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S
urface plasmon resonances possess

the ability to confine light at the nano-

scale, below the diffraction limit.1,2

They have attracted strong interest in the

past decade in the context of biochemical

sensing and immunoassays because a

nanoscale perturbation of their local envi-

ronment can be probed optically.3�5 Their

high sensitivity has been instrumental to

push the detection limit of optical sensors

toward a single molecule.3�5 Such a real-

time detection method also has the addi-

tional advantage of being label-free. It

has been recently combined with nano-

optical trapping and manipulation6,7 and

extended to other sensing concepts such

as nanocalorimetry.8 Compact plasmonic

resonators also enable reaching a subcellu-

lar resolution, which has the potential to

improve the understanding of subcellular

processes.5,9 From the optical point of

view, a shift of the resonance frequency of

a plasmonic resonator occurs when the di-

electric properties of the local environment

change upon binding of any analyte under

study.10 Both the sensitivity of the plasmo-

nic mode and the uncertainty in the deter-

mination of its resonance frequency

determine the detection limit.11,12 Plasmo-

nic modes with a long radiative lifetime,

subradiantmodes, possess a strong spectral

dispersion which further improves the limit
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ABSTRACT Plasmonic modes with long radiative lifetimes, subradiant

modes, combine strong confinement of the electromagnetic energy at the

nanoscale with a steep spectral dispersion, which makes them promising for

biochemical sensors or immunoassays. Subradiant modes have three decay

channels: Ohmic losses, their extrinsic coupling to radiation, and possibly

their intrinsic dipole moment. In this work, the performance of subradiant

modes for refractive index sensing is studied with a general analytical and

numerical approach. We introduce a model for the impact that has different

decay channels of subradiant modes on the spectral resolution and contrast. It is shown analytically and verified numerically that there exists an optimal

value of the mode coupling for which the spectral dispersion of the resonance line shape is maximal. The intrinsic width of subradiant modes determines

the value of the dispersion maximum and depends on the penetration of the electric field in the metallic nanostructure. A figure of merit, given by the ratio

of the sensitivity to the intrinsic width, which are both intrinsic properties of subradiant modes, is introduced. This figure of merit can be directly calculated

from the line shape in the far-field optical spectrum and accounts for the fact that both the spectral resolution and contrast determine the limit of

detection. An expression for the intrinsic width of a plasmonic mode is derived and calculated from the line shape parameters and using perturbation

theory. The method of analysis introduced in this work is illustrated for dolmen and heptamer nanostructures. Fano-resonant systems have the potential to

act as very efficient refractive index sensing platforms compared to Lorentz-resonant systems, due to control of their radiative losses. This study paves the

way toward sensitive nanoscale biochemical sensors and immunoassays with a low limit of detection and, in general, any nano-optical device where Ohmic

losses limit the performance.

KEYWORDS: Fano resonances . electromagnetically induced transparency . plasmonic nanosensors . refractive index sensing .

figure of merit . loss engineering
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of detection and makes them very attractive for sens-

ing applications.13,14 When subradiant modes are

coupled to radiation or to a radiative plasmonic mode

(extrinsic radiative channel), their optical spectrum

carries an asymmetric line shape characteristic of Fano

resonances.14�17Overall, subradiantmodes have three

different loss channels: Ohmic losses, the extrinsic

coupling to radiation, and possibly their weak intrinsic

dipole moment.14�16,18 Among Fano-resonant systems,

several designs havebeenproposed, such as dolmens,18�20

nanocrosses,21plasmonic oligomers,22�24 and ring-disk

nanocavities.13,25 Interactions with the substrate have

also been used to tailor the near-field distribution for

increased performances.26,27 The high electromagnetic

field enhancement generated from their excitation

also serves as efficient platforms for surface-enhanced

spectroscopy.28,29 However, due to the complex nature

of the optical spectrum associated with Fano-resonant

systems, a general design method for highly sensitive

plasmonic resonators with a low detection limit has not

yet been formulated.

In this work, we investigate the performance of

subradiant modes for refractive index sensing using a

general analytical model and numerical calculations

and address the specific features of Fano-resonant

systems for refractive index sensing compared to

Lorentz-resonant systems. We introduce a model pre-

dicting the impact that the different decay channels of

subradiant modes have on the spectral resolution and

contrast. We explicitly show that, by engineering their

spectral dispersion, Fano-resonant systems have the

potential to surpass Lorentzian plasmonic resonances

for refractive index sensing: there exists an optimal

value of the coupling for which the spectral dispersion

is maximal and the reduction of Ohmic losses is the key

to increasing this maximum in dispersion.

In particular, the sensitivity of subradiant modes

with respect to global and local perturbations of the

refractive index is first studied. A plasmonic nanostruc-

ture consisting of a dipolar nanoparticle on top of two

parallel nanoparticles supporting a subradiant quad-

rupolar mode is considered, and the case of plasmonic

heptamers is then used as an illustration. An explicit link

between the sensitivity and the distribution of themode

field in the sensing region is shown. Using an analytical

model, we show that both the line shape resolution

and contrast determine the strength of the dispersion

in Fano-resonant systems, and that Ohmic losses deter-

mine the line shape resolution and contrast. An expres-

sion for the intrinsic width of a plasmonic mode is

derived and calculated with two methods: from the line

shape parameters and using perturbation theory. Finally,

a figure of merit for refractive index sensing with sub-

radiant modes, given by the ratio of the sensitivity of

the subradiant mode to its intrinsic width, is introduced.

This figure of merit can be directly calculated from the

line shape parameters in the far-field optical spectrum.

