
REGAL: Representation Learning-based Graph Alignment

Mark Heimann
University of Michigan, Ann Arbor

mheimann@umich.edu

Haoming Shen
University of Michigan, Ann Arbor

hmshen@umich.edu

Tara Safavi
University of Michigan, Ann Arbor

tsafavi@umich.edu

Danai Koutra
University of Michigan, Ann Arbor

dkoutra@umich.edu

ABSTRACT

Problems involving multiple networks are prevalent in many scien-

ti�c and other domains. In particular, network alignment, or the

task of identifying corresponding nodes in di�erent networks, has

applications across the social and natural sciences. Motivated by re-

cent advancements in node representation learning for single-graph

tasks, we propose REGAL (REpresentation learning-based Graph

ALignment), a framework that leverages the power of automatically-

learned node representations to match nodes across di�erent graphs.

Within REGAL we devise xNetMF, an elegant and principled node

embedding formulation that uniquely generalizes to multi-network

problems. Our results demonstrate the utility and promise of unsu-

pervised representation learning-based network alignment in terms

of both speed and accuracy. REGAL runs up to 30× faster in the

representation learning stage than comparable methods, outper-

forms existing network alignment methods by 20 to 30% accuracy

on average, and scales to networks with millions of nodes each.

CCS CONCEPTS

• Information systems→Datamining; •Computingmethod-

ologies → Learning latent representations;

KEYWORDS

graph mining, network alignment, graph matching, node represen-

tation learning, node embedding

ACM Reference Format:

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. RE-

GAL: Representation Learning-based Graph Alignment. In The 27th ACM

International Conference on Information and Knowledge Management (CIKM

’18), October 22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3269206.3271788

1 INTRODUCTION

Networks are powerful structures that naturally capture the wealth

of relationships in our interconnectedworld, such as co-authorships,
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Figure 1: Pipeline of proposed graph alignment method, REGAL,

based on our xNetMF representation learning method.

email exchanges, and friendships [17]. The data mining commu-

nity has accordingly proposed various methods for numerous tasks

over a single network, like anomaly detection, link prediction, and

user modeling. However, many graph mining tasks involve joint

analysis of nodes across multiple networks. Some problems, like

network alignment [2, 18, 42] and graph similarity [19], are in-

herently de�ned in terms of multiple graphs. In other cases, it is

desirable to perform analysis across a collection of graphs, such

as the MRI-based brain graphs of patients [7], or snapshots of a

temporal graph [33].

In this work, we study network alignment or matching, which

is the problem of �nding corresponding nodes in di�erent net-

works. Network alignment is crucial for identifying similar users

in di�erent social networks, analyzing chemical compounds, study-

ing protein-protein interaction, and various computer vision tasks,

among others [2]. Many existing methods try to relax the com-

putationally hard optimization problem, as designing features that

can be directly compared for nodes in di�erent networks is not

an easy task. However, recent advances [9, 28, 35, 39] have auto-

mated the process of learning node feature representations and

have led to state-of-the-art performance in downstream prediction,

classi�cation, and clustering tasks. Motivated by these successes,

we propose network alignment via matching latent, learned node

representations. Formally, the problem can be stated as:

Problem 1. Given two graphs G1 and G2 with node-sets V1 and

V2 and possibly node attributes A1 and A2 resp., devise an e�cient

network alignmentmethod that aligns nodes by learning directly

comparable node representations Y1 and Y2, from which a node

mapping ϕ : V1 → V2 between the networks can be inferred.

To this end, we introduce REGAL, or REpresentation-based

Graph ALignment, a framework that e�ciently identi�es node
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matchings by greedily aligning their latent feature representa-

tions (Fig. 1). REGAL is both highly intuitive and extremely pow-

erful given suitable node feature representations. For use within

this framework, we propose Cross-Network Matrix Factorization

(xNetMF), which we introduce speci�cally to satisfy the require-

ments of the task at hand. xNetMF di�ers from most existing repre-

sentation learning approaches that (i) rely on proximity of nodes in

a single graph, yielding embeddings that are not comparable across

disjoint networks [11], and (ii) often involve some procedural ran-

domness (e.g., random walks), which introduces variance in the

embedding learning, even in one network. By contrast, xNetMF

preserves structural similarities rather than proximity-based simi-

larities, allowing for generalization beyond a single network.

To learn node representations through an e�cient, low-variance

process, we formulate xNetMF asmatrix factorization over a similar-

ity matrix that incorporates structural similarity and attribute agree-

ment (if the latter is available) between nodes in disjoint graphs. To

avoid explicitly constructing a full similarity matrix, which requires

computing all pairs of similarities between nodes in the multiple

input networks, we extend the Nyström low-rank approximation

commonly used for large-scale kernel machines [6]. xNetMF is

thus a principled and e�cient implicit matrix factorization-based

approach, requiring a fraction of the time and space of the naïve

approach while avoiding ad-hoc sparsi�cation heuristics.

Our contributions may be stated as follows:

• Problem Formulation. We formulate the important unsuper-

vised graph alignment problem as a problem of learning and

matching node representations that generalize to multiple graphs.

To the best of our knowledge, we are the �rst to do so.

• PrincipledAlgorithms.We introduce a �exible alignment frame-

work, REGAL (Fig. 1), which learns node alignments by jointly

embedding multiple graphs and comparing the most similar em-

beddings across graphs without performing all pairwise compar-

isons. Within REGAL we devise xNetMF, an elegant and princi-

pled representation learning formulation. xNetMF learns embed-

dings from structural and, if available, attribute identity, which

are characteristics most conducive to multi-network analysis.

• Extensive Experiments. Our results demonstrate the utility of

representation learning-based network alignment in terms of

both speed and accuracy. Experiments on real graphs show that

xNetMF runs up to 30× faster than several existing network em-

bedding techniques, and REGAL outperforms traditional network

alignment methods by 20-30% in accuracy.

For reproducibility, the source code of REGAL and xNetMF is

publicly available at https://github.com/GemsLab/REGAL.

2 RELATEDWORK

Our work focuses on the problem of network alignment, and is

related to node representation learning and matrix approximation.

NetworkAlignment. Instances of the network alignment ormatch-

ing problem appear in various settings: from data mining to security

and re-identi�cation [2, 18, 42], chemistry, bioinformatics [16, 34,

36], databases, translation [2], vision, and pattern recognition [41].

