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Refractor imaging using an automated wavefront

reconstruction method

David F. Aldridge* and Douglas W. Olidenburg*

ABSTRACT

The classical wavefront method for interpreting
seismic refraction arrival times is implemented on a
digital computer. Modern finite-difference propagation
algorithms are used to downward continue recorded
refraction arrival times through a near-surface hetero-
geneous velocity structure. Two such subsurface trav-
eltime fields need to be reconstructed from the arrivals
observed on a forward and reverse geophone spread.
The locus of a shallow refracting horizon is then
defined by a simple imaging condition involving the
reciprocal time (the traveltime between source posi-
tions at either end of the spread). Refractor velocity is
estimated in a subsequent step by calculating the
directional derivative of the reconstructed subsurface
wavefronts along the imaged interface. The principle
limitation of the technique arises from imprecise
knowledge of the overburden velocity distribution.
This velocity information must be obtained from up-
hole times, direct and reflected arrivals, shallow re-
fractions, and borehole data.

Analysis of synthetic data examples indicates that
the technique can accurately image both synclinal and
anticlinal structures. Finally, the method is tested,
apparently successfully, on a shallow refraction data-
set acquired at an archeological site in western Crete.

INTRODUCTION

The wavefront method is one of the earliest of the many
techniques for interpreting refraction arrival times. In 1930,
Thornburgh demonstrated that subsurface wavefronts could
be reconstructed from surface arrival times by applying
Huygens’s principle in reverse. Subsequently, Hagedoorn
(1959) elucidated an imaging condition for delineating a
refracting horizon. First, two oppositely propagating wave-

front systems are reconstructed from the arrival times re-
corded on a forward and reverse spread, respectively. Then,
pairs of these subsurface wavefronts intersect on or slightly
below the refracting interface when the sum of their times
equals the known reciprocal time (the shot-to-shot travel-
time). This imaging principle yields the correct spatial locus
of a critically refracting horizon if the earth consists of
constant velocity layers bounded by plane dipping inter-
faces. However, several investigators have demonstrated
that the imaging condition is reasonably accurate even if the
measured arrival times are due to diving rays, rather than
true critically refracted rays (Hagedoorn, 1959; Rockwell,
1967; Schenck, 1967; Hill, 1987). Diving rays may arise from
nonplane structure on the refracting interface, or a velocity
gradient within the underlying medium.

Extensive application of the wavefront method has been
limited by two factors: (1) laborious graphical techniques are
required to construct the subsurface wavefront loci, and (2)
detailed knowledge of the near-surface velocity structure is
necessary. Our research addresses directly the first of these
two issues. Instead of defining the wavefronts by a tedious
graphical application of Huygens’s principle (e.g., Rockwell,
1967), we use a finite-difference computer algorithm to
downward continue surface arrival times through a specified
velocity field. The algorithm is rapid and accurate, and is
capable of handling a heterogeneous velocity structure.

Recently, Hill (1987) downward continued refracted wave-
forms to obtain a two-dimensional image of shallow struc-
ture. Our goal is the same, although we work with arrival
times only. The advantage of this approach lies in its
computational simplicity. Since the propagation algorithm
operates directly in the space-time domain, no transforma-
tions of the recorded wavefield, with attendent concerns
about sampling adequacy, are necessary (Clayton and Mc-
Mechan, 1981; Hill, 1987). Furthermore, true amplitude
recording and processing of the seismic traces are not
required. However, prior picking of these traces to obtain
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the arrival times is necessary, and this may be a time-
consuming job in some situations.