RESULTS AND DISCUSSION

Three Loss Channels in Fano-Resonant Systems. In this

section, the different loss channels in Fano-resonant

systems are defined. Figure 1a shows a plasmonic

nanostructure with an optical response characterized

by a Fano line shape.20,29,30 The top metallic nanorod

represented in red acts as an antenna for receiving and

emitting light. It supports a plasmonic resonance with

a Lorentzian line shape observable in the symmetric

configuration (s = 0, Figure 1b). From Figure 1b, this

mode has a dipolar distribution of charges. The reso-

nance frequency ωa of the dipolar mode is 1.60 eV in

Figure 1, and its spectral width γa is 0.04 eV. On the

other hand, the two bottom nanorods represented in

Figure 1. (a) Schematic of the geometry with l1 = l2 = 100 nm,w = 40 nm, d = 60, nm and e = 20 nm. The period along x and y
direction is 500 nm. The refractive index of the surrounding environment is 1.33 (water), and thematerial of the nanoparticles
is gold. (b) Reflectance spectra of the array for different values of the symmetry breaking s. Insets: Real part of the
z-component of the instantaneous electricfield on a (x,y) plane at half the distance between the top andbottomnanorods at a
photon energy of 1.61 eV.
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blue support a quadrupolar mode, whose electric field

distribution is shown in Figure 1b. Its resonance fre-

quencyω0 is 1.61 eV. The coupling between the dipolar

mode and the quadrupolar mode can be arbitrarily

tuned by breaking the symmetry of the structure. In

the symmetry-broken configuration, some energy is

coupled from the dipolar mode to the quadrupolar

mode; the energy stored in the quadrupolar mode is

either decayed in the metallic nanostructures or

coupled back to the dipolar mode.29 The resonance

width γ of the quadrupolar mode is given by the sum

of two contributions: the intrinsic damping γi and an

extrinsic radiative damping γc. The intrinsic damping γi
is associatedwith the quadrupolarmode only, whereas

the extrinsic radiative damping γc is related to its

coupling to the dipolar mode. The dipolar mode's

Lorentzian response Ra is modulated by this asym-

metric line shape so that the total response R satisfies31

R ¼ Ra
(ω �ω0þqγ)2 þ bγ2

(ω �ω0)
2 þ γ2

(1)

where the parameters q and b describe themodulation

asymmetry and damping, respectively. In Figure 1b,

the reflectance spectra of the system for various values

of the symmetry breaking are calculated numerically.

In the symmetric configuration, the excitation of the

subradiant mode is forbidden by symmetry, so that

the response is only given by a Lorentzian. When the

symmetry is broken, the mode coupling increases,

resulting in an increase of the extrinsic contribution

γc to the Fano resonance width. The modulation

damping parameter can be written as the ratio of the

intrinsic width γi to the total width γ:
29 b= γi

2/(γcþ γi)
2.

The asymmetry parameter provides the spectral loca-

tion of the constructive and destructive interferences

associated with the Fano line shape (Supporting Infor-

mationofGallinet et al.29):q= (ωa
2�ω0

2)/(2γa(1þγi/γc)).

In the example of Figure 1, the dipole moment of

the quadrupolar mode vanishes so that only Ohmic

losses contribute to the intrinsic dampingγi. In general,

a Fano resonance can still occur also when a weakly

radiating mode (with a small but nonvanishing dipole

moment) is coupled to a mode with a large dipole

moment. The intrinsic dampingγihas, in this case, both

a nonradiative and a radiative contribution. In the

following, the weakly radiating mode will be referred

to as the subradiant mode.13 The subradiant mode has

therefore two different radiative loss channels, in addi-

tion to the nonradiative loss channel: one (intrinsic)

from its dipole moment and the other (extrinsic) from

its coupling to the radiative mode. These two channels

contribute differently to the resonance line shape, in

particular, to the modulation damping. In more com-

plex systems, the extrinsic coupling can be divided in

many different channels.32 As will be discussed in the

following, the control of these various loss channels is

key to engineering Fano resonances with a sharp

spectral dispersion.

Bulk and Local Sensitivity of Subradiant Modes. The first

important aspect determining the performance of a

plasmonic mode for refractive index sensing is its

sensitivity. In this section, the sensitivity of Fano-

resonant systems will be compared to the theoretical

limit and to the sensitivity of Lorentz-resonant systems.

The requirements for a figure of merit for Fano-

resonant systems will be discussed.

Because of the small volume of plasmonic modes, a

very small perturbation of the surrounding refractive

index at the nanoscale induces a large shift of their

resonance frequency. If the refractive index of the

system is perturbed by an amountΔnwithin a volume

V, the frequency ω0 of the plasmon mode shifts by an

amount Δω given by

Δω = �Δn ω0

n
VE (2)

where n is the initial refractive index in the perturba-

tion region V, and VE is the fraction of electric field

inside the volume V of perturbation. Equivalents of eq 2

have been derived using perturbation theory.10,12 Its

derivation is shown for completeness in the Methods

section. Equation 2, which is valid for both radiative and

subradiant modes, implies that the frequency shift of

the mode is linear with respect to the refractive index

perturbation. The frequency shift per unit of refractive

index Δω/Δn is the sensitivity of the mode. In Figure 2,

the perturbation is applied to the entire environment,

which canmodel, for example, a change in the composi-

tion of the liquid surrounding the nanoparticles. The

refractive index of the unperturbed environment is

chosen to be 1.33, corresponding to the refractive index

of water. In this particular case of bulk perturbation, the

spectral shift is determined by the proportion of the field

that lies in the environment (as opposed to the field

inside the metal). The maximal sensitivity that an elec-

tromagnetic mode can reach corresponds to the situa-

tion where the entire mode lies inside the perturbation

region: (Δω/Δn)max = �ω0/n. The shift as a function of

the refractive index perturbation for a symmetry break-

ing of 10 nm is reported in Figure 2a. The sensitivity

is calculatedbyfitting a linear function andextracting the

slope which gives Δω/Δn = �0.91 eV 3 RIU
�1. As ex-

pected, this value is below the maximal possible sensi-

tivity of�1.21 eV 3 RIU
�1. From eq 2, the ratio of the sen-

sitivity to the maximal sensitivity (Δω/Δn)/(Δω/Δn)max

corresponds to the proportion of the electric field in

the surrounding environment, which in this case is 76%.

In order to increase the sensitivity, the electric field

distribution of the subradiant mode can be engineered

so that ideally 100%of the field lies in the sensing region.