Network alignment is usually formulated as the optimization prob-

lemminP | |PA1P
T −A2 | |

2
F
[18], where A1 and A2 are the adjacency

matrices of the two networks to be aligned, and P is a permutation

Table 1: Qualitative comparison of structure-based embeddings.

struc2vec [31] xNetMF (Proposed)

Variable-length degree sequences com-
pared with dynamic time warping

Fixed length vectors capturing neigh-
borhood degree distributions

Variance-inducing, time-consuming
random walk-based sampling

E�cient matrix factorization

Heuristic-based omission of similarity
computations

Low-rank implicit approximation of
full similarity matrix

>0.5 hours to embed Arxiv network
(Table 5) [4] using optimizations

<90 sec to embed Arxiv network; ∼
22× speedup

Table 2: Qualitative comparison of related work to the embedding

module of REGAL. (*: Method not based on random walks, RW)

Structure Attributes RW-free* Scalable Cross-net

LINE [35] ✗ ✗ ✓ ✓ ✗

TADW [40] ✗ ✓ ✓ ? ✗

node2vec [9] ? ✗ ✗ ? ✗

struc2vec [31] ✓ ✗ ✗ ✗ ?

xNetMF (in REGAL) ✓ ✓ ✓ ✓ ✓

matrix or a relaxed version thereof, such as doubly stochastic ma-

trix [38] or some other concave/convex relaxation [41]. Popular

proposed solutions to the network alignment problem span genetic

algorithms, spectral methods, clustering algorithms, decision trees,

expectation maximization, probabilistic approaches, and distributed

belief propagation [2, 16, 34, 36]. These methods usually require

carefully tailoring for special formats or properties of the input

graphs. For instance, specialized formulations may be used when

the graphs are bipartite [18] or contain node/edge attributes [42], or

when some “seed” alignments are known a priori [15]. Prior work

using node embeddings designed for social networks to align users

[26] has required such seed alignments. In contrast, our approach

can be applied to attributed and unattributed graphs with virtually

no change in formulation, and is unsupervised: it does not require

prior alignment information to �nd high-quality matchings. Recent

work [12] has used hand-engineered features, while our proposed

approach leverages the power of latent feature representations.

Node Representation Learning. Representation learning meth-

ods try to �nd similar embeddings for similar nodes [8]. They may

be based on shallow [9] or deep architectures [39], and may dis-

cern neighborhood structure through random walks [28] or �rst-

and second-order connections [35]. Recent work inductively learns

representations [10] and/or incorporates textual or other node at-

tributes [14, 40]. However, all these methods use node proximity or

neighborhood overlap to drive embedding, which has been shown

to lead to inconsistency across networks [11].

Unlike these methods, the recent work struc2vec [31] preserves

structural similarity of nodes, regardless of their proximity in the

network. Prior to this work, existing methods for structural role

discovery mainly focused on hand-engineered features [32]. How-

ever, for structurally similar nodes, struc2vec embeddings were

found to be visually more comparable [31] than those learned by

state-of-the-art proximity-based node embedding techniques as

well as existing methods for role discovery [13]. While this work

is most closely related to our proposed node embedding method,

we summarize some crucial di�erences in Table 1. Additionally,

we note that struc2vec, like work on structural node embeddings

concurrent to ours [5], cannot natively use node attributes.
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Many well-known node embedding methods based on shallow

architectures such as the popular skip-gramwith negative sampling

(SGNS) have been cast in matrix factorization frameworks [30, 40].

However, ours is the �rst to cast node embedding using SGNS to

capture structural identity in such a framework. In Table 2we extend

our qualitative comparison to some other well-known methods

that use similar architectures. Their limitations inspire many of our

choices in the design of REGAL and xNetMF.

In terms of applications, very few works consider using learned

representations for problems that are inherently de�ned in terms

of multiple networks, where embeddings must be compared. [27]

computes a similarity measure between graphs based on the Earth

Mover’s Distance [23] between simple node embeddings generated

from the eigendecomposition of the adjacency matrix. Here, we

consider the signi�cantly harder problem of learning embeddings

that may be individually matched to infer node-level alignments.

Low-Rank Matrix Approximation. The Nyström method has

been used for low-rank approximations of large, dense similarity

matrices [6]. While the quality of its approximation has been exten-

sively studied theoretically and empirically in a statistical learning

context for kernel machines [1], to the best of our knowledge it has

not been considered in the context of node embedding.

3 REGAL: REPRESENTATION
LEARNING-BASED GRAPH ALIGNMENT

In this section we introduce our representation learning-based

network alignment framework, REGAL, for Problem 1. For sim-

plicity we focus on aligning two graphs (e.g., social or protein

networks), though our method can easily be extended to more

networks. Let G1(V1, E1) and G2(V2, E2) be two unweighted and

undirected graphs with node sets V1 and V2; edge sets E1 and

E2; and possibly node attributes A1 and A2, respectively. Note

that these graphs do not have to be the same size, unlike many

other network alignment formulations that have this (often unreal-

istic) restriction. Let n be the number of nodes across graphs, i.e.,

n = |V1 | + |V2 |. We de�ne the main symbols in Table 3.

The steps of REGAL may be summarized as:

(1) Node Identity Extraction: The �rst step extracts structure-

and attribute-related information for all n nodes.

(2) E�cient Similarity-basedRepresentation: The second step

obtains the node embeddings, conceptually by factorizing a sim-

ilarity matrix of the node identities from the previous step. To

avoid the expensive computation of pairwise node similarities

and explicit factorization, we extend the Nyström method for

low-rank matrix approximation to perform an implicit similar-

ity matrix factorization by (a) comparing the similarity of each

node only to a sample of p ≪ n “landmark” nodes, and (b) using

these node-to-landmark similarities to construct our represen-

tations from a decomposition of its low-rank approximation.

(3) FastNodeRepresentationAlignment: Finally, we align nodes

between graphs by greedily matching the embeddings with an

e�cient data structure that allows for fast identi�cation of the

top-α most similar embeddings from the other graph(s).

In the rest of this section we discuss and justify each step of

REGAL, the pseudocode of which is given in Algorithm 1. Note

that the �rst two steps, which output a set of node embeddings,

Table 3: Major symbols and de�nitions.

