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ABSTRACT

One of the applications of refraction-traveltime tomography

is to provide an initial model for waveform inversion and

Kirchhoff prestack migration. For such applications, we need a

refraction-traveltime tomography method that is robust for co-

mplicated and high-velocity-contrast models. Of the many re-

fraction-traveltime tomography methods available, we believe

wave-based algorithms to be best suited for dealing with com-

plicated models.

We developed a new wave-based, refraction-tomography al-

gorithm using a damped wave equation and a waveform-inv-

ersion back-propagation technique. The imaginary part of a co-

mplex angular frequency, which is generally introduced in

frequency-domain wave modeling, acts as a damping factor. By

choosing an optimal damping factor from the numerical-dis-

persion relation, we can suppress the wavetrains following the

first arrival. The objective function of our algorithm consists of

residuals between the respective phases of first arrivals in field

data and in forward-modeled data. The model-response, first-

arrival phases can be obtained by taking the natural logarithm

of damped wavefields at a single frequency low enough to yield

unwrapped phases, whereas field-data phases are generated by

multiplying picked first-arrival traveltimes by the same angular

frequency used to compute model-response phases.

To compute the steepest-descent direction, we apply a

waveform-inversion back-propagation algorithm based on the

symmetry of the Green’s function for the wave equation �i.e.,

the adjoint state of the wave equation�, allowing us to avoid di-

rectly computing and saving sensitivities �Fréchet derivatives�.

From numerical examples of a block-anomaly model and the

Marmousi-2 model, we confirm that traveltimes computed from

a damped monochromatic wavefield are compatible with those

picked from synthetic data, and our refraction-tomography

method can provide initial models for Kirchhoff prestack depth

migration.

INTRODUCTION

Refraction tomography has enjoyed widespread use in the delin-

eation of shallow subsurface structures. Refraction tomography

has proved to be valuable for obtaining the shallow-structure infor-

mation needed for static corrections in seismic-reflection data pro-

cessing. Recently, refraction tomography also was employed to ob-

tain initial velocity models for waveform inversion and Kirchhoff

migration, processes that are sensitive to the initial model. Since

refraction tomography requires an efficient and accurate method to

compute traveltimes and their Fréchet derivatives, there are a vari-

ety of refraction-tomography inversion algorithms in the literature.

Early refraction-tomography methods were based on blocky pa-

rameterization, which generally suffered from a velocity-depth

trade-off. To circumvent this, Hampson and Russell �1984� and

Schneider and Kuo �1985� solved for the weathering thickness by

assuming that velocity information is known. Docherty �1992�

studied a method of extracting both depth and velocity. Ray-based,

refraction-traveltime tomography became feasible for complicated

models by applying cell parameterization. In cell-based ray-tracing

traveltime tomography, the Fréchet derivative is expressed as the

distance measured along a raypath in a velocity cell. White �1989�,

Zhu and McMechan �1989�, and Stefani �1995� described this ap-

proach as turning-ray tomography.

Ray-based refraction tomography sometimes encounters an ill-

posed inverse problem, which can be resolved by introducing regu-

larization �see Scales et al., 1990; Zhang and Toksöz, 1998�. Ray-

based traveltime-tomography methods are only valid for smooth

media �Zelt and Barton, 1998�; moreover, the minimization of an
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additional damping term, in the case of regularization being ap-

plied, penalizes the model roughness.

In order to overcome this weakness in ray-based traveltime to-

mography, wave-based methods �Woodward and Rocca, 1988;

Woodward, 1992; Luo and Schuster, 1990; 1991; Schuster and

Quintus-Bosz, 1993� and Fresnel-volume methods �Vasco et al.,

1995� have been suggested. Most wave-based traveltime-tomogra-

phy techniques extract phase differences of first arrivals by apply-

ing a time window or a connective function and computing the

steepest-descent direction through a back-projection technique.