The best improvement in sensitivity Δω/Δn that can

be expected is only (100 � 76)/76 = 32% in this

case. This implies that both the antenna modes and
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the subradiant modes have bulk sensitivities close to the

theoretical limit. Experiments on highly sensitive sub-

radiant modes have been reported in various plasmonic

systems.4,23

Let us now consider a local perturbation of the

refractive index. This situationmodels, for instance, the

binding of a biochemical analyte to the nanoparticles

surface4,18,33 or the conformal coverage by a graphene

sheet.34 In this case, the sensitivity factor (eq 2) and

the FOM (eq 3) strongly depend on the volume and

location of the perturbation. The perturbation induces

a significant spectral shift when it is placed in the

region where the field is the most intense and can also

be further enhanced if the resonance frequency is

matched with the frequency of the vibrational states

of the attached biomolecules.4,18 Sensitive detection

of molecular monolayers has been experimentally

reported using a Fano-resonant system analogous to

the geometry in Figure 1.18 A possible experimental

realization of local perturbation of the subradiant

mode in a three-dimensional structure such as in

Figure 1 would be the following: the fully covered

single nanorod, a dielectric spacer, and the two parallel

nanorods on top which are left uncovered and coated

with a biomolecular monolayer. As an example in

Figure 3, a layer of 4 nm and refractive index 1.55 is

added around the nanoparticles surface. The respec-

tive shifts of the dipolar mode and the subradiant

mode (not shown here) are also linear with respect to

the refractive index perturbation. As expected, the

sensitivity is smaller than for the bulk refractive index

sensing because the overlap between the perturbation

volume and the field is smaller (Figure 3b). As the

volume used for local sensing is included in the volume

used for bulk sensing, a plasmonic mode which has a

low performance for bulk sensing cannot be perform-

ingwell for local sensing. FromFigure 2b and Figure 3b,

the sensitivities of Fano-resonant and Lorentz-

resonant systems are in the same range. This implies,

in particular, that the advantage of Fano-resonant

systems as compared to Lorentz-resonant systems is

not in their sensitivity but in their high spectral mod-

ulation, as will be discussed in the following.

The performance of a plasmonicmode for refractive

index sensing also depends on the uncertainty in the

determination of the resonance frequency.12 An optical

spectrumwith sharp spectral features gives a low limit of

detection, corresponding to the minimal perturbation

that can be detected. For experimental and numerical

approaches where the shift is calculated by fitting the

entire line shape to an analytical formula, the accuracy

and stability of this fit in determining the resonance

frequency depend on the strength of the intensity

variations of the line shape. In experimental measure-

ments, the accuracy is determined by the signal-to-noise

ratio, which also depends on the strength of the intensity

variation at a fixed frequency. For plasmon resonance

with a Lorentzian line shape, the spectral dispersion is

directly related to the spectral width γ, so that a standard

figure of merit (FOM) has been introduced as:11

FOM ¼ sensitivity (eV 3 RIU
�1)

2γ (eV)
(3)

Figure 3. (a) Local refractive index perturbation (i.e., by
selective binding of biomolecules) is represented by an
additional layerwith a refractive index of 1.55 and a thickness
of 4 nm around the nanostructure surface. (b) Corresponding
sensitivity as a function of the symmetry breaking s. The
dashed red line represents the sensitivity of the Lorentzian
plasmon resonance in the symmetric configuration. (c)
Corresponding figure of merit (FOM) as a function of the
symmetry breaking s. The dashed red line represents the
FOM of the Lorentzian plasmon resonance in the symmetric
configuration.

Figure 2. (a) Shift of the Fano resonance frequency as a
function of the bulk refractive index perturbation. (b)
Corresponding sensitivity as a function of the symmetry
breaking s. The dashed red line represents the sensitivity of
the Lorentzian plasmon resonance in the symmetric con-
figuration. (c) Figure of merit (FOM) as a function of the
symmetry breaking s. The dashed red line represents the
FOMof the Lorentzian plasmon resonance in the symmetric
configuration.
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For Lorentz resonances, eq 3 can be interpreted in

general as the product of the plasmonic mode's sensi-

tivity with the local curvature of its spectral line shape

(Methods). The FOM is a unitless number characterizing

the performance of a plasmon resonance for refractive

index sensing. Let us now evaluate the FOM for

Lorentzian resonances in the case of Fano resonances,

where the width γ of the Fano resonance can be

obtained by locally fitting the spectrum to eq 1. The

FOM of the Fano resonance as a function of the sym-

metry breaking is reported in Figure 2c and compared to

the FOM of the Lorentzian resonance in the symmetric

configuration. By definition, the FOM of the Fano reso-

nance is larger because its line shape is spectrally

narrower than the Lorentzian resonance. As the symme-

try breaking increases, the Fano resonance width γ

increases, and by definition, the FOM drastically drops

from 41.8 to 17.8. The sensitivity of both modes is still

comparable. The standard FOM (eq 3) defined originally

for Lorentzian resonances considers only the spectral

width as criterion for the limit of detection. However, in

realistic Fano-resonant systems, a small spectral width is

associated with a low modulation depth so that overall

the spectral dispersion is weak (Figure 1). As a result, the

uncertainty on the position of the Fano resonance

frequency, which determines the limit of detection,

remains high. This situation appears in Figure 2c and

Figure 3c for low symmetry breaking: the sensitivity and

FOM calculations converge in a slower way, and fluctua-

tions are observed. Therefore, in Fano-resonant systems,

the contrast of the modulation is also a very important

quantity which determines the performance for refrac-

tive index sensing, together with the sensitivity and the

spectral resolution. As the FOM only includes the sensi-

tivity and the spectral resolution, a paradoxal situation is

observed where the highest FOM is attributed to a Fano

resonance with the weakest modulation. Therefore, the

standard FOM as defined in eq 3 does not accurately

characterize Fano-resonant systems.

Sensitivity, Spectral Resolution, and Contrast in a Figure of

Merit. It has been previously highlighted that the

performance of a Fano-resonant system for refrac-

tive index sensing depends on its sensitivity and the

strength of the intensity variations of the line shape.

The intensity variation is given by the first derivative

of the line shape and has a maximum on the flanks.