Symbols De�nitions

Gi (Vi , Ei , Ai ) graph i with nodeset Vi , edgeset Ei , and node attributes Ai

Ai adjacency matrix of Gi

ni number of nodes in graphGi

V = V1 ∪ V2 combined set of vertices in G1 and G2

|V | = n total number of nodes in graphsG1 and G2

davg average node degree

Rk
u set of k -hop neighbors of node u

dku vector of node degrees in a single set Rk
u

K maximum hop distance considered
δ discount factor in (0, 1] for distant neighbors

du =

∑K
k=1 δ

k−1dku combined neighbor degree vector for node u
b number of buckets for degree binning
fu F -dimensional attribute vector for node u

S, S̃ combined structural and attribute-based similarity matrix, and
its approximation

Y, Ỹ matrix with node embeddings as rows, and its approximation
p number of landmark nodes in REGAL
α the number of alignments to �nd per node

comprise our xNetMF method, which may be independently used,

particularly for further cross-network analysis tasks.

3.1 Step 1: Node Identity Extraction

The goal of REGAL’s representation learning module, xNetMF, is to

de�ne node “identity” in a way that generalizes to multi-network

problems. This step is critical because many existing works de�ne

identity based on node-to-node proximity, but in multi-network

problems nodes have no direct connections to each other and thus

cannot be sampled in each other’s contexts by randomwalks on sep-

arate graphs. To overcome this problem, we focus instead on more

broadly comparable, generalizable quantities: structural identity,

which relates to structural roles [13], and attribute-based identity.

Structural Identity. In network alignment, the well-established

assumption is that aligned nodes have similar structural connectiv-

ity or degrees [18, 42]. Adhering to this assumption, we propose to

learn about a node’s structural identity from the degrees of its neigh-

bors. To gain higher-order information, we also consider neighbors

up to k hops from the original node.

For a node u ∈ V , we denote Rk
u as the set of nodes that are

exactly k ≥ 0 steps away fromu in its graphGi . We want to capture

degree information about the nodes in Rk
u . A basic approach would

be to store the degrees in aD-dimensional vector dku , whereD is the

maximum degree in the original graphG , with the i-th entry of dku ,

or dku (i), the number of nodes in Rk
u with degree i . For simplicity,

an example of this approach is shown for the vectors dA, dB , etc.

in Fig. 2. However, real graphs have skewed degree distributions.

To prevent one high-degree node from in�ating the length of these

vectors, we bin nodes together into b = ⌈log2 D⌉ logarithmically

scaled buckets such that the i-th entry of dku contains the number of

nodes u ∈ Rk
u such that ⌊log2(deд(u))⌋ = i . This has two bene�ts:

(1) it shortens the vectors dku to a manageable ⌈log2 D⌉ dimensions,

and (2) it makes their entries more robust to small changes in

degree introduced by noise, especially for high degrees when more

di�erent degree values are combined into one bucket.

Attribute-Based Identity. Node attributes, or features, have been

shown to be useful for cross-network tasks [42]. Given F node

attributes, we can create for each node u an F -dimensional vector
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Figure 2: Proposed REGAL approach, consisting of 3 main steps. In the example, for the structural identity, up to K = 2 hop away neighbor-

hoods are taken into account (the 1-hop and 2-hopneighborhoods for nodesA and 1 are shownwith dashed and dash-dotted lines, respectively).

The discount factor is set to δ = 0.5. For simplicity, no logarithmic binning is applied on dku .

fu representing its values (or lack thereof). For example, fu (i) cor-

responds to the ith attribute value for node u. Since we focus on

node representations, we mainly consider node attributes, although

we note that statistics such as the mean or standard deviation of

edge attributes on incident edges to a node can easily be turned

into node attributes. Note that while REGAL is �exible to incor-

porate attributes, if available, it can also rely solely on structural

information when such side information is not available.

Cross-Network Node Similarity. We now incorporate the above

aspects of node identity into a combined similarity function that

can be used to compare nodes within or across graphs, relying on

the comparable notions of structural and attribute identity, rather

than direct proximity of any kind:

sim(u,v) = exp [−γs · | |du − dv | |
2
2 − γa · dist(fu , fv )], (1)

where γs and γa are scalar parameters controlling the e�ect of the

structural and attribute-based identity respectively; dist(fu , fv ) is

the attribute-based distance of nodes u and v , discussed below (this

term is ignored if there are no attributes); du =
∑K
k=1

δk−1dku is

the neighbor degree vector for node u aggregated over K di�erent

hops; δ ∈ (0, 1] is a discount factor for greater hop distances; and K

is a maximum hop distance to consider (up to the graph diameter).

Thus, we compare structural identity at several levels by combining

the neighborhood degree distributions at several hop distances,

attenuating the in�uence of distant neighborhoodswith aweighting

schema that is often encountered in di�usion processes [19].

The distance between attribute vectors depends on the type of

node attributes (e.g., categorical, real-valued). A variety of functions

can be employed accordingly. For categorical attributes, which have

been studied in attributed network alignment [42], we propose us-

ing the number of disagreeing features as a attribute-based distance

measure of nodes u and v: dist(fu , fv ) =
∑F
i=1 1fu (i),fv (i), where

1 is the indicator function. Real-valued attributes can be compared

by Euclidean or cosine distance, for example.

3.2 Step 2: E�cient Similarity-based
Representation

As we have mentioned, many representation learning methods are

stochastic [9, 28, 31, 35, 39]. A subset of these rely on random walks

on the original graph [9, 28] or a generated multi-layer similarity

graph [31]) to sample context for the SGNS embedding model. For

cross-network analysis, we avoid random walks for two reasons:

(1) The variance they introduce in the representation learning often

makes embeddings across di�erent networks non-comparable [11];

and (2) they can add to the computational expense. For example,

node2vec’s total runtime is dominated by its sampling time [9].

To overcome the aforementioned issues, we propose a new im-

plicit matrix factorization-based approach that leverages a com-

bined structural and attribute-based similarity matrix S, which is

induced by our similarity function in Eq. (1) and considers a�nities

at di�erent neighborhoods. Intuitively, the goal is to �nd n × p ma-

trices Y and Z such that: S ≈ YZ⊤, where Y is the node embedding

matrix and Z is not needed for our purposes. We �rst discuss the

limitations of traditional approaches, then propose an e�cient way

of obtaining the embeddings without ever explicitly computing S.

