the proper description of
insulators such as transition-metal oxides. Although a more
extensive validation of this functional is needed, the first
results of our tests show improved agreement to higher
levels of theory (hybrid functionals or the GW approxi-
mation) and to experimental measurements for the elec-
tronic properties of TMOs at a fraction of the computational

cost. This is an essential requirement for the design-
efficient algorithms for electronic structure simulations
of realistic material systems and massive high-throughput
investigations [1].
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APPENDIX A: THE PAO-3G

MINIMAL BASIS SET

The PAO basis functions ϕlmðrÞ≡ ðRlðrÞ=rÞ×
Y
mfc;sg
l ðθ;φÞ are in fact obtained by solving the pseudo-

potential Kohn-Sham equation for a given atomic reference

configuration, where Y
mfc;sg
l are real-valued spherical

harmonics [122]. Given that the radial and angular
parts are separable, they can be directly fitted using
linear combinations of spherical-harmonic Gaussian func-

tions Gsðr;l;m;ζÞ¼rle−ζr
2

Y
mfc;sg
l ðθ;φÞ. Then, ϕðrÞ¼

PNG

i¼1
aiGsðr;l;m;ζiÞ. The expansion coefficients fag and

exponents fζg are found by fitting to RlðrnÞ, which is
performed by using the nonlinear least-square Levenberg-
Marquardt algorithm to minimize the deviation,

X

rn

�

X

NG

i¼1

air
lþ1
n e−ζir

2
n − RlðrnÞ

�2

: ðA1Þ

RlðrÞ is evaluated at a logarithmic radial mesh frng and
provided in the atomic pseudopotential files taken from the
PSlibrary 1.0.0 [58]. We only use norm-conserving pseu-
dopotentials since they guarantee the charge conservation
of ϕ. The initial guess for the coefficients and exponents is
taken from the STO-3G [123,124] basis set, which asso-
ciates three Gaussian functions per orbital (NG ¼ 3), from
the EMSL library [125].
Traditionally, Cartesian Gaussian functions of the type

Gcðr; lx; ly; lz; ζÞ ¼ xlxylyzlze−ζr
2

are held as the most
efficient basis to compute the staggering number of
two-electron integrals needed in quantum chemistry
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calculations. We follow the procedure by Mathar [122,126]
to further convert each spherical-harmonic Gaussian into
a linear combination of Cartesian Gaussians. Then, the
Cartesian expansion of the PAOs is

ϕlmðrÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þ!!
πNl;m

s

fl;mðx; y; zÞ
X

NG

i¼1

aie
−ζir

2

; ðA2Þ

where fl;mðx; y; zÞ is given in Table IV.
An example of this fitting procedure is shown in Fig. 6

for Zn-3d and O-2p PAO. Having the PAOs expressed as a

linear combination of Gaussian-type orbitals in Eq. (A2) is
largely advantageous since it allows computation of the
ERIs in a straightforward and analytical way. Furthermore,
Gaussians allow the filtering out of ERIs with negligible
energy contribution [128] further speeding up calculations,
as implemented in the Heyd-Scuseria-Ernzerhof HSE03
[26] hybrid functional.

APPENDIX B: CALCULATION OF THE

REAL-SPACE HAMILTONIAN AND DENSITY

MATRICES FROM THE PLANE-WAVE

ELECTRONIC STRUCTURE

The solid is efficiently calculated using plane-wave DFT
on a unit cell with periodic boundary conditions. The plane-
wave basis allows a systematic convergence of the basis-set
energy error, which is controlled by a single energy-cutoff
parameter. Periodic-boundary conditions are implicit to
the plane-wave basis, thus avoiding the presence of
surface effects intrinsic to molecular cluster calculations.
Moreover, plane waves allow the use of robust and scalable
Fourier-transform algorithms. We follow the method
described in Ref. [11] to project the k-space electronic
structure of the solid onto an atomic-orbital space by
filtering out high-kinetic-energy plane waves. The resulting
reciprocal-space HamiltonianHσ;k and overlap Sk matrices
are then Fourier transformed into real space, resulting in

Hσ;0R ¼ 1
ffiffiffiffiffiffiffi

Nk

p
X

k

e−ik·RSk
1

2Hσ;kðκ; NÞSk1

2; ðB1Þ

S0R ¼ 1
ffiffiffiffiffiffiffi

Nk

p
X

k

e−ik·RSk: ðB2Þ

The parameters κ and N, defined in Ref. [11], determine
the shifting and filtering for the projection procedure. The
overlap integral between a basis function ϕμ located inside
the primitive unit cell (lattice vector 0) and the periodic
translation of ϕν to lattice vector R is the matrix
element S0Rμν ¼ hμ0jνRi.
The real-space density matrix is then computed as

Pσ;0R
μν ¼ 1

ffiffiffiffiffiffiffi

Nk

p
X

k;i

e−ik·RNkσ
ψ i
ckσμi c

kσ
νi ; ðB3Þ

where Nkσ
ψ i

¼ 1 for all occupied states ψkσ
i . The expansion

coefficients ckσμi are the components of the generalized
eigenvectors of Hσ;k and Sk.
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