A direct method to evaluate the intensity variations on

the flanks is to calculate the second derivative at the

resonance frequency, which gives the curvature of the

Fano line shape. In analogy, the second derivative of a

Lorentzian line shape at its central frequency is pro-

portional to its width (Methods). In a Fano-resonant

system, this curvature vanishes for zero extrinsic cou-

pling γc, as well as for large values of γc (Figure 1). In

fact, the curvature as a function of the coupling can be

calculated analytically from the line shape parameters

and is proportional to (1� b)/γ2 in the symmetric case

(q = 0, Methods). In Figure 4a, the line shape param-

eters extracted from the fit are used to plot the

curvature as a function of the symmetry breaking.

The analytical formula is in perfect agreement with

the numerically computed second derivative at the

resonance frequency. The curvature reaches a max-

imum when γc = (
√

2� 1)γi, corresponding to b = 1/2.

With this particular value of the coupling, the Fano line

shape shows the largest spectral intensity variations

and therefore is in the optimum configuration for

refractive index sensing.

Let us now discuss how to obtain large spectral

intensity variations with a Fano-resonant system. As

the extrinsic coupling γc has to be adjusted to match

the condition b = 1/2 for maximal curvature, the

intrinsic width determines the value of this maximum,

that is, the limit of detection that can be reached. The

intrinsic width can be extracted from the far-field: it

can be analytically shown that the product
√

bγ = γi

is independent of γc. In Figure 4b, this product is

calculated numerically. As expected, it is constant

and corresponds to the value of the Fano resonance

width when the coupling of the modes approaches

zero. In the absence of an intrinsic dipole moment, an

analytical formula for the intrinsic width can be derived

(Methods):

γi ¼
ω0

2

�

�

�

�

�

Im(εmetal)

Re(εmetal)

�

�

�

�

�

VC (4)

Figure 4. (a) Curvature (i.e., second derivative) of the Fano
line shape at the resonance frequencyω0 as a function of the
symmetry breaking. Red: computed numerically. Green:
evaluated from the line shapeparameters. (b) Purple: spectral
width γ of the Fano resonance as a function of the symmetry
breaking s. Blue: intrinsic width defined by γi =

√

bγ, as a
function of the symmetry breaking s. (c) Bulk sensitivity as a
function of the imaginary part of the metal permittivity ε

compared to the referencevalue εref for s=12nm. (d) FOMFas
a function of the imaginary part of the metal permittivity
calculated with three different methods: from a fit of the
sensitivity and the line shape parameters (red dots), using a
fit of the sensitivity in panel (c) and eqs 2 and 4 (black dots),
and using the linear dependence of the intrinsic width in the
conductivity from the model of eq 4 (green curve).
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where εmetal is the complex dielectric permittivity of

the metallic structure and VC is the fraction of modal

field inside the volume C of conductive material.

Equation 4 implies in particular that intrinsic losses

depend on the conductivity of the material and the

penetration of the field in the conductive material.

Let us now show that the value of the field pene-

tration in eq 4 can be directly obtained from the

sensitivity of the mode to bulk refractive index pertur-

bations, without the need to compute the near-field

explicitly. The sensitivity Δω/Δn extracted from the fit

in Figure 1a provides the relative amount of field in the

surrounding environment from eq 2. In this geometry,

the volume covered by the metal is complementary to

the volume covered by the surrounding environment.

As 76% of the fieldwas found to lie in the environment,

it can be considered that 24% of the field lies in the

metallic volume. This value of the relative field pene-

tration in themetallic structure can be directly inserted

in eq 4. At a photon energy of 1.61 eV, the permittivity

of the gold structure is equal to ε0(�21.75 þ 1.35i)

(according to Johnson and Christy35), which gives an

instrinsic width of 0.0122 eV. This value is in very good

agreement with the average value of 0.0115 eV of

the product
√

bγ in Figure 4b. This confirms that the

intrinsic width of a plasmonic mode satisfies eq 4 and

shows that it can be calculated using perturbation

theory and without the need to perform field integrals.

This method of calculation can be generalized to any

volume and geometry: in order to calculate the relative

amount of field in a volume Vmade of a homogeneous

material, one can calculate the sensitivity of the mode

with respect to a perturbation of the dielectric permit-

tivity in the volume V and extract the relative amount

of the field from the sensitivity. We have therefore

shown two different methods to compute the intrinsic

width of a subradiant mode: one from the resonance

parameters and the other using perturbation theory.

The intrinsic width γi, responsible for the spectral

dispersion, can be engineered in two different ways:

either on the conductive material to reduce the ratio

|Im(εmetal)/Re(εmetal)| or on the subradiant mode field

distribution.

Overall, it appears that Ohmic losses and the sensi-

tivity are the key elements for the design of an efficient

refractive index sensor based on subradiant modes.

The following figure of merit combines these two

aspects in a unitless number:

FOMF ¼ sensitivity (eV 3 RIU
�1)

2
ffiffiffi

b
p

γ (eV)
(5)

where the product
√

bγ is equal to the intrinsic width

of the subradiant mode and can be directly calculated

from the far-field spectrum. The FOMF is intrinsic to the

subradiant mode and takes into account its sensitivity,

the spectral resolution, and the contrast of the line

shape. Compared to thedefinition of the standard FOM

(eq 3), the factor
√

b in eq 5 corrects for the fact that

a narrow Fano line shape is also less modulated. The

FOMF with 8 nm symmetry breaking is 41.2 and 0.3 for

bulk and local perturbation, respectively. The value of

8 nm for the symmetry breaking corresponds to the

condition b = 1/2 for which the spectral modulation is

maximized, but in some systems, the coupling is not

always easily tunable and this particular regime cannot

be reached.31 In Figure 4c,d, the imaginary part of the

nanoparticles' permittivity is multiplied by a factor of

1�3 as compared to the original value in Figure 2 in

order to study the effect of the metal properties on the

FOMF. The sensitivity of the subradiant mode remains

generally constant because the modal field distribu-

tion is almost not affected by variations of the Ohmic

losses. However, the intrinsic width increases drasti-

cally and, as a consequence, the FOMF (Figure 4d). In

Figure 4d, the FOMF is calculated from the sensitivity

using eq 2 and eq 4 (method 1), resulting in a very good

agreement with respect to the values obtained by

direct fitting of the sensitivity and the line shape

parameters. The behavior of the FOMF in Figure 4d

can be predicted with a simple model (method 2),

assuming that the sensitivity is constant and the

intrinsic width is linear with Ohmic losses (eq 4). Such

a strong dependence of the FOMF (i.e., the limit of

detection) with respect to Ohmic losses motivates the

optimization of conductive materials for plasmonic

sensing applications.