Limitations of Existing Approaches. A natural but naïve ap-

proach is to compute combined structural and attribute-based simi-

larities between all pairs of nodes within and across both graphs to

form the matrix S, such that Si j = sim(i, j) ∀i, j ∈ V . Then S can be

explicitly factorized, for example by minimizing a factorization loss

function given S as input, (e.g., the Frobenius norm | |S − YZ⊤ | |2
F

[21]). However, both the computation and storage of S have qua-

dratic complexity in n. While this would allow us to embed graphs

jointly, it lacks the needed scalability for multiple large networks.

Another alternative is to create a sparse similarity matrix by

calculating only the “most important” similarities, for each node

choosing a small number of comparisons using heuristics like simi-

larity of node degree [31]. However, such ad-hoc heuristics may be

fragile in the context of noise. We will have no approximation at

all for most of the similarities, and there is no guarantee that the

most important ones are computed.

Step 2a: Reduced n × p Similarity Computation. Instead, we

propose a principled way of approximating the full similarity matrix

S with a low-rank matrix S̃, which is never explicitly computed.

To do so, we randomly select p ≪ n “landmark” nodes chosen

across both graphs G1 and G2 and compute their similarities to all

n nodes in these graphs using Eq. (1). This yields an n ×p similarity

matrixC, fromwhich we can extract ap×p “landmark-to-landmark”

submatrix W. As we explain below, these two matrices su�ce to

approximate the full similarity matrix and allow us to obtain node

embeddings without actually computing and factorizing S̃.
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Figure 3: Proposed xNetMF (using the SVD ofW†) vs. typical matrix

factorization for computing the node embeddings Y. Our xNetMF

method leads to signi�cant savings in space and runtime.

To do so, we extend the Nyströmmethod, which has applications

in randomized matrix methods for kernel machines [6], to node

embedding. The low-rank matrix S̃ is given as:

S̃ = CW†C⊤
, (2)

where C is an n×p matrix formed by sampling p landmark nodes

fromV and computing the similarity of all n nodes ofG1 and G2

to the p landmarks only, as shown in Fig. 2. Meanwhile, W† is

the pseudoinverse of W, a p × p matrix consisting of the pairwise

similarities among the landmark nodes (it corresponds to a subset of

p rows of C). We choose landmarks randomly; more elaborate (and

slower) sampling techniques based on leverage scores [1] or node

centrality measures o�er little, if any, performance improvement.

Because S̃ contains an estimate for the similarity between any

pair of nodes in either graph, it would still take Ω(n2) time and

space to compute and store. However, as we discuss below, to learn

node representations we never have to explicitly construct S̃ either.

Step 2b: From Similarity to Representation. Recall that our

ultimate interest is not in the similarity matrix S or even an approx-

imation such as S̃, but in the node embeddings that we can obtain

from a factorization of the latter. We now show that we can actually

obtain these from the decomposition in Eq. (2):

Theorem 3.1. Given graphsG1(V1, E1) andG2(V2, E2)withn×n

joint combined structural and attribute-based similarity matrix S ≈

YZT , its node embedding matrix Y can be approximated as

Ỹ = CUΣ1/2,

where C is the n × p matrix of similarities between the n nodes and p

randomly chosen landmark nodes, and W†
= UΣV⊤ is the full rank

singular value decomposition of the pseudoinverse of the small p × p

landmark-to-landmark similarity matrix W.

Proof. Given the full-rank SVD of thep×p matrixW† asUΣV⊤,

we can rewrite Eq. (2) as S ≈ S̃ = C(UΣV⊤)C⊤
= (CUΣ1/2) ·

(Σ1/2V⊤C⊤) = ỸZ̃⊤. □

Now, we never have to construct an n × n matrix and then fac-

torize it (i.e., by optimizing a nonconvex factorization objective).

Instead, to derive Ỹ, the only node comparisons we need are for the

n×p “skinny” matrix C, while the expensive SVD is performed only

on its small submatrixW. Thus, we can obtain node representations

by implicitly factorizing S̃, a low-rank approximation of the full

similarity matrix S. The p-dimensional node embeddings of the two

input graphs G1 and G2 are then subsets of Ỹ: Ỹ1 and Ỹ2, respec-

tively. This construction corresponds to the explicit factorization

(Fig. 3), but at signi�cant runtime and storage savings.

Algorithm 1 REGAL (G1,G2, p,K ,γs ,γa ,α )

1: ====== STEPS 1 and 2. Structural Node Representation Learning ======

2: [Ỹ1, Ỹ2] = xNetMF (G1, G2, p, K, γs , γa ) ▷ Learn n1 × p and n2 × p
embeddings

3: =========== STEP 3. Fast Node Representation Alignment ===========
4: M = empty ▷ sparse n1 × n2 matrixM of possible alignments

5: T = KDTree(Ỹ2) ▷ Build a k -d tree on the node embeddings ofG2

6: /* Match embeddings to infer alignments */
7: for i = 1 → n1 do
8: /* For embedding i inG1 , get the α most similar embed. inG2 and distances*/

9: [TOP-α , TOP-dist] = QueryKDTree(T, Ỹ1[i], α ) ▷ Ỹ1[i]: i
th embedding

10: for j in TOP-α do

11: mi j = e
−TOP-dist[j ]

▷ Populating alignment matrixM with embed.