FINITE-DIFFERENCE TRAVELTIMES
Wavefront construction

Vidale (1988, 1990) has recently developed an algorithm
for calculating the first arrival times of a seismic wave
propagating through a two or three dimensional velocity
structure. The velocity field is sampled on a uniformly
spaced 2-D or 3-D grid; plane-wave finite-difference opera-
tors are used to extrapolate the traveltimes from point to
point throughout this grid. Calculations are initiated at a
source point within the predefined velocity field. The algo-
rithm properly handles the various wave types that comprise
first arrivals (body waves, head waves, and diffractions).
Subsequent contouring of the computed traveltime field
yields a visual impression of propagating wavefronts. We
use the phrase wavefront construction to refer to traveltime
loci calculated in this manner. Figure 1 depicts the subsur-
face wavefront systems generated by a sequence of shots
buried in an earth model with undulating surface and refrac-
tor topography. The direct wave through the overburden is
the initial arrival near each shot location. Beyond the cross-
over distance, the wave refracted by the higher velocity
bedrock arrives first. The traveltimes recorded along the
nonplane surface of the model are accurately computed by
assigning a P-wave velocity to the uppermost layer equal to
the speed of sound in air (~350 m/s). Wavefront contours are
then suppressed in this region for visual clarity. The surface
arrival time curves displayed in Figure 2 iliustrate that
nonplane topography has a complicating effect on an inter-
pretation.

We have altered Vidale’s wavefront construction algo-
rithm in two important ways in order to improve its suitabil-
ity for the shallow refraction problem. First, the traveltime
calculations are initiated from a spatially extended source,
rather than a point source. In the 2-D case, source activation
times are specified on and inside a rectangular region located
within the velocity field; arrival times at grid points outside
this rectangle are generated by the normal working of the
algorithm. Since wavefronts are strongly curved in the
immediate vicinity of a point source, use of the plane-wave
finite-difference operators will yield inaccurate traveltimes in
this region. Moreover, these inaccuracies will be propagated
to greater distances, where the plane wave extrapolators are
locally valid. In order to avoid this problem, we calculate the
near-source traveltimes via mathematically exact formulas
appropriate for either a constant or linear velocity field.
Although more complicated velocity distributions can be
considered, these particular velocity functions provide suf-
ficient flexibility for many traveltime computation problems.

Second, the mathematical form of the traveltime extrapo-
lation operator is modified in those cases where there is a
large velocity increase across a grid cell. This situation is
relatively common in the shailow refraction environment.
The interface between unconsolidated overburden and con-
solidated bedrock, or between saturated and unsaturated
alluvium, often represents a sharp velocity increase. In these

cases, as the following analysis indicates, the conventional
traveltime extrapolation formula may fail.

Figure 3a depicts a system of plane wavefronts propagat-
ing across a square grid cell with side length #. We desire to
calculate the arrival time at the corner numbered 4 from the
known arrival times ¢, ¢;, and ¢3 at the other three corners
of the cell. Assuming a plane wave advancing with a con-
stant slowness s, this time is given by 7, = ¢, + (V2h cos
6)s, where the angle 6 describes the ray direction relative to
the cell diagonal. Simple geometric analysis yields
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Fic. 1. Subsurface first arrival wavefronts (contour interval
= 2 ms) for an earth model with undulating surface and
refractor topography. Layer P-wave speeds are vy = 350
m/s, v, = 1500 m/s, and v, = 2500 m/s. Shots are buried
1-m deep and grid cell size is 0.2 m. For visual clarity,
contours within the uppermost layer (air) are suppressed.
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Hence

te =1y +\/2(hs)> = (13 — 1)". (1)

This expression is identical to Vidale’s (1988) equation (3),
which was derived by approximating the partial derivatives
in the 2-D eikonal equation by finite differences and then
solving algebraically for t4. The present derivation clearly
reveals the underlying geometric assumption of plane-wave
propagation.

If the argument of the square root in equation (1) becomes
negative, then the plane-wave extrapolation formula is ob-
viously invalid. This may occur, for example, if there is a
dramatic velocity increase across the cell (implying that the
slowness s assigned to the cell is quite small). In these cases,
we calculate the arrival time ¢, via the alternative formula
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Fi6. 2. Surface arrival time curves for the five wavefront
systems depicted in Figure 1.

ty = min {t; + \/2hs, t + hs, 13 + hs}. ()

The geometric basis of equation (2) is illustrated in Figure
3b. In effect, we abandon the plane-wavefront approxima-
tion altogether and resort directly to Huygens’s principle to
calculate the next traveltime. Although this computed time is
not exactly correct, extensive numerical testing indicates
that equation (2) is superior to the fix advocated by Vidale
(1990) (i.e., if the argument of the square root becomes
negative, take £, = t;).