Pyun et al. �2005� proposed using damped monochromatic wave-

fields for calculating traveltime residuals and explicitly computed

Fréchet derivatives using the reciprocity theorem in their refrac-

tion-tomography algorithm. Wave-based refraction tomography

can give reliable solutions for a complicated and high-velocity-

contrast model, but it requires more computational effort than the

ray-based method. The Fresnel-volume method, which is a modi-

fied ray-tracing method that computes Fresnel volumes along ray-

paths rather than wavepaths, does not require more computational

effort than do the conventional ray-based methods. Although the

Fresnel-volume method can be computationally more efficient than

the wave-based method, it sometimes fails at low frequencies near

the source and receiver �Vasco et al., 1995�.

In this study, we suggest a new wave-based refraction-tomogra-

phy method that extracts first-arrival traveltimes from a damped

wavefield at a single frequency and computes the steepest-descent

direction by using a back-propagation algorithm. Our method is

similar to that of Pyun et al. �2005� in that we take the natural loga-

rithm of the damped monochromatic wavefield �u��� = A���ei����;

A��� is the amplitude and ���� is the phase� to extract first-arrival

phase information, but we do not directly compute Fréchet deriva-

tives to find the steepest-descent direction. To compute the steep-

est-descent direction, we use a back-propagation algorithm of re-

verse time migration similar to that used in conventional wave-

based tomography techniques. That is, we back-propagate residu-

als between field data and model responses, then correlate the

back-propagated residuals with virtual sources generated by for-

ward modeling, which is based on the adjoint state of the damped

wave equation. Lailly �1983� and Tarantola �1984� showed theo-

retically that waveform inversion was equivalent to migration

when applied to reflection data, and the back-propagation algo-

rithm has been commonly used in seismic-waveform inversion

�e.g., Gauthier et al., 1986; Pratt et al., 1998� as well as in travel-

time tomography �e.g., Luo and Schuster, 1990, 1991; Schuster

and Quintus-Bosz, 1993�. Among wave-based tomography meth-

ods, our method is very similar to the method of Schuster and

Quintus-Bosz �1993�. The main difference is that Schuster and

Quintus-Bosz �1993� extract first-arrival traveltimes by applying a

time window to band-limited wavefields, a process that leads to

wrapped phases, whereas our method applies a damped wavefield

at a frequency low enough to yield unwrapped phases.

In the following sections, we review the relationship between

first-arrival traveltime and the strongly damped wavefield, and

then we examine the adjoint state of the damped wave equation

used in frequency-domain modeling. Next, we introduce our new

refraction-tomography technique via reverse-time migration start-

ing from a matrix formalism �the adjoint state� of the wave equa-

tion in the frequency domain. Finally, we show numerical ex-

amples generated by our tomography algorithm for the block-

anomaly model and the Marmousi-2 model. We also present

Kirchhoff migration images obtained from the velocity structure

yielded by our refraction-tomography algorithm.

THEORY

A damped-wave equation

In the frequency domain, the 2D constant-density acoustic wave

equation can be expressed by

− �2u = v
2� �2u

�x2
+

�2u

�z2 � , �1�

where � is the angular frequency and u is the pressure or displace-

ment. A discretized finite-difference or finite-element formula of

equation 1 can be written as

Su = f , �2�

with

S = K − �2M , �3�

where S is the impedance matrix, K is the stiffness matrix, M is the

mass matrix, u is the wavefield vector, and f is the source vector

�Marfurt, 1984�. In most cases, the impedance matrix S is symmet-

ric, which indicates that the wave equation is self-adjoint.

In frequency-domain modeling, we often use the complex angu-

lar frequency ��* = � + i�� rather than the real angular frequency

to suppress wraparound effects �Aki and Richards, 1980; Shin et

al., 2003a�, and a wavefield with the complex angular frequency

can be expressed �Shin et al., 2003a� as

u�x, y, z, �� = A�x, y, z�ei�*��x, y, z�

= A�x, y, z�ei��+i����x, y, z�

= A�x, y, z�e−���x, y, z�ei���x, y ,z�, �4�

where A�x, y, z� is the amplitude, � is the damping factor, and

��x, y, z� is the traveltime from the source to the receiver or depth.

In equation 4, the complex angular frequency’s imaginary term

acts as a damping term, leading to a damped complex impedance

matrix. The damped complex impedance matrix is still symmetric,

which guarantees reciprocity and consequently allows us to em-

ploy the adjoint state of the damped wave equation. By introducing

a damping factor in frequency-domain modeling, we suppress

wavetrains following the first arrival �e.g., Shin et al., 2003a�. An

optimal damping factor can be determined by equation A-1. In

practice, however, if we use the damping factor determined by

equation A-1, we may encounter numerical overflow. As a result,

we must adjust the damping factor in order to avoid numerical

overflow within 32-bit double-precision limit.