12: end for ▷ similarities: eTOP-dist[j] = e
−|| Ỹ1[i ] − Ỹ2[j ] | |

2
2

13: end for
14: returnM ▷ alignments are largest entries in each row or column (Fig. 1)

Algorithm 2 xNetMF (G1,G2,p,K ,γs ,γa )

1: ================ STEP 1. Node Identity Extraction ================
2: for node u in V1 ∪ V2 do
3: for hop k up to K do ▷ counts of node degrees of k -hop neighbors of u

4: dku = CountDegreeDistributions(Rk
u ) ▷ 1 ≤ K ≤ graph diameter

5: end for
6: du =

∑K
k=1 δ

k−1dku ▷ discount factor δ ∈ (0, 1]

7: end for

8: ========= STEP 2. E�cient Similarity-based Representation =========
9: ========== STEP 2a. Reduced n×p Similarity Computation ==========
10: L = ChooseLandmarks(G1, G2 ,p) ▷ choose p nodes from G1 , G2

11: for node u in V do
12: for node v in L do

13: cuv = e
−γs ·| |du−dv | |2

2
−γa ·dist(fu , fv )

14: end for
15: end for ▷ Used in low-rank approx. of similarity graph (not constructed)

16: =========== STEP 2b. From Similarity to Representation ============
17: W = C[L, L] ▷ Rows of C corresponding to landmark nodes

18: [U, Σ, V] = SVD(W†)

19: Ỹ = CUΣ− 1
2 ▷ Embedding: implicit factorization of similarity graph

20: Ỹ = Normalize(Ỹ) ▷ Postprocessing: make embeddings have magnitude 1

21: Ỹ1, Ỹ2 = Split(Ỹ) ▷ Separate representations for nodes inG1 , G2

22: return Ỹ1, Ỹ2

As stated earlier, xNetMF, which we summarize in Alg. 2, forms

the �rst two steps of REGAL. The postprocessing step, where we

normalize the magnitude of the embeddings, makes them more

comparable based on Euclidean distance, which we use in REGAL.

Connection between xNetMF and SGNS. We show a formal

connection between matrix factorization, the technique behind

our xNetMF, and a variant of the struc2vec framework: another

form of structure-based embedding optimized with SGNS [31] in

Appendix A. Indeed, similar equivalences between SGNS andmatrix

factorization have been studied [24, 25] and applied to proximity-

based node embedding methods [30], but ours is the �rst to explore

such connections for methods that preserve structural identity.

3.3 Step 3: Fast Node Representation
Alignment

The �nal step of REGAL is to e�ciently align nodes using their

representations, assuming that two nodes u ∈ V1 and v ∈ V2 may

match if their xNetMF embeddings are similar. Let Ỹ1 and Ỹ2 be

matrices of the p-dimensional embeddings for nodes in graphs G1

andG2. We take the likeliness of (soft) alignment to be proportional
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to the similarity between the nodes’ embeddings. Thus, we greedily

align nodes to their closest match in the other graph based on

embedding similarity, as shown in Fig. 2. This method is simpler

and faster than optimization-based approaches, and works thanks

to high-quality node feature representations.

Data structures for e�cient alignment. A natural way to �nd

the alignments for each node is to compute all pairs of similarities

between node embeddings (i.e., the rows of Ỹ1 and Ỹ2) and choose

the top-1 for each node. Of course, this is not desirable due to its

ine�ciency. Since in practice only the top-α most likely alignments

are used, we turn to specialized data structures for quickly �nding

the closest data points. We store the embeddings Ỹ2 in a k-d tree, a

data structure used to accelerate exact similarity search for nearest

neighbor algorithms and many other applications [3].

For each node in G1, we can quickly query this tree with its

embedding to �nd the α << n closest embeddings from nodes

in G2. This allows us to compute “soft” alignments for each node

by returning one or more nodes in the opposite graph with the

most similar embeddings, unlike many existing alignment methods

that only �nd “hard” alignments [2, 16, 34, 42]. Here, we de�ne the

similarity between the p-dimensional embeddings of nodes u and v

as simemb (Ỹ1[u], Ỹ2[v]) = e−| | Ỹ1[u] − Ỹ2[v] | |
2
2 , which converts the

Euclidean distance to similarity. Since we only want to align nodes

to counterparts in the other graph, we only compare embeddings

in Ỹ1 with ones in Ỹ2. If multiple top alignments are desired, they

may be returned in sorted order by their embedding similarity; we

use sparse matrix notation in the pseudocode just for simplicity.

3.4 Complexity Analysis

Here we analyze the computational complexity of each step of

REGAL. To simplify notation, we assume both graphs have n1 =

n2 = n
′ nodes.

(1) Extracting node identity: It takes approximatelyO(n′Kd2avд)

time, �nding neighborhoods up to hop distance K by joining

the neighborhoods of neighbors at the previous hop: formally,

we can construct Rk
u =

⋃
v ∈Rk−1

u
R1
v −

⋃k−1
i=1 Ri

u . We could

also use breadth-�rst search from each node to compute the

k-hop neighborhoods in O(n′3) worst case time—in practice

signi�cantly lower for sparse graphs and/or small K—but we

�nd that this construction is faster in practice.

(2) Computing similarities: We compute the similarities of the

length-b features (weighted counts of node degrees in the k-hop

neighborhoods, split into b buckets) between each node and p

landmark nodes: this takes O(n′pb) time.

(3) Obtaining representations: We �rst compute the pseudoin-

verse and SVD of the p × p matrix W in time O(p3), and then

left multiply it by C in time O(n′p2). Since p << n′, the total

time complexity for this step is O(n′p2).

(4) Aligning embeddings: We construct a k-d tree and use it to

�nd the top alignment(s) in G2 for each of the n′ nodes in G1

in average-case time complexity O(n′ logn′).

The total complexity is O(n′max{pb,p2,Kd2avд , logn
′}). As we

show experimentally, it su�ces to choose small K as well as p and

b logarithmic in n′. With davд often being small in practice, this

can yield sub-quadratic time complexity. It is straightforward to

show that the space requirements are sub-quadratic as well.

4 EXPERIMENTS

We answer three important questions about our methods:

(Q1) How does REGAL compare to baseline methods for network

alignment on noisy real world datasets (Table 5), with and without

attribute information, in terms of accuracy and runtime?

(Q2) How scalable is REGAL?

(Q3) How sensitive are REGAL and xNetMF to hyperparameters?

Experimental Setup. Following the network alignment litera-

ture [18, 42], for each real network dataset with adjacency matrix

A, we generate a new network with adjacency matrix A′
= PAP⊤,

where P is a randomly generated permutation matrix with the

nonzero entries representing ground-truth alignments. We add

structural noise to A′ by removing edges with probability ps with-

out disconnecting any nodes.

For experiments with attributes, we generate synthetic attributes

for each node if the graph does not have any. We add noise to

these by �ipping binary values or choosing categorical attribute

values uniformly at random from the remaining possible valueswith

probability pa . For each dataset and noise level, noise is randomly

and independently added.