Wavefront reconstruction

Figure 4 displays the forward and reverse wavefront
systems generated by shooting over a shallow syncline.
These are the wavefronts that give rise to the first arrival
times observed on the surface. The finite-difference travel-
time algorithm can now be used to recreate subsurface
wavefronts from knowledge of the arrival times recorded at
the surface. We place the source rectangle at zero depth and
elongate it greatly in the horizontal dimension. This line
source 1s then activated sequentially (rather than simulta-
neously) with an initiation function T¢(X) derived from the
recorded refraction arrival times T(X):

Ts(X) = Tg — T(X), (3)

where Ty, is the reciprocal time. At source-receiver offsets X
less than the crossover distance, phantom arrival times 7(X)
can be constructed from parallel traveltime curves recorded
from distant shotpoints (Rockwell, 1967; Ackermann et al.,
1986). The line source generates a set of wavefronts radiating

FiG. 3. Finite-difference traveltime extrapolation operators. (a) Locally plane wavefronts; 6 is the angle between the
ray (heavy line) and the cell diagonal. (b) Circular wavefronts. In each case, the square grid cell has side length A

and assigned slowness s.
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downward into the specified velocity field (Figure 5). The
downward continuation velocity function v(x, z) is selected
as a good approximation to the actual near-surface velocity
structure. Hence, within the overburden, the calculated
wavefronts coincide with the emerging refracted wavefronts
of Figure 4. Since the position of the refracting interface is
initially unknown, the wavefronts are continued to greater
depth using the known velocity field v(x, z). Rockwell
(1967) referred to these traveltime loci as a ‘‘directed wave-
front system.’” We use the phrase wavefront reconstruction
to describe the process of creating an emergent wavefront
system from the recorded surface arrival times.

REFRACTOR IMAGING

Let #¢(x, z) and ¢,(x, z) refer to the subsurface traveltime
fields reconstructed from the forward and reverse arrival
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FiG. 4. Forward and reverse first arrival wavefronts for a
shallow syncline model. Overburden velocity v, = 1500
m/s, bedrock velocity v, = 2500 m/s. Grid cell size is S m
and contour interval for wavefronts is 30 ms.
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FiG. 5. Emergent wavefronts reconstructed from the surface
arrival times recorded over the shallow syncline. Downward
continuation velocity v(x, z) = 1500 m/s. Grid cell size is 5
m and wavefront contour interval is 30 ms.

times, respectively. Then, according to Hagedoorn’s imag-
ing principle, the refracting interface is implicitly defined by
the relation

tr(x, 2) + 1,(x, z) = Tg. (4)

Figure 6 graphically illustrates the superposition of the two
reconstructed wavefront systems shown in the prior figure.
We systematically search the 2-D array of superposed trav-
eltimes to locate grid points where the imaging condition (4)
is satisfied. If equation (4) does not hold on a grid point,
linear interpolation between adajacent points is used to find
the proper depth. The resulting depth locus z{x) (dashed line
in Figure 6) is an accurate spatial image of the original
refracting horizon, except near the edges of the input veloc-
ity field where the subsurface wavefronts are not recon-
structed correctly.

Figure 7 indicates that the technique is also capable of
imaging anticlinal structure. The apex of the anticline is
imaged slightly too deep because the refracted rays pene-
trate beneath this structure, rather than propagating along
the undulating interface (e.g., Hagedoorn, 1959, Figures 2
and 3). Note that a similar problem does not occur with the
syncline, because there is a tendency for the diffracted ray to
follow the interface in the presence of synclinal structure.