Let us now apply this analysis to the case of

plasmonic heptamers of two different materials

(Figure 5), silver and gold. In this system, the outer ring

of nanoparticles hybridizes with the central particle to

form a super-radiant mode and a subradiant mode

with large and low dipole moments, respectively.22�24

The interaction between the super-radiant and the

subradiant modes leads to a Fano interference. The

resonance parameters of eq 1 are extracted from a fit of

the entire line shape (Methods). First, in panels a and b

of Figure 5, the asymmetry of the Fano resonance is

affected by the perturbation. When the difference in

sensitivity between the super-radiant mode and the

subradiant mode is not negligible compared to the

width of the super-radiant mode γa, the asymmetry

parameter is nonzero. The super-radiant mode is less

sensitive than the subradiant mode, and as a conse-

quence, their detuning and the asymmetry are per-

turbed by the change of refractive index. More

specifically in Figure 5b, the fit gives q = 0.22 for a

refractive index of 1.33, whereas it gives q = 0.17 for

a refractive index of 1.40. The spectral line shape is

more symmetric in the perturbed system. The second

main observation is that since the material chosen in

Figure 5a is silver, the subradiant mode has low

intrinsic losses and a relatively high FOMF compared

to gold in Figure 5b. In the heptamer system, the
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coupling between the subradiant mode and the

super-radiant mode has not been tuned to match

the condition of highest spectral dispersion (b = 1/2),

but its FOMF can still be calculated and compared to

the one of the system studied in Figure 1. A recent

study also shows how the Fano line shape in such

hybridized plasmonic systems can be precisely con-

trolled, in particular, the modulation depth.36 Compar-

ing the obtained sensitivity to the maximal possible

value shows that 80 and 60% of the electric field

occupies the environment in the silver and gold hep-

tamers, respectively (eq 2). This corresponds to a

spectral width of 0.007 and 0.049 eV for the silver

and gold heptamers, respectively. These values are

smaller than their respective values of 0.021 and

0.059 eV for the intrinsic widths calculated from the

product
√

bγ.

In the case of Figure 5, the heptamer is isolated and

the subradiant mode can radiate to the side due to

retardation effects.37 In addition, its geometry is such

that the total dipole moment of the subradiant mode

is not vanishing. As a result, an intrinsic radiative loss

channel is added to the subradiant mode, which

contributes to the intrinsic width. In total, there are

two radiative loss channels for the subradiant mode:

one from its weak intrinsic dipole moment, and the

other from its extrinsic coupling to the super-radiant

mode. In such a nonideal case of interaction between

two radiative modes, the calculation using eq 4 pro-

vides only the contribution from Ohmic losses to the

intrinsic width of the subradiant mode, which means

that the radiative and nonradiative contributions of the

intrinsic width can be explicitly calculated using this

method. The existence of a radiative channel intrinsic

to the subradiant mode alters the spectral resolution

and contrast for refractive index sensing, which em-

phasizes the importance of engineering its dipole

moment (in Figure 1, the dipole moment of the quad-

rupolar mode is completely vanishing from symmetry).

An additional radiative intrinsic loss channel can also

be created when the subradiant mode is coupled to

another bright mode, with an orthogonal polarization,

for example.38

Finally, it has been seen that the control of the

different loss channels in Fano-resonant systems is the

key to a low limit of detection and to surpass Lorentz-

resonant systems for refractive index sensing. This

relies on a control of the electric field distribution in

order to increase the sensitivity and decrease Ohmic

losses. Such field engineering, togetherwith the choice

of conducting materials,39 also paves the road to the

optimal performance of a broad range of nano-optical

devices such as plasmonic lasers,40,41 waveguides,42

surface-enhanced spectroscopy,4,28 nonlinear de-

vices,43�45molecular rulers,29,46,47 and to the reduction

of the power consumption of active nanoplasmonic

devices and metamaterials.48

CONCLUSION

In summary, we have analyzed analytically and

numerically the performance of subradiant modes for

refractive index sensing. A nanosensor with a low limit

of detection requires both a high sensitivity and a

strong spectral dispersion of the resonance line shape.

The sensitivity can be enhanced by concentrating the

modal field to the sensing region, whereas the spectral

dispersion is determined by Ohmic losses and the

penetration of the field inside the conductive material.

We have shown analytically and verified numerically

that there exists an optimal value of the extrinsic

coupling for which the spectral dispersion of the

resonance line shape is maximal. The intrinsic width

of the subradiant modes determines the value of the

dispersion maximum. We have introduced a figure of

merit given by the ratio of the sensitivity to the intrinsic

width, which are both intrinsic properties of subradiant

modes and fully characterize their efficiency for refrac-

tive index sensing. This figure of merit can be directly

calculated from the line shape in the far-field optical

spectrum and accounts for the fact that both the

spectral resolution and contrast determine the limit

of detection. An expression for the intrinsic width of a

plasmonic mode has been derived and calculated with

two methods: from the line shape parameters and

using perturbation theory. Fano-resonant systemswith

low Ohmic losses have the potential to act as very

efficient refractive index sensing platforms compared

to Lorentz-resonant systems. This study paves the way

Figure 5. FOMFof an isolated (a) silver and (b) goldheptamer.
The spheres' radius is 30 nm, and their center-to-center
distance is 65 nm. The green and purple lines refer to a
surrounding refractive index of 1.33 and 1.40, respectively.
The thick solid line refers to the calculatedback-scattered light
intensity, the dashed line to the fit with the Fano resonance
formula, and the thin solid line to the extracted Lorentzian
envelope.