All experiments are performed on an Intel(R) Xeon(R) CPU E5-

1650 at 3.50GHz with 256GB RAM, with hyperparameters δ = 0.01,

K = 2, γs = γa = 1, and p = ⌊10 log2 n⌋ unless otherwise stated.

Landmarks for REGAL are chosen arbitrarily from among the nodes

in our graphs, in keeping with the e�ectiveness and popularity

of sampling uniformly at random [6]. In Sec. 4.3, we explore the

parameter choices and �nd that these settings yield stable results

at reasonable computational cost.

Baselines.We compare against six baselines. Four are well known

existing network alignment methods and two are variants of our

proposed framework that match embeddings produced by existing

node embedding methods (i.e., not xNetMF). The four existing

network alignmentmethods are: (1) FINAL, which introduces a

family of algorithms optimizing quadratic objective functions [42];

(2) NetAlign, which formulates alignment as an integer quadratic

programming problem and solves it with message passing algo-

rithms [2]; (3) IsoRank, which solves a version of the integer

quadratic program with relaxed constraints [34]; and (4) Klau’s

algorithm (Klau), which imposes a linear programming relaxation,

decomposes the symmetric constraints and solves it iteratively [16].

These methods all require as input a matrix containing prior align-

ment information, which we construct from degree similarity, tak-

ing the top ⌊log2 n⌋ entries for each node; REGAL, by contrast, does

not require prior alignment information.

For the two variants of our framework, which we refer to as

(5) REGAL-node2vec and (6) REGAL-struc2vec, we replace our

own xNetMF embedding step (i.e., Steps 1 and 2 in REGAL) with

existing node representation learning methods node2vec [9] or

struc2vec [31]: two recent, state-of-the-art node embedding meth-

ods that make a claim about being able to capture some form of

structural equivalence. To apply these embedding methods, which

were formulated for a single network, we create a single input graph

G by combining the graphs with respective adjacency matrices A

and A′ into one block-diagonal adjacency matrix [A 0; 0 A′]. Be-

yond the input, we use their default parameters: 10 random walks
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Figure 4: Accuracy of network alignment methods with varying ps . REGAL (in dark blue)

achieves consistently high accuracy and runs faster than its closest competitors (Table 4).

Table 4: Average (stdev) runtime in sec of align-

ment methods from 5 trials. The two fastest

methods per dataset are in bold. REGAL is faster

than its closest competitors in accuracy (Fig. 4).

Dataset Arxiv PPI Arenas

FINAL 4182 (180) 62.88 (32.20) 3.82 (1.41)

NetAlign 149.62 (282.03) 22.44 (0.61) 1.89 (0.07)

IsoRank 17.04 (6.22) 6.14 (1.33) 0.73 (0.05)

Klau 1291.00 (373) 476.54 (8.98) 43.04 (0.80)

REGAL-node2vec 709.04 (20.98) 139.56 (1.54) 15.05 (0.23)

REGAL-struc2vec 1975.37 (223.22) 441.35 (13.21) 74.07 (0.95)

REGAL 86.80 (11.23) 18.27 (2.12) 2.32 (0.31)

Table 5: Real data used in our experiments.

Name Nodes Edges Description

Facebook [37] 63 731 817 090 social network
Arxiv [22] 18 722 198 110 collaboration network
DBLP [29] 9 143 16 338 collaboration network
PPI [4] 3 890 76 584 protein-protein interaction
Arenas Email [20] 1 133 5 451 communication network

of length 80 for each node to sample context with a window size of

10. For node2vec, we set p = q = 1 (other values make little di�er-

ence). For struc2vec, we use the recommended optimizations [31]

to compress the degree sequences and reduce the number of node

comparisons, which were found to speed up computation with little

e�ect on performance [31]. As we do for our xNetMF method, we

consider a maximum hop distance of K = 2.

Metrics.We compare REGAL to baselines with two metrics: align-

ment accuracy, which we take as (# correct alignments) / (total #

alignments), and runtime. When computing results, we average

over 5 independent trials on each dataset at each setting (with dif-

ferent random permutations and noise additions) and report the

mean result and the standard deviation (as bars around each point

in our plots.) We also show where REGAL’s soft alignments con-

tain the “correct” similarities within its top α << n choices using

the more general top-α accuracy: (# correct alignments in top-α

choices) / (total # alignments). This metric does not apply to the

existing network alignment baselines that do not directly match

node embeddings and only �nd hard alignments.

4.1 Q1: Comparative Alignment Performance

To assess the comparative performance of REGAL versus existing

network alignment methods on a variety of challenging datasets,

we perform two experiments studying the e�ects of structural and

attribute noise, respectively.

4.1.1 E�ects of structural noise. In this experiment we study how

well REGAL matches nodes based on structural identity alone. This

also allows us to compare to the baseline network alignment meth-

ods NetAlign, IsoRank, and Klau, as well as the node embedding

methods node2vec and struc2vec, none of which was formulated to

handle or align attributed graphs (which we study in Sec. 4.1.2). As

we discuss further below, REGAL is one of the fastest network align-

ment methods, especially on large datasets, and has comparable or

better accuracy than all baselines.

Results. (1) Accuracy. The accuracy results on several datasets

are shown in Figure 4. The structural embedding REGAL variants

consistently perform best. Both REGAL (matching our proposed

xNetMF embeddings) and REGAL-struc2vec are signi�cantly more

accurate than all non-representation learning baselines across noise

levels and datasets. As expected, REGAL-node2vec does hardly bet-

ter than random chance because rather than preserving structural

similarity, it preserves similarity to nodes based on their proximity

to each other, which means there is no way of identifying similarity

to corresponding nodes in other, disconnected graphs (even when

we combine them into one large graph, because they form discon-

nected components.) This major limitation of embedding methods

that use proximity-based node similarity criteria [11] justi�es the

need for structural embeddings for cross-network analysis.