We illustrate damping effects using the block-anomaly model

shown in Figure 1. As indicated, the entire model is 3 km �

0.5 km, and the block-anomaly body is 0.4 km � 0.2 km. The ve-

locities of the first layer, the second layer, and the block-anomaly

body are 1.5 km/s, 4.5 km/s, and 3.0 km/s, respectively. Because

we use a grid interval of 15 m, the number of grid points is 201 and

34 along the x- and z-axes, respectively. Figures 2a and 2b show
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synthetic seismograms generated without and with damping, re-

spectively. In order to generate synthetic seismograms, we solve

the two-way wave equation using the nine-point finite-difference

method suggested by Jo et al. �1996�. For a damping factor, we

choose 83.8, which is half the value computed by equation A-1.

Figure 2a shows multievents, such as direct waves, refracted

waves, and reflection waves. Figure 2b shows only first arrivals

�either direct waves or refracted waves�. Figures 2a and 2b are

plotted with different gain values. These numerical results show

that we can extract first-arrival information from the damped

wavefield.

According to Shin et al. �2003a�, the first-arrival traveltime can

be determined from the imaginary term of the logarithm of the

damped monochromatic wavefield expressed as

ln u�x, y, z, �� = ln A�x, y, z�e−���x, y, z� + i���x, y, z� . �5�

To check the reliability of traveltimes computed from the loga-

rithm of wavefields at a single frequency, we compare numerically

computed traveltimes with traveltimes picked on synthetic seismo-

grams �e.g., Figure 2a� in Figure 3. Figure 3 shows that numeri-

cally computed traveltimes are comparable to traveltimes picked

on synthetic seismograms. There are some discrepancies in travel-

times obtained from approximately 2.8–3.0 km for the source lo-

cated at 2.25 km, where refracted waves are not detected by the

damped wave equation. The traveltimes are computed at 0.1 Hz,

which is a very low frequency. In general, we wish to use a fre-

quency low enough to obtain unwrapped traveltimes �Mora, 1989�,

and the optimal frequency can be determined by the maximum

traveltime of refracted waves �see Appendix B�.

Refraction-tomography algorithm

By exploiting a matrix formalism of the wave equation in the

frequency domain, Pratt et al. �1998� determine the steepest-de-

scent direction without explicitly computing the Jacobian matrix,

thereby saving computer memory required for storing the Jacobian

matrix and computing time. Following Pratt et al. �1998�, we im-

plicitly calculate the steepest-descent direction in our refraction to-

mography. We define the objective function as the l2 norm of re-

siduals between phases of field data and model responses at an

arbitrarily chosen angular frequency �c:

E =
1

2
eTe , �6�

Figure 1. The geometry of the block-anomaly model.

Figure 2. Synthetic seismograms generated by the nine point finite-
difference method of Jo et al. �1996� for the block-anomaly model
�a� without and �b� with damping factor.

Figure 3. First-arrival traveltimes computed by the 0.1-Hz damped
monochromatic wavefield for the block-anomaly model when a
source is located at 0.075 km, 1.5 km, and 2.25 km. Solid lines in-
dicate traveltimes picked on synthetic seismograms; dotted lines
denote traveltimes computed from the damped monochromatic
wavefields.
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with

e = Im�ln
d��c�
u��c�

� , �7�

where Im indicates the imaginary part of a complex number, and

d��c� and u��c� denote field data and model responses, respective-

ly, at an angular frequency. Because we assume that both field data

and model responses consist only of first arrivals, their logarithms

indicate the phases of their first arrivals. In practice, the phase of

the model responses is computed by the logarithm of the damped

wavefield, whereas the phase of the field data is obtained by pick-

ing first-arrival traveltimes and then multiplying by an angular fre-

quency. The angular frequency is the same one used to compute

model responses by the damped wave equation. When we choose

the frequency, we favor a frequency low enough to avoid the cycle-

skipping effect �Shin et al., 2003a�. We can express the field data

and the model responses as

dij��c� = Aij
f ei�ij

f

= Aij
f ei�ctij

f

, �8�

uij��c� = Aij
mei�ij

m

= Aij
mei�ctij

m

, �9�

where the superscripts m and f represent model response and field

data, and i and j denote source and receiver numbers, respectively.