A
R
T
IC
L
E



GALLINET AND MARTIN VOL. 7 ’ NO. 8 ’ 6978–6987 ’ 2013

www.acsnano.org

6985

toward sensitive nanoscale biochemical sensors and

immunoassays with a low limit of detection and, in

general, any nano-optical device where Ohmic losses

limit the performance.

METHODS

Numerical Calculations and Fits. The spectra have been calcu-
lated with a surface integral formulation.49 The gold and silver
permittivities of the nanoparticles are taken from experimental
data.35 A plane-wave illumination is always considered, and the
ratio of the intensity of the scattered field to the intensity of the
incident field yields the reflectance. The line shape parameters
are calculated from fitting the reflectance spectra to eq 1. In the
case of Figure 2 and Figure 3, the detuning between the dipolar
and the quadrupolar modes is small as compared to the dipolar
resonance width so that the modulation can be assumed to
be symmetric (q = 0). The ratio of the total reflectance R to the
reflectance in the symmetric system Ra is calculated and locally
fittedby variationof theparametersγ andb. In the caseof Figure 5,
the two modes are supported by the same structure and the
background reflectance Ra does not exist by itself. For each of the
numerically calculated spectra, a fit by variation of seven para-
meters in eq 1 has been performed. For the Lorentzian response
of the super-radiant mode Ra, these parameters are the central
frequencyωa, the spectral width γa, and the amplitude a. For the
Fano modulation, the parameters considered are the central
frequencyω0, widthγ, asymmetry q, andmodulationdamping b.

Spectral Dispersion of Lorentz and Fano Resonances. The line shape
σL of Lorentz-resonant systems is given by the following func-
tion of the frequency: σL(ω) =γL

2/((ω�ωL)
2þ γL

2). The dispersion
is given by the first derivative σL

0
, which vanishes at the

resonance frequency ωL and has a maximum on its flanks.
The strength of the dispersion on the flanks is locally deter-
mined by the curvature (i.e., the second derivative) at the
resonance frequency. It can be easily shown that σL

00
is propor-

tionnal to 1/γL
2, which means that the FOM in eq 3 is propor-

tional to
√

σL
0
. As the spectral width γL increases, the FOM

decreases monotonously. This behavior is in very good agree-
ment with the decrease of the spectral resolution; therefore,
the FOM is appropriate for Lorentz-resonant systems. For Fano-
resonant systems, it is assumed for simplicity that their line
shape is almost symmetric so that the parameter q is neglected.
The line shape σF is given by σF(ω) = ((ω � ω0)

2 þ bγ2)/
((ω � ω0)

2 þ γ
2). The curvature of Fano-resonant systems is

calculated in a similar way as for Lorentz-resonant systems:
σF

00
(ω0) = 2(1 � b)/γ2. The curvature is a non-monotonous

function of the coupling γc, which has a maximum for γc =
(
√

2� 1)γi, corresponding to b=1/2. In this situation, the system
possesses an optimal trade-off between spectral resolution

and contrast. Ideally, a Fano-resonant system has therefore to be

positioned in this coupling regime inorder to optimize the strength

of the spectral dispersion. In the expression of the FOMF in eq 5,

a factor
√

b is introduced as a correction for the FOM including the

contrast. It is proportionnal to themode sensitivity and the last loss

channel which needs to be engineered: Ohmic losses.

Sensitivity of a Localized Plasmon Mode. Let us consider the
Feshbach decomposition of a electric field wave function |Eæ

into a radiative and a nonradiative parts:16,50 |Eæ = P |Eæ þ Q |Eæ.

A unique nonradiativemode E0, defined as the eigenfunction of

the projector to nonradiative modes, Q |E0æ = |E0æ, satisfies the

following eigenvalue equation:16

(QM Q �ω
2
0 I )jE0æ ¼ 0 (6)

where ω0 the real frequency eigenvalue associated to the

nonradiative mode and M is a hermitian operator associated

with the electric field wave equation:

M E(r) ¼ c20
ε(r)

r�r� E(r) (7)

The scalar product is defined by ÆE1|E2æ =
R

d3rε(r)E1
*(r) 3 E2(r) to

guarantee the hermiticity of the operatorM . The nonradiative

mode is normalized: |ÆE0|E0æ|
2 = 1. A perturbation of the di-

electric permittivity Δε over a volume V is now assumed. Using

perturbation theory, the shift Δω of the frequency of the mode

is given by10,12

Δω = �Δn

n
ω0ÆE0jE0æV (8)

where the scalar product of the field is restricted to the volume V

of perturbation. Equation 8 is equivalent to eq 2.
Losses of a Localized Plasmon Mode. In the presence of a current

field |Jæ, such as found in conductive materials, eq 6 can be
written as

(QM Q �ω
2
0 I )jEæ ¼ iωμc2

ε
QjJæ (9)

where μ is the relative magnetic permeability. The formal

solution of eq 9 has the form of |Eæ = |E0æ þ (iωμc2/ε)G0Q |Jæ,

where |E0æ is the solution of the homogeneous problem and G0

its Green's dyadic function. Using a procedure equivalent to the

one in a previous work (Supporting Information in Gallinet

et al.29), the electric field wave function can be written as

QM QjEæ ¼ ω
2
0jE0æ(

ic2μω

2ε
ÆE0jJæjE0æ (10)

where the sign of the second term is chosen with respect to

causality. Let us now assume that the current field is governed

by Ohm's law (|Jæ = σ|Eæ with σ the conductivity of the material)

and restricted to a region C corresponding to the presence of a

conductivematerial. Equation 10 becomes in the assumption of

low current:

QM QjEæ = ω0 ( i
ω0Im(ε)

2Re(ε)
ÆE0jE0æC

� �2

jEæ (11)

where the scalar product of the field is restricted to the volume

C of conductive material. Extracting the imaginary part of the

eigenvalue in eq 11 yields eq 4.
Conflict of Interest: The authors declare no competing

financial interest.

Acknowledgment. Funding from CCMX-FanoSense is grate-
fully acknowledged, as well as stimulating discussions with
H. Giessen on experimental realizations of the three-dimensional
structure of Figure 1 and Figure 3.

