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Abstract

I argue that the Hole Argument is based on a misleading use of the mathematical formalism
of general relativity. If one is attentive to mathematical practice, I will argue, the Hole
Argument is blocked.
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1. Introduction

Few topics in the foundations of physics have received more attention in the last thirty years

than Einstein’s “Hole Argument”.1 When it first occurred to him in 1913, Einstein feared

that the Hole Argument ruled out any “generally covariant” theory of gravitation. But

by 1915, he had rejected the argument, convinced that he had discovered a gravitational

theory of just the sort he desired. For the next sixty five years, the Hole Argument was seen

as a historical curiosity, little more than a misstep on the way to general relativity. This

changed when Earman and Norton (1987) resurrected the argument, now with spacetime

substantivalism as its target.2 It is in this latter form that the argument has attracted so

much attention from philosophers and foundationally-oriented physicists.

The basic thesis of the present note is that Einstein and the generations of physicists

and mathematicians after him were right to reject the Hole Argument. It is based on a

Email address: weatherj@uci.edu (James Owen Weatherall)
1For more on the Hole Argument, see Norton (2011) and references therein. For an up-to-date overview of

debates concerning relationism and substantivalism and the role the Hole Argument has played, see Pooley
(2013). See also Earman (1989).

2Norton (2