For simplicity, we assume that receivers are located at all grid

points of the surface. The objective function expressed by equa-

tions 6 and 7 can be rewritten as

E =
1

2
�
i=1

M

�
j=1

N

��ij
f − �ij

m�2. �10�

In the steepest-descent method, it is necessary to compute the

gradient of the objective function. By taking the derivative of

equation 10 with respect to the kth velocity vk �we divide a 2D

model into K cells, k = 1,2, . . . ,K�, we express the gradient of the

objective function as

�E
vk

= − �
i=1

M

�
j=1

N

��ij
f − �ij

m�
��ij

m

�vk

, �11�

where the partial-derivative wavefield of the phase with respect to

the kth velocity is

��ij
m

�vk

= − Im� 1

uij

�uij

�vk

� . �12�

Substituting equation 12 into equation 11 gives

�E
vk

= �
i=1

M

�
j=1

N

��ij
f − �ij

m�Im� 1

uij

�uij

�vk

� . �13�

To express equation 13 using the model coordinates rather than re-

ceiver coordinates, we augment the phase residual vector by zero

values and move 1/uij in equation 13:

�E
vk

= �
i=1

M

Im�	 �ui1

�vk

�ui2

�vk

¯
�uiN

�vk

�ui�N+1�

�vk

¯
�uiK

�vk


�
�i1

f − �i1
m

ui1

�i2
f − �i2

m

ui2

]

�iN
f − �iN

m

uiN

0

]

0

�
�14�

or

�E
vk

= �
i=1

M

Im�	 �ui

�vk


ri� �15�

with

ri = �
�i1

f − �i1
m

ui1

�i2
f − �i2

m

ui2

]

�iN
f − �iN

m

uiN

0

]

0

� . �16�

The partial-derivative wavefield with respect to velocity ��ui/

�vk� can be computed with the virtual source �Pratt et al., 1998� and

the modeling operator from equation 2. If we take the partial de-

rivative of equation 2 with respect to the kth velocity vk, we obtain

�S

�vk

ui + S
�ui

�vk

= 0. �17�

Rearranging equation 17 gives

�ui

�vk

= S−1fk,i
* , �18�

and

fk,i
* = −

�S

�vk

ui. �19�

We define fk,i
* as the virtual-source vector required to compute the

partial derivative of the wavefield with respect to the kth velocity.

By substituting equations 18 and 19 into equation 15, we ex-

press the gradient of the objective function with respect to the kth

velocity as
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�E
vk

= �
i=1

M

Im�fk,i
*T�S−1�Tri� , �20�

and the total gradient of the objective function is written as

�E = �
i=1

M

Im�Fi
*T�S−1�Tri� , �21�

given that

Fi
* = �f1,i

* f2,i
* ¯ fk,i

* ¯ fK,i
* � . �22�

Equation 21 implies that to compute the steepest-descent direction,

we divide the phase differences by the damped wavefields, back-

propagate the divided phase differences, and then compute the sca-

lar products between damped back-propagated residuals and dam-

ped virtual sources.

In an inversion algorithm using the steepest-descent method, the

velocity parameter can be updated by

v
�n+1� = v

�n� − ��n� � E�n�, �23�

where n is the iteration number and ��n� is the step length, which is

chosen to minimize the l2 norm in the steepest-descent direction

�Pratt et al., 1998�. In our algorithm, we use a constant step length,

whose value is dependent on model dimensions.

Numerical structure in equation 21 is very similar to that of

waveform inversion proposed by Pratt et al. �1998�. The main dif-

ference between our tomography algorithm and Pratt et al.’s

waveform-inversion algorithm is that Pratt et al. back-propagates

data residuals at banded frequencies, and we back-propagate only

the phase differences divided by damped wavefields at a single

frequency.