REFERENCES AND NOTES

1. Genet, C.; Ebbesen, T. W. Light in Tiny Holes. Nature 2007,
445, 39–46.

2. Maier, S. A. Plasmonics: Fundamentals and Applications;
Springer Science: Berlin, 2007.

3. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.;
Van Duyne, R. P. Biosensing with Plasmonic Nanosensors.
Nat. Mater. 2008, 7, 442–453.

4. Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P.
Plasmons in Strongly Coupled Metallic Nanostructures.
Chem. Rev. 2011, 111, 3913–3961.

5. Yan, B.; Boriskina, S. V.; Reinhard, B. M. Design and Im-
plementation of Noble Metal Nanoparticle Cluster Arrays
for Plasmon Enhanced Biosensing. J. Phys. Chem. C 2011,
115, 24437–24453.

A
R
T
IC
L
E



GALLINET AND MARTIN VOL. 7 ’ NO. 8 ’ 6978–6987 ’ 2013

www.acsnano.org

6986

6. Zhang, W.; Fischer, H.; Schmid, T.; Zenobi, R.; Martin, O. J. F.
Mode-Selective Surface-Enhanced Raman Spectroscopy
Using Nanofabricated Plasmonic Dipole Antennas. J. Phys.
Chem. C 2009, 113, 14672–14675.

7. Juan, M. L.; Righini, M.; Quidant, R. Plasmon Nano-Optical
Tweezers. Nat. Photonics 2011, 5, 349–356.

8. Langhammer, C.; Larsson, E.M.; Kasemo, B.; Zoric, I. Indirect
Nanoplasmonic Sensing: Ultrasensitive Experimental
Platform for Nanomaterials Science and Optical Nano-
calorimetry. Nano Lett. 2010, 10, 3529–3538.

9. Wang, S.; Ota, S.; Guo, B.; Ryu, J.; Rhodes, C.; Xiong, Y.; Kalim,
S.; Zeng, L.; Chen, Y.; Teitell, M. A.; et al. Subcellular
Resolution Mapping of Endogenous Cytokine Secretion
by Nano-Plasmonic-Resonator Sensor Array. Nano Lett.
2011, 11, 3431–3434.

10. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D.
Photonic Crystals: Molding the Flow of Light, 2nd ed;
Princeton University Press: Princeton, NJ, 2008.

11. Sherry, L.; Chang, S.; Schatz, G.; Van Duyne, R.; Wiley, B.; Xia,
Y. Localized Surface Plasmon Resonance Spectroscopy
of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034–
2038.

12. Unger, A.; Kreiter, M. Analyzing the Performance of Plas-
monic Resonators for Dielectric Sensing. J. Phys. Chem. C
2009, 113, 12243–12251.

13. Hao, F.; Nordlander, P.; Sonnefraud, Y.; Van Dorpe, P.;
Maier, S. A. Tunability of Subradiant Dipolar and Fano-
Type Plasmon Resonances in Metallic Ring/Disk Cavities:
Implications for Nanoscale Optical Sensing. ACS Nano
2009, 3, 643–652.

14. Luk'yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.;
Nordlander, P.; Giessen, H.; Chong, C. T. The Fano Reso-
nance in Plasmonic Nanostructures and Metamaterials.
Nat. Mater. 2010, 9, 707–715.

15. Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S. Fano Reso-
nances in Nanoscale Structures. Rev. Mod. Phys. 2010, 82,
2257–2298.

16. Gallinet, B.; Martin, O. J. F. Ab Initio Theory of Fano
Resonances inPlasmonicNanostructures andMetamaterials.
Phys. Rev. B 2011, 83, 235427.

17. Giannini, V.; Francescato, Y.; Amrania, H.; Phillips, C. C.;
Maier, S. A. Fano Resonances in Nanoscale Plasmonic
Systems: A Parameter-FreeModeling Approach.Nano Lett.
2011, 11, 2835–2840.

18. Wu, C.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.;
Altug, H.; Shvets, G. Fano-Resonant Asymmetric Metama-
terials for Ultrasensitive Spectroscopy and Identification of
Molecular Monolayers. Nat. Mater. 2012, 11, 69–75.

19. Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.;
Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier,
S. A. Fano Resonances in Individual Coherent Plasmonic
Nanocavities. Nano Lett. 2009, 9, 1663–1667.

20. Liu, N.; Weiss, T.; Mesch, M.; Langguth, L.; Eigenthaler, U.;
Hirscher, M.; Soennichsen, C.; Giessen, H. Planar Meta-
material Analogue of Electromagnetically Induced Trans-
parency for Plasmonic Sensing. Nano Lett. 2010, 10, 1103–
1107.

21. Verellen, N.; Van Dorpe, P.; Huang, C.; Lodewijks, K.;
Vandenbosch, G. A. E.; Lagae, L.; Moshchalkov, V. V. Plas-
mon Line Shaping Using Nanocrosses for High Sensitivity
Localized Surface Plasmon Resonance Sensing. Nano Lett.
2011, 11, 391–397.

22. Fan, J. A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N. J.;
Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F.
Self-Assembled Plasmonic Nanoparticle Clusters. Science
2010, 328, 1135–1138.

23. Lassiter, J. B.; Sobhani, H.; Fan, J. A.; Kundu, J.; Capasso, F.;
Nordlander, P.; Halas, N. J. Fano Resonances in Plasmonic
Nanoclusters: Geometrical and Chemical Tunability. Nano
Lett. 2010, 10, 3184–3189.

24. Hentschel, M.; Dregely, D.; Vogelgesang, R.; Giessen, H.; Liu,
N. Plasmonic Oligomers: The Role of Individual Particles in
Collective Behavior. ACS Nano 2011, 5, 2042–2050.

25. Fu, Y. H.; Zhang, J. B.; Yu, Y. F.; Luk'yanchuk, B. Generating
and Manipulating Higher Order Fano Resonances in

Dual-Disk Ring Plasmonic Nanostructures. ACS Nano
2012, 6, 5130–5137.

