

Abstract	Abstract:Reconfigurable intelligent su promising solution in constructing reco	and Communication Technology		
Document	propagation channel and boosting V	iew more		
Sections	N Matadata		Robust Energy Efficiency Optimization for	
I. Introduction			Amplify-and-Forward MIMO Relaying	
	ADSTRACT:) has been viewed as a promising	Systems	
II. System Model	Reconfigurable intelligent surface (RIS) has been viewed as a promising	IEEE Iransactions on Wireless	
III Proposed AO	solution in constructing reconfigurable	radio environment of the propagation		
Scheme	passive elements' phase shifts at the F	Published: 2019		
	this article focuses on joint beamformin	Show Moro		
IV. Complexity	hybrid satellite-terrestrial relay network	s where the links from the satellite and	Show More	
Analysis	base station (BS) to multiple users are	blocked Specifically a refracting RIS		
V. Numerical	cooperates with a BS, where the latter	operates as a half-duplex decode-and-		
Results	forward relay. in order to strengthen the	e desired satellite signals at the blocked		
Show Full Outline	users. Considering the limited onboard	power resource, the design objective is		
•	to minimize the total transmit power of			
A 41	guaranteeing the rate requirements of	users. Since the optimized beamforming		
Autnors	weight vectors at the satellite and BS,	and phase shifters at the RIS are		
F igure e	coupled, leading to a mathematically in	tractable optimization problem, we		
rigules	propose an alternating optimization scl			
References	decomposition and uplink-downlink du	ality to optimize beamforming weight		
Relefences	vectors, and using Taylor expansion ar			
Citations	phase shifters iteratively. Finally, simula	ation results are provided to verify the		
	superiority of the proposed scheme co			
Kevwords				
···· , ·····	Published in: IEEE Transactions on A			
Metrics	Volume: 58 , Issue: 4, August 2022)			
Moro Liko Thio				
	Page(s): 3717 - 3724	INSPEC Accession Number:		
Footpotes	Date of Publication: 03 March 2022	21953795		
1 00010105	3	DOI: 10.1109/TAES.2022.3155711		

Publisher: IEEE

Print ISSN: 0018-9251 Electronic ISSN: 1557-9603 CD: 2371-9877

Funding Agency:

ISSN Information:

10.13039/501100001809-National Natural Science Foundation of China (**Grant Number**: 61871389, 61901490, 61901502 and 62071352)

Research Plan Project of NUDT (Grant Number: ZK21-33 and ZK18-01-02)

Young Elite Scientist Sponsorship Program (**Grant Number**: 2021-JCJQ-QT-048 and R-STR-5010-00-Z)

SIGCOM RG of Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg

10.13039/501100012152-National Postdoctoral Program for Innovative Talents (**Grant Number**: BX20200101)

Zhi Lin

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

Hehao Niu

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

Kang An

Sixty-third Research Institute, National University of Defense Technology, Nanjing, China

Yong Wang Institute of Electronic Countermeasure, National University of Defense

3 of 7

Technology, Hefei, China

Gan Zheng

Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, U.K.

Symeon Chatzinotas University of Luxembourg, Esch-sur-Alzette, Luxembourg

Yihua Hu

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

E Contents

I. Introduction

As an emerging candidate for beyond 5G (B5G) and future 6G communication systems, satellite communications (SATCOM) have attracted significant attention in both military and civil applications owing to their advantages of vast communication coverage and long distance transmission, which can be widely utilized in disaster relief, global navigation, and communication access in unpopulated regions [1]–[5]. However, the quality-of-Sign in to Continue Reading service (QoS) of SATCOM is vulnerably affected by shadow effects, and the line-of-sight (LoS) channel link would be severely deteriorated, especially in urban environments [6]. To address this issue, by employing terrestrial nodes as relays to forward and strengthen the satellite signals at the receivers, the architecture of hybrid satellite-terrestrial relay network (HSTRN) has been proposed in this regard for providing truly seamless connectivity in both densely and sparsely populated areas [7]–[9]. Recently,

4 of 7

significant efforts have been devoted to exploiting HSTRN from various perspectives. Specifically, Huang et al. [10] first obtained the beamforming vectors at the relay, and then the closed-form expressions for the outage probability and ergodic capacity with two scheduling schemes were derived in the considered HSTRN. In [11], two adaptive transmission schemes in HSTRN with decode-and-forward (DF) relaying protocol were investigated. Besides, Sharma et al. [12] focused on a hybrid satelliteterrestrial spectrum-sharing system, and investigated an overlay spectrum sharing protocol by proposing partial and opportunistic selection schemes. Moreover, a channel estimation and detection scheme was investigated by Arti [13], and then further derived the analytical diversity order of the HSTRN with channel gains estimation.

Authors

~

Zhi Lin

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

Hehao Niu

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

Kang An

Sixty-third Research Institute, National University of Defense Technology, Nanjing, China

Yong Wang

Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China

	Gan Zheng Wolfson Sc Loughborou	hool of Mechanical, Electrical, ugh University, Loughborough,				
	Symeon Chatzinotas University of Luxembourg, Esch-sur-Alzette, Luxembourg Yihua Hu Institute of Electronic Countermeasure, National University of Defense Technology, Hefei, China					
	Figures			~		
	References			~		
	Citations	S		~		
	Keywords			~		
	Metrics			~		
IEEE Personal Ace	count Footnotes	Purchase Details	Profile Information	~	Need Help?	Follow
CHANGE USERNAME/PASSV	WORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES		US & CANADA: +1 800 678 4333	f in ¥
		DOCUMENTS	PROFESSION AND EDUCATION		WORLDWIDE: +1 732 981 0060	
			TECHNICAL INTEREST	3	CONTACT & SUPPORT	

About IEEE *Xplore* | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | IEEE Privacy Policy

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.