The calculated locus for the refracting horizon depends on
the reciprocal time Ty and velocity field v(x, z) used for
downward continuation of the surface arrival times. Varia-
tions in these quantities from their correct values will induce
variations in the depth and position of the refractor.

It is relatively easy to assess the dependence of the
refractor image on the value of the reciprocal time. We
simply add the forward and reverse subsurface traveltime
fields together and contour the result for various candidate
‘‘imaging times.”” Figure 8a illustrates this situation for the
buried syncline. If the imaging time used is less than or
greater than the true reciprocal time, then the interface
image is too shallow or too deep, respectively. This partic-
ular dependence upon the reciprocal time is the converse of
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Fi1G. 6. (a) Superposition of the two reconstructed wavefront
systems of Figure 5. Dashed line is the locus satisfying the
refractor imaging condition. (b) Comparison of the true
(solid) and imaged (dashed) refracting interfaces.
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that predicted by the classical wavefront method (Rockwell,
1967, p. 378). The difference arises from the method of
reconstructing the subsurface wavefronts. We initiate the
finite-difference traveltime computations with the source
function (3) and then run the algorithm forward in time.
Hence, subsurface wavefronts are labeled with times later
than the surface source values. In contrast, the classical
wavefront reconstruction methods label the subsurface
wavefronts with times earlier than the surface measured
times. In either case, the true position of the interface
corresponds to an imaging time equal to Tp.

Quantifying the dependence of the refractor image on the
downward continuation velocity is more complicated. For-
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Fi16. 7. (a) Superposition of the forward and reverse recon-
structed wavefronts (contour interval = 30 msec) over a
shallow anticline. Dashed line is the refractor image. (b)
Comparison of the true (solid) and imaged (dashed) refract-
ing interfaces.
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Fic. 8. Dependence of the syncline locus on imaging time
(top) and downward continuation velocity (bottom). Dif-
ferent images correspond to increments of 10 ms in imaging
time and 100 m/s in velocity, respectively. Heavy lines are
the images corresponding to the correct values of 7, and v.

ward and reverse subsurface wavefront systems must be
reconstructed for each velocity function used in the analysis.
Figure 8b displays a set of images of the shallow syncline
calculated for various values of a constant downward con-
tinuation velocity. If the velocity is less than or greater than
the actual overburden velocity, then the interface image is
too shallow or too deep, respectively. Moreover, a grossly
incorrect continuation velocity distorts the shape of the
interface structure. Hence, in common with many other
seismic refraction interpretation techniques, accurate time-
to-depth conversion with the wavefront method requires
good knowledge of the overburden velocity distribution.
This information can be obtained from uphole times, direct
and reflected arrivals, shallow refractions, and borehole data.

Finally, the accuracy of the solution depends on the
reliability of the picked first arrival times. The ability of the
method to resolve small scale features on the refracting
horizon is also limited by the field geophone interval. These
phenomena are analyzed by performing the inversion with
noisy traveltime data sampled at an assumed geophone
interval. Figure 9 displays the refractor image obtained by
downward continuing error contaminated arrival times sam-
pled every 25 m. We added spatially correlated, normally
distributed time errors (standard deviation = 5 ms; correla-
tion distance = 100 m) to the theoretically exact refraction
picks. A cubic spline is then loosely fitted to the noisy arrival
times and is used in equation (3) for the source initiation
function. The experiment has detected the presence of the
synchine, and its lateral position and depth are approximately
correct. Long wavelength undulations on the refractor are
artifacts of the spatially correlated noise, but are not unduly
harmful to the structural interpretation.