26. Zhang, S.; Bao, K.; Halas, N. J.; Xu, H.; Nordlander, P.
Substrate-Induced Fano Resonances of a Plasmonic:
Nanocube: A Route to Increased-Sensitivity Localized
Surface Plasmon Resonance Sensors Revealed. Nano Lett.
2011, 11, 1657–1663.

27. Cetin, A. E.; Altug, H. Fano Resonant Ring/Disk Plasmonic
Nanocavities on Conducting Substrates for Advanced
Biosensing. ACS Nano 2012, 6, 9989–9995.

28. Ye, J.; Wen, F.; Sobhani, H.; Lassiter, J. B.; Dorpe, P. V.;
Nordlander, P.; Halas, N. J. Plasmonic Nanoclusters: Near
Field Properties of the Fano Resonance Interrogated with
SERS. Nano Lett. 2012, 12, 1660–1667.

29. Gallinet, B.; Siegfried, T.; Sigg, H.; Nordlander, P.; Martin,
O. J. F. Plasmonic Radiance: Probing Structure at the
Angstrom Scale with Visible Light. Nano Lett. 2013, 13,
497–503.

30. Taubert, R.; Hentschel, M.; Kästel, J.; Giessen, H. Classical
Analog of Electromagnetically Induced Absorption in
Plasmonics. Nano Lett. 2012, 12, 1367–1371.

31. Gallinet, B.; Martin, O. J. F. Influence of Electromagnetic
Interactions on the Line Shape of Plasmonic Fano Reso-
nances. ACS Nano 2011, 5, 8999–9008.

32. Yoon, J.; Seol, K. H.; Song, S. H.; Magnusson, R. Critical
Coupling in Dissipative Surface-Plasmon Resonators with
Multiple Ports. Opt. Express 2010, 18, 25702–25711.

33. Piliarik, M.; Kvasnicka, P.; Galler, N.; Krenn, J. R.; Homola, J.
Local Refractive Index Sensitivity of PlasmonicNanoparticles.
Opt. Express 2011, 19, 9213–9220.

34. Mousavi, S. H.; Kholmanov, I.; Alici, K. B.; Purtseladze, D.;
Arju, N.; Tatar, K.; Fozdar, D. Y.; Suk, J. W.; Hao, Y.; Khanikaev,
A. B.; et al. Inductive Tuning of Fano-Resonant Metasur-
faces Using Plasmonic Response of Graphene in the Mid-
Infrared. Nano Lett. 2013, 13, 1111–1117.

35. Johnson, P. B.; Christy, R. W. Optical-Constants of Noble-
Metals. Phys. Rev. B 1972, 6, 4370.

36. Lovera, A.; Gallinet, B.; Nordlander, P.; Martin, O. J. Mecha-
nisms of Fano Resonances in Coupled Plasmonic Systems.
ACS Nano 2013, 7, 4527–4536.

37. Gallinet, B.; Martin, O. J. F. The Relation betweenNear-Field
and Far-Field Properties of Plasmonic Fano Resonances.
Opt. Express 2011, 19, 22167–22175.

38. Wu, C.; Khanikaev, A. B.; Shvets, G. Broadband Slow
Light Metamaterial Based on a Double-Continuum Fano
Resonance. Phys. Rev. Lett. 2011, 106, 107403.

39. Tassin, P.; Koschny, T.; Kafesaki, M.; Soukoulis, C. M.
A Comparison of Graphene, Superconductors and Metals
as Conductors for Metamaterials and Plasmonics. Nat.
Photonics 2012, 6, 259–264.

40. Zheludev, N. I.; Prosvirnin, S. L.; Papasimakis, N.; Fedotov,
V. A. Lasing Spaser. Nat. Photonics 2008, 2, 351–354.

41. Ma, R.-M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X.
Room-Temperature Sub-Diffraction-Limited Plasmon Laser
by Total Internal Reflection. Nat. Mater. 2011, 10, 110–113.

42. Bergman, D. J.; Stockman, M. I. Surface Plasmon Amplifica-
tion by Stimulated Emission of Radiation: Quantum Genera-
tion of Coherent Surface Plasmons in Nanosystems. Phys.
Rev. Lett. 2003, 90, 027402.

43. Tuovinen, H.; Kauranen, M.; Jefimovs, K.; Vahimaa, P.;
Vallius, T.; Turunen, J.; Tkachenko, N. V.; Lemmetyinen, H.
Linear and Second-Order Nonlinear Optical Properties
of Arrays of Noncentrosymmetric Gold Nanoparticles.
J. Nonlinear Opt. Phys. Mater. 2002, 11, 421–432.

44. Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J. Three-
Dimensional Nanostructures as Highly Efficient Genera-
tors of Second Harmonic Light. Nano Lett. 2011, 11, 5519–
5523.

45. Thyagarajan, K.; Butet, J.; Martin, O. J. F. Augmenting
Second Harmonic Generation Using Fano Resonances in
Plasmonic Systems. Nano Lett. 2013, 13, 1847–1851.

46. Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P.
A Molecular Ruler Based on Plasmon Coupling of Single
Gold and Silver Nanoparticles. Nat. Biotechnol. 2005, 23,
741–745.

A
R
T
IC
L
E



GALLINET AND MARTIN VOL. 7 ’ NO. 8 ’ 6978–6987 ’ 2013

www.acsnano.org

6987

47. Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A. P.; Giessen, H.
Three-Dimensional Plasmon Rulers. Science 2011, 332,
1407–1410.

48. Hess, O.; Pendry, J. B.; Maier, S. A.; Oulton, R. F.; Hamm, J. M.;
Tsakmakidis, K. L. Active Nanoplasmonic Metamaterials.
Nat. Mater. 2012, 11, 573–584.

49. Gallinet, B.; Martin, O. J. F. Scattering on Plasmonic
Nanostructures Arrays Modeled with a Surface Integral
Formulation. Photonic Nanostruct. 2010, 8, 278–284.

50. Feshbach, H. A Unified Theory of Nuclear Reactions 0.2.
Ann. Phys. 1962, 19, 287–313.

A
R
T
IC
L
E