Between REGAL and REGAL-struc2vec, the two highest perform-

ers, REGAL performs better with lower amounts of noise. This is

likely because struc2vec’s randomized context sampling introduces

some variance into the representations that xNetMF does not have,

as nodes that should match will have di�erent embeddings not

only because of noise, but also because they had di�erent contexts

sampled. With higher amounts of noise (4-5%), REGAL outperforms

REGAL-struc2vec in speed, but at the cost of some accuracy. It is

also worth noting that their accuracy margin is smaller for larger

graphs. On larger datasets, our simple and fast logarithmic binning

scheme (Step 1 in Sec. 3.1) provides a robust enough way of compar-

ing nodes with high expected degrees. However, on small graphs

with a few thousand nodes and edges, it appears that struc2vec’s

use of dynamic time warping (DTW) better handles misalignment

of degree sequences from noise because it is a nonlinear alignment

scheme. Still, we will see that REGAL is signi�cantly faster than its

struc2vec variant, since DTW is computationally expensive [31],

as is context sampling and SGNS training.

(2) Runtime. In Table 4, we compare the average runtimes of

all di�erent methods across noise levels. We observe that REGAL

scales signi�cantly better using xNetMF than when using other

node embedding methods. Notably, REGAL is 6-8× faster than

REGAL-node2vec and 22-31× faster than REGAL-struc2vec. This is

expected as both dynamic time warping (in struc2vec) and context

sampling for SGNS (in struc2vec and node2vec) come with large

computational costs. REGAL, at the cost of some robustness to high

levels of noise, avoids both the variance and computational expense

of random-walk-based sampling. This is a signi�cant bene�t that

allows REGAL to achieve up to an order of magnitude speedup over
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(a) 1 synthetic binary attribute (b) 3 synthetic binary attributes (c) 5 synthetic binary attributes (d) Real attribute (29 values) (e) Runtime with attributes

Figure 5: DBLP Network alignment with varying pa : REGAL is more robust to attribute noise (plots a-d) and runs faster (plot e) than FINAL

for various numbers and types of attributes. In (e) the x axis consists of <# of attributes: # of values> pairs corresponding to plots (a)-(d).

the other node embedding methods. Additionally, REGAL is able to

leverage the power of node representations and also use attributes,

unlike the other representation learning methods.

Comparing to baselines that do not use representation learning,

we see that REGAL is competitive in terms of runtime as well

as signi�cantly more accurate. REGAL is consistently faster than

FINAL and Klau, the next two best-performingmethods by accuracy

(NetAlign is virtually tied for third place with Klau on all datasets).

Although NetAlign runs faster than REGAL on small datasets like

Arenas, on larger datasets like Arxiv NetAlign’s message passing

becomes expensive. Finally, while IsoRank is consistently the fastest

method, it performs among the worst on all datasets in accuracy.

Thus, we can see that our REGAL framework is also one of the

fastest network alignment methods as well as the most accurate.

4.1.2 E�ects of a�ribute-based noise. In the second experiment,

we study REGAL’s comparative sensitivity to pa when we use node

attributes. Here we compare REGAL to FINAL because it is the only

baseline that handles attributes. We also omit embedding methods

othen than xNetMF, since they operate on plain graphs.

We study a subnetwork of a larger DBLP collaboration network

extracted in [42] (Table 5). This dataset has 1 node attribute with 29

values, corresponding to the top conference in which each author

(a node in the network) published. This single attribute is quite

discriminatory: with so many possible attribute values, a compar-

atively smaller number of nodes share the same value. We add

ps = 0.01 structural noise to randomly generated permutations.

We also increase attribute information by increasing the number

of attributes. To do so, we simulate di�erent numbers of binary

attributes. We study somewhat higher levels of attribute noise, as

they are not strictly required for network alignment.

Results. In Figure 5, we see that REGAL mostly outperforms FI-

NAL in the presence of attribute noise (both for real and multiple

synthetic attributes), or in the case of limited attribute information

(e.g., only 1-3 binary attributes in Fig. 5a-5c). This is because FINAL

relies heavily on attributes, whereas REGAL uses structural and

attribute information in a more balanced fashion.

While FINAL achieves slightly higher accuracy than REGALwith

abundant attribute information from many attributes or attribute

values and minimal noise (e.g. the real attribute with 29 values in

Figure 5d, or 5 binary attributes in Figure 5c), this is expected due to

FINAL’s reliance on attributes. Also, in Figure 5e where we plot the

runtime with respect to number of <attributes : attribute values>,

we see FINAL incurs signi�cant runtime increases as it uses extra

attribute information. Even without these added attributes, REGAL

is up to two orders of magnitude faster than FINAL.

4.2 Q2: Scalability

To analyze the scalability of REGAL, we generate Erdös-Rényi

graphs withn = 100 to 1,000,000 nodes and constant average degree

10, along with one binary attribute. We generate a randomized,

noisy permutation (ps = 0.01,pa = 0.05) and look for the top α = 1

alignments. Thus, we embed both graphs–double the number of

nodes in a single graph. Figure 7 shows the runtimes for the major

steps of our methods.

Figure 7: REGAL is sub-

quadratic.

Results. We see that the

total runtimes of REGAL’s

steps are clearly sub-quadratic,

which is rare for alignment

tasks. In practice this means

that REGAL can scale to

very large networks. The

dominant step is computing

O(n logn) similarities to land-

marks in C and using this to form the Nyström-based representa-

tion. The alignment time complexity grows the most steeply, as

the dimensionality p grows with the network size and increasingly

a�ects lookup times. In practice, though, the alignment adds little

overhead time, even for the largest graph, because of the k-d tree.

Without it, REGAL runs out of memory on 100K or more nodes.

From a practical perspective, while our current implementation

is single-threaded, many steps—including the expensive embedding

construction and alignment steps—are easily and trivially paral-

lelizable, o�ering possibilities for even greater speedups.

4.3 Q3: Sensitivity Analysis

To understand how REGAL’s hyperparameters a�ect performance,

we analyze accuracy by varying hyperparameters in several ex-

periments. For brevity, we report results at ps = 0.01 and with

a single binary noiseless attribute, although further experiments

with di�erent settings yielded similar results. Overall we �nd that

REGAL is robust to di�erent settings and datasets, indicating that

REGAL can be applied readily to di�erent graphs without requiring

excessive domain knowledge or �ne-tuning.