In Appendix C, we compare our tomography method to that of

Schuster and Quintus-Bosz �1993�. Schuster and Quintus-Bosz

�1993� introduce a time window to extract first arrivals, which re-

sults in wrapped phases as shown in equation C-3, whereas we use

damped wavefields at a very low frequency, which yields un-

wrapped phases. Since we use only a single frequency, our method

can be more efficient than that of Schuster and Quintus-Bosz

�1993�.

NUMERICAL EXAMPLES

Having used the block-anomaly model �Figure 1� to show that

traveltimes calculated by damped-wave equations are equivalent to

first-arrival traveltimes picked on a synthetic seismogram �e.g.,

Figures 2 and 3�, we use the same model to perform refraction to-

mography. For field-data traveltime, we employ traveltimes com-

puted by the damped-wave equation for the true block-anomaly

model. For the initial model in the inversion algorithm, we use a

linearly increasing velocity model, whose velocity ranges from

1.5 km/s to 4.5 km/s with respect to depth. In Figure 4, we dis-

play the initial-velocity model, the velocity model generated by

our refraction-tomography algorithm, and differences between the

inverted velocities and the true velocities. The finally inverted

model is obtained at the 70th iteration. As usual with the steepest-

descent method, we observed a slow-convergence rate. The con-

vergence rate can be accelerated by using other methods, such as

the conjugate-gradient method. The velocity parameter is updated

by equation 23, and we use a constant value of 100 for the scale

factor �. From Figure 4, we note that the shallow part of the in-

verted velocity model is comparable to the true model. In Figure 5,

we show traveltimes of the inverted velocity model at the 70th it-

eration, and the history of rms errors. For comparison, we also dis-

play traveltimes of the true- and initial-velocity models. The trav-

eltimes of the inverted-velocity model are consistent with those of

the true-velocity models.

To evaluate whether the refraction tomography algorithm can be

applied successfully to a complicated model, we choose the

Marmousi-2 model �Martin et al., 2002� with a grid interval of

20 m �e.g., Figure 6�. In Figure 7, we display first-arrival travel-

times computed with the damped monochromatic wavefield for the

Marmousi-2 model when a source is located at 0.1 km, 4 km,

8 km, 12 km, and 16.9 km. The first-arrival traveltimes are calcu-

lated with a damping factor of 62.83 at 0.05 Hz. For convenience,

we use the first-arrival traveltimes computed by the damped-wave

equation for field data. For the initial model, we also take a veloc-

ity model where the velocity increases linearly from 1.5 km/s

to 4.5 km/s with respect to depth. Figure 8 shows the initial model

used for refraction tomography, the inverted velocity model pro-

Figure 4. Numerical examples of our refraction-tomography inver-
sion for the block-anomaly model: �a� the initial model, �b� the in-
verted velocity structure, and �c� differences between inverted and
true velocities.

Refraction tomography R25



duced by refraction tomography at the 50th iteration, and discrep-

ancies between the inverted velocities and the true velocities. Fig-

ure 9a shows traveltimes calculated for the true Marmousi-2

model, the initial model, and the 50th inverted velocity model.

While traveltimes for the initial velocity model are different from

those of the true model, traveltimes for the inverted velocity model

are very close to those of the true model. Figure 9b describes the

history of rms errors of the inversion results for the Marmousi-2

model.

We compare our results for the Marmousi-2 model with those of

a conventional ray-tracing refraction tomography. In ray-tracing

refraction tomography, we apply a simultaneous iterative recon-

struction technique �SIRT� �Dines and Lytle, 1979�, as Pyun et al.

�2005� did. In Figure 10, we display inversion results generated by

SIRT at the 25th iteration, and differences between the SIRT in-

verted model and the true velocity model. By comparing Figure 8

with Figure 10, we note that SIRT gives comparable results to

those for the shallow structure. However, for the deeper part, espe-

cially the wedge and anticline structures, SIRT results are not as

good as ours �compare discrepancies in Figures 8c and 10b�.

Following Pyun et al.’s �2005� approach, we use the velocity

structures obtained by refraction tomography for the initial model

in Kirchhoff prestack depth migration. For comparison, we also

Figure 5. �a� Traveltime curves of the true block-anomaly velocity
model �solid lines�, the initial model �dashed lines�, and the 70th
inverted velocity model �plus symbols� when a source is located at
0.075 km, 1.5 km, and 2.25 km, and �b� the history of rms errors
of the inversion results for the block-anomaly model.