REFRACTOR VELOCITY ESTIMATION

A particular advantage of the wavefront method is that the
interface depth calculation 1s independent of the refractor
velocity. Rather, the velocity of the substratum can be
estimated after the position of the refracting horizon is
determined. The distance between two points on the inter-
face divided by the difference in the reconstructed wavefront
times at these points is an estimate of the refractor velocity.
This value is assigned to the midpoint of the two points for
plotting purposes. In effect, the directional derivative of the
subsurface traveltime field along the interface locus is com-
puted by a centered finite-difference formula; the reciprocal
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FiG. 9. Reconstructed wavefronts and syncline image formed
from noisy traveltime data sampled at a geophone interval of
25 m. Grid cell size is 5 m and wavefront contour interval is
30 ms. Long wavelength undulations on the refractor arise
from spatially correlated traveltime errors.
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of this value corresponds to the local velocity of the refrac-
tor. Either the forward or reverse wavefront systems may be
used for the computation. Figure 10 illustrates that the
refractor velocity estimated in this manner possesses sys-
tematic errors related to the interface structure. However,
for the two synthetic examples examined here, the inferred
velocity values are everywhere within 3 percent (or =75 m/s)
of the correct values.

FIELD DATA EXAMPLE

We have tested the interface imaging procedure with a
shallow refraction dataset acquired at the archeological site
of Phalasarna in western Crete. Hadjidaki (1988) discusses
the historical and archeological significance of this site and
also gives a detailed description of the surface and near
subsurface conditions. Forward and reverse refraction pro-
files were recorded along an inline spread of 18 geophones
(geophone interval = .5 m, near source offset = .5 m) during
the summer of 1989. The data acquisition system consisted
of a portable signal stacking seismograph with a hammer
energy source. First arrival time picks were made on stacked
traces in order to reduce random errors induced by noise.

The arrival times observed at reciprocal source positions
at opposite ends of the spread differ slightly (16.40 ms versus
16.70 ms on the forward and reverse profiles, respectively).
Since a successful inversion requires consistency in the
measured reciprocal times, we apply reciprocal time correc-
tions (Hatherly, 1982) to the picked arrival times. A constant
time shift is added to the raw time picks on each source
gather in order to adjust the observed reciprocal times to the
average value of 16.55 ms.

Figure 11 displays the 18 first break picks recorded on the
forward and reverse profiles after application of these recip-
rocal time corrections. A preliminary interpretation of the
plotted traveltime curves identifies the direct and refracted
branches. Overburden velocity, determined from the slopes
of the direct arrival segments, exhibits a weak lateral varia-
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FiG. 10. Refractor velocity estimates for the syncline {top)
and anticline (bottom) models. The spatial differencing inter-
val used for the calculation is 200 m. Small amplitude, short
wavelength oscillations are artifacts of the grid interval.

tion (~8 percent) over the 9-m spread length. We use this
information to construct a near-surface velocity function for
subsequent downward continuation of the refracted arrival
times. A cubic spline is fitted to the 16 refraction picks on
each spread and is extrapolated to zero offset as a straight
line. These curves are then used in equation (3) to calculate
the source initiation functions required for the wavefront
reconstruction algorithm.

Figure 12a depicts the subsurface wavefronts generated by
downward continuing the refracted arrival times through a
near-surface velocity field given by v(x) = 252 — 2.11x (x
in m and v in m/s). A shallow undulating interface is then
imaged using the corrected reciprocal time Tz = 16.55 ms.
The refractor velocity estimate (Figure 12b) exhibits two
distinct zones: (1) abrupt variations about 800 m/s on the left,
and (2) a low-velocity zone slower than 800 m/s on the right.

We test the validity of various refractor velocity functions
by using the wavefront construction algorithm to compare
predicted traveltimes with the observed traveltimes. A uni-
form refractor velocity of 800 m/s leads to unacceptably
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FiG. 11. Shallow refraction traveltime data acquired at the
dry harbor of Phalasarna, Crete. First break picks are
indicated by triangles, and interpreted arrival time branches
by smooth curves.
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FiG. 12. (a) Forward and reverse subsurface wavefronts
(contour interval = 1 ms) reconstructed by downward con-
tinuing the refracted arrival times of Figure 11. Grid cell size
is 0.02 m. Heavy line is the refractor image. (b) Refractor
velocity function (solid curve) calculated with a differencing
interval of 0.8 m.
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large differences (Figure 13b). When a low-velocity zone is
introduced into the refractor, good agreement is obtained
(Figure 13c). The effect of the low velocity zone is evident in
the plotted forward and reverse wavefronts of Figure 14
between 6 and 8 m horizontal position. Note that the strong
variations in refractor velocity displayed on the left in Figure
12b need not be incorporated into the model to obtain an
adequate fit to the measured arrival times. Further adjust-
ment of the refractor velocity to obtain a closer fit is
probably unwarranted.