Results. (1) Discount factor δ andmaxhop distanceK . Figures

6a and 6b respectively show the performance of REGAL as a func-

tion of δ , the discount factor on further hop distances, and K , the

maximum hop distance to consider. We �nd that some higher-order
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(a) Discount factor δ (b) Maximum hop distance K (c) Coe�. γs (structural sim.) (d) Coe�. γa (attribute sim.) (e) top-α scores on Facebook [37]

Figure 6: Robustness of REGAL to hyperparameters on di�erent datasets: REGAL is generally robust for a range of values, without �ne tuning.

(a) Accuracy w.r.t. # of landmarks (b) Runtime w.r.t. # of landmarks

Figure 8: Robustness of REGAL to t , which controls the number of

landmarks p = ⌊t log2 n ⌋: choosingmore landmarks is more compu-

tationally expensive but can slightly increase accuracy.

structural information does help (thus K = 2 performs slightly bet-

ter than K = 1), but only up to a point. Beyond approximately 2 lay-

ers out, the structural similarity is so tenuous that it primarily adds

noise to the neighborhood degree distribution (furthermore, com-

puting further hop distances adds computational expense). Choos-

ing δ between 0.01–0.1 tends to yield best performance. Larger

discount factors δ tend to do poorly, though extremely small values

may lose higher-order structural information.

(2)Weights of structural γs and attributed γa similarity. Next,

we explore how to set the coe�cients on the terms in the similarity

function weighting structural and attribute similarity, which also

governs a tradeo� between structural and attribute identity. In

Figs. 6c and 6d we respectively vary γs and γa while setting the

other to be 1. In general, setting these parameters to be 1, our

recommended default value, does fairly well. Signi�cantly larger

values yield less stable performance.

(3) Dimensionality of embeddings p. To study the e�ects of the

rank of the implicit low-rank approximation, which is also the di-

mensionality of the embeddings, we set the number of landmarks

p equal to ⌊t log2 n⌋ and vary t . Figure 8a shows that the accuracy

is generally highest for the highest values of t , but Figure 8b shows

the expected increase in REGAL’s runtime as more similarities

are computed in C and higher-dimensional embeddings are com-

pared. To spare no expense in maximizing accuracy we use t = 10.

However, fewer landmarks still yield almost as high accuracy if

computational constraints or high dimensionality are issues.

(4) Top-α accuracy. It is worth studying not just the proportion

of correct hard alignments, but also the top-α scores of the soft

alignments that REGAL can return. We perform alignment without

attributes on a large Facebook subnetwork [37] and visualize the

top-1, top-5, and top-10 scores in Fig. 6e. Across noise settings,

the top-α scores are considerably several percentage points higher

than the top-1 scores, indicating that even when REGAL misaligns

a node, it often still recognizes the similarity of its true counterpart.

REGAL’s ability to �nd soft alignments could be valuable in many

applications, like entity resolution across social networks [18].

5 CONCLUSION

Motivated by the numerous applications of network alignment in

social, natural, and other sciences, we proposed REGAL, a network

alignment framework that leverages the power of node represen-

tation learning by aligning nodes via their learned embeddings.

To e�ciently learn node embeddings that are comparable across

multiple networks, we introduced xNetMF within REGAL. To the

best of our knowledge, we are the �rst to propose an unsupervised

representation learning-based network alignment method.

Our embedding formulation captures node similarities using

structural and attribute identity, making it suitable for cross-network

analysis. Unlike other embedding methods that sample node con-

text with computationally expensive and variance-inducing random

walks, our extension of the Nyström low-rank approximation al-

lows us to implicitly factorize a similarity matrix without having

to fully construct it. Furthermore, we showed that our formulation

is a matrix factorization perspective on the skip-gram objective

optimized over node context sampled from a similarity graph. Ex-

perimental results showed that REGAL is up to 30% more accurate

than baselines and 30× faster in the representation learning stage.

Future directions include extending our techniques to weighted

networks and incorporating edge signs or other attributes.
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A CONNECTIONS: xNetMF AND SGNS

Herewe unpack the key components of the struc2vec framework [31],

a random walk-based structural representation learning approach,

and we �nd a matrix factorization interpretation at the heart of it.

Given a (single-layer) similarity graph S, for each nodev , struc2vec

samples context nodes C withm random walks of length ℓ starting

from v . The probability of going from node u to node v is pro-

portional to the nodes’ (structural) similarity suv . This yields a

co-occurrence matrix D: duv = #(u,v) is the number of times node

v was visited in context of node u. Afterward, struc2vec optimizes

a skip-gram objective function with negative sampling (SGNS):

max
Y,C

∑

y∈V,c ∈C

#(y, c) logσ (y⊤c) + ℓ · Ec′∼PD logσ (−y⊤c′) (3)

where y and c are the embeddings of a node y, and its context node

c , resp.; PD (c) =
∑
y∈V #(y, c)/

∑
y∈V,c ∈C #(y, c) is the empirical

probability that a node is sampled as some other node’s context;

and σ (x) = (1 + e−x )−1 is the sigmoid function. Analysis of SGNS

for word embeddings [25] showed under some assumptions on the

upper bound of the co-occurrence count between two words that

the objective of SGNS in Eq. (3) is equivalent to matrix factorization

of the co-occurrence matrix D, or MF(D,Y⊤C). Here MF is the

objective of matrix factorization on D (formally de�ned in [25], but

in practice other matrix factorization techniques work well).

Now, under these assumptions, we show a connection between

optimizing Eq. (3) with context sampled from the similarity graph

(as in struc2vec), and factorizing the graph (as in xNetMF).

Lemma A.1. Equation (3), de�ned over a context sampled by per-

formingm length-1 random walks per node over S, is equivalent to

MF(S,Y⊤C) in the limit asm goes to ∞, up to scaling of S.

Proof. This follows from the Law of Large Numbers. Asm → ∞,

the co-occurrence matrix D converges to its expectation. This is

justm · S, since di j is the # of times node vj is sampled in a random

walk of length 1 fromvi , which is equal to the # of walks from node

vi times the probability that the walk goes to vj from vi , orm · si j .

(Since MF is invariant to scaling, we normalize D w.l.o.g.) □

Note that in struc2vec, increasing m to sample more context

reduces variance in D, but increasing ℓ simply causes the random

walks to move further from the original node v and sample context

based on similarity to more structurally distant nodes. Lemma A.1

connects xNetMF to a version of struc2vec with maximalm and

minimal ℓ, further justifying its success by comparison.
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