Figure 6. The geometry of the Marmousi-2 model.

Figure 7. First-arrival traveltimes computed by 0.05-Hz damped
monochromatic wavefields for the Marmousi-2 model when a
source is located at 0.1 km, 4 km, 8 km, 12 km, and 16.9 km.

Figure 8. Numerical examples of our refraction-tomography inver-
sion for the Marmousi-2 model, �a� the initial model, �b� the 50th
inverted velocity structure, and �c� differences between the in-
verted velocities and the true velocities.
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perform Kirchhoff migration using the linearly increasing velocity

model and the true-velocity model. For the Kirchhoff migration,

we interpolate the velocity structures so that the grid interval is

8 m and use the most energetic traveltimes synthesized by the

finite-difference method �Shin et al., 2003b�. Figures 11a–11c,

show, respectively, Kirchhoff migration images calculated by us-

ing the true-velocity structure, the linearly increasing velocity

structure, and the inverted-velocity structure for the Marmousi-2

model. We also display Kirchhoff migration images generated by

the SIRT inverted model. In Figure 11, we note that the image gen-

erated by our estimated model is comparable to those from the true

velocity and SIRT velocity models, and much better than that of

the linearly increasing velocity model.

Figure 9. �a� Traveltime curves of the true Marmousi-2 model
�solid lines�, the initial model �dashed lines�, and the 50th inverted
velocity model �plus symbols�, when a source is located at 0.1 km,
4 km, 8 km, 12 km, and 16.9 km, and �b� the history of rms errors
of the inversion results for the Marmousi-2 model.

Figure 10. Numerical examples generated by SIRT for the
Marmousi-2 model: �a� velocity structures inverted at the 25th iter-
ation, and �b� differences between the inverted velocities and the
true velocities.

Figure 11. Kirchhoff migration images generated by �a� the true
velocity, �b� the linearly increasing velocity, �c� our inverted veloc-
ity, and �d� SIRT inverted velocity structure for the Marmousi-2
model.

Refraction tomography R27



CONCLUSIONS

The introduction of a complex frequency in the wave equation

allows us to compute a wavefield consisting largely of a single

pulse at the first-arrival time rather than a complex wavetrain fol-

lowing the �possibly small amplitude� first arrival. Taking the natu-

ral logarithm of this damped wavefield computed at a single, suffi-

ciently low frequency, we directly extract the phase �and thus the

time� of the first arrival. Choosing a very low frequency is neces-

sary to produce unwrapped phase.

Based on the symmetry of the numerical Green’s function �or

the adjoint state� of the damped-wave equation, we construct a

wave-based, refraction-tomography algorithm, whose numerical

structure is exactly the same as that of waveform inversion or

reverse-time migration, except that we solve a damped-wave equa-

tion. In order to compute the steepest-descent direction in our algo-

rithm, we �1� divide the phase differences between field-data and

forward modeled-data first arrivals by a modeled wavefield at the

surface, �2� back-propagate the divided phase differences, and �3�

compute the steepest-descent direction by taking the scalar product

of the back-propagated differences and the damped virtual source.

This indirect computation of the steepest-descent direction allows

us to bypass the burdensome computation of Fréchet derivatives.

The block-anomaly model demonstrated that traveltimes com-

puted from damped wavefields at a single frequency are compa-

rable to traveltimes picked on synthetic data. In order to examine

the feasibility of using our tomography algorithm on complicated

and high-velocity-contrast models, we applied it to the Marmousi-

2 model, and then successfully used the inverted-velocity model

for building an initial-velocity model for prestack Kirchhoff migra-

tion. By comparing the velocity structure generated by our tomog-

raphy algorithm with that of the ray-based tomography algorithm

using SIRT, we demonstrated that our method can yield more reli-

able results.
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APPENDIX A

DAMPING FACTOR

Since the damping factor is the imaginary term of the complex

angular frequency ��* = � + i��, the optimal value of the damp-

ing factor can be determined by a numerical dispersion relationship

for a damped wave equation expressed as

k2 =
�*2

v
2

, �A-1�

which is obtained by replacing the real angular frequency by the

complex angular frequency in a general dispersion relationship.