Although the recovered model of Figure 14 generates
acceptable predicted traveltimes, we cannot state with cer-
tainty that this is the correct earth model. Other interpreta-
tions of the observed traveltime data, incorporating multiple
layers or lateral changes in structure and/or velocity, are
possible. Since the refraction dataset does not include arrival
times recorded from far offset shotpoints, it is not possible to
distinguish between these alternatives (Ackermann et al.,
1986). However, the inferred model is consistent with known
subsurface information from the vicinity of the refraction
profile. Archeological trenching conducted about 17 m dis-
tant encountered dipping sandstone bedrock at approxi-
mately 1.8 m depth (Hadjidaki, 1988). Various earthen and
gravel layers overlie the bedrock. We think that a porous,
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Fic. 13. Comparison of observed and predicted first-break
times for two refractor velocity functions. (a) Constant
velocity (dashed) equals 800 m/s and variable velocity (solid)
includes a low velocity zone between 6 and 8 m. (b)
Predicted traveltimes calculated with the constant refractor
velocity. (c) Predicted traveltimes calculated with the vari-
able refractor velocity.

aerated sandstone can have a P-wave velocity as low as
~800 m/s. Hence, our preliminary interpretation is that the
interface imaged in Figure 14 is the upper surface of the
sandstone bedrock. The very low velocity between 6 and 8 m
may be a zone of more extensive weathering, fracturing, or
aeration. Alternately, it is possible that we have imaged one
of the overlying shallow gravel layers.

CONCLUSIONS

The essential requirements for reconstructing shallow
refracted wavefronts are:

1) arrival times T(X) from a given marker horizon recorded

(or phantomed) on a forward and reverse spread,

2) areciprocal time Ty,

3) a near-surface velocity function v(x, z).

A simple modification of Vidale’s finite-difference travel-
time algorithm then allows the rapid calculation of the
subsurface wavefront systems that give rise to the recorded
arrival times. Although our synthetic examples use a con-
stant near-surface velocity, downward continuation through
a varying velocity field is also possible with no increase in
computation time. The buried refracting horizon is delin-
eated in a subsequent step by applying Hagedoorn’s imaging
principle. No prior assumption regarding the refractor ve-
locity is required. Rather, the velocity of the substratum can
be estimated by calculating the directional derivative of the
reconstructed wavefront systems along the imaged interface.

Picking of first arrival times and assignment of these picks
to specific refractors are necessary in this method. The final
locus for the refracting interface is sensitive to errors in the
picked times, as well as to an incorrect choice of the
reciprocal time and velocity field. However, since the tech-
nique is not computationally intensive, it is possible to
assess the magnitude of the position and depth uncertainty
by performing the inversion repetitively. The forward mod-
eling capabilities of the finite-difference traveltime algorithm
can also be used to quickly generate predicted arrival times
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Fic. 14. Subsurface wavefronts (contour interval = 0.5 ms)
constructed from the earth model with the laterally varying
refractor velocity. Grid cell size is 0.02 m. Note the effect of
the low-velocity zone between 6 and 8 m.
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from the inferred subsurface model. Comparison of these
times with the observed data is a powerful method of
establishing the significance of various features of the recov-
ered earth model.

Finally, we have identified two specific problem areas with
the automated wavefront reconstruction method that merit
further research: (1) downward continuation of traveltimes
recorded along a nonplane surface, and (2} correction of the
refractor velocity function for the effects of structurally
induced errors. Although a fully automated solution to these
problems is not yet available, this should not prevent the
immediate application of the method in shallow seismic
refraction exploration.
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