When we solve a monochromatic damped wave equation, we use a

very low frequency, such as 0.1 Hz or 0.05 Hz, in order to get un-

wrapped phases, which enables us to approximate �*2 = �2 + �2

� �2 �� ≪ ��. Then equation A-1 can be rewritten as

k2 =
�2

v
2

, �A-2�

which is similar to a dispersion relationship of the Laplace-

transformed wave equation in SWEET �see Appendix C in Shin et

al. �2002��. As Shin et al. �2002� did, we can also determine the op-

timal value of damping factor by using

�2 = k2
v

2, �A-3�

� = kv =
2�

�
v , �A-4�

�optimum =
2�

G	
vave, �A-5�

where vave is the average velocity of a given model, 	 is the spatial

grid interval, and G is the number of grid points per wavelength.

The number of grid points per wavelength G is determined by the

numerical dispersion relationship �Jo et al., 1996�. In our algo-

rithm, since we use the nine-point finite-difference operator sug-

gested by Jo et al. �1996�, we choose a value of five for G, in order

to bound the errors within 1%. If we were to use another numeri

cal method, such as the finite-element method, we would need to

choose different values for G. When G = 5, 	 = 20 m, and vave

= 2500 m, the optimal damping factor is about 157. Figure A-1

shows numerical dispersion curves computed for � = 150. In Fig-

ure A-1, we also see that numerical dispersion curve errors are

nearly bounded within 1%, with a grid interval of 20 m.

In practice, we use a smaller damping factor than that deter-

mined by equation A-5, in order to avoid numerical overflow

caused by the 32-bit double precision limit. In our experience,

however, a too small damping factor retards the first-arrival travel-

times.

Figure A-1. Numerical dispersion curves when � = 150 and vave

= 2500 m, where 0, 15, 30, and 45 indicate the propagation angle
with respect to x axis.
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APPENDIX B

AN OPTIMAL FREQUENCY

In our tomography algorithm, we need unwrapped phases, which

are generally obtained by choosing low frequencies �Mora, 1989�.

In the damped frequency-domain modeling for our inversion algo-

rithm, the optimal frequency for preventing cycle skipping is

foptimum 

1

tmax

, �B-1�

where tmax is the maximum recording time, which is chosen to be

the maximum possible traveltimes of refracted waves in a given

velocity model.

APPENDIX C

COMPARISON

We compare our wave-based tomography method with the method

suggested by Schuster and Quintus-Bosz �1993�. In the method of

Schuster and Quintus-Bosz �1993�, the objective function is ex-

pressed as

E =
1

2
�

s

�
r

�
�

R̃rs�����rs
cal − �rs

obs�2 �C-1�

with

�rs
cal��� = Im�ln ũrs

cal���� , �C-2�

where R̃rs��� is the weighting function, �rs
cal and �rs

obs are the calcu-

lated and observed phases, and r and s indicate the receiver and

source positions. The calculated phase �rs
cal��� is computed from

the imaginary part of the logarithm of the first arrival ũrs
cal���,

which is extracted by a time window.

In their method, the gradient with respect to slowness s�x� can

be computed by

�E

�s�x�
= �

s

�
r

�
�

R̃rs�����rs
cal��� − �rs

obs����
��rs

cal���
�s�x�

�C-3�

with

��rs
cal

�s�x�
= Im� ��ln ũrs

cal����
�s�x�

� =
1

�ũrs
cal�
� �ũrs

cal

�s�x�
�sin��rs� − �rs

cal� ,

�C-4�

where �rs� is the phase of the Fréchet derivative �ũrs
cal/�s�x�, which is

computed by a back-propagation algorithm.

By comparing equations C-3 and C-4 with equation 21, we note

that Schuster and Quintus-Bosz �1993� use wrapped phases given

by �sin��rs� − �rs
cal��, whereas we apply unwrapped phases obtained

by choosing a low-frequency wavefield. In addition, our method

employs only a single-frequency damped wavefield, but Schuster

and Quintus-Bosz �1993� apply banded frequencies, permitting our

method to be more efficient than that of Schuster and Quintus-Bosz

�1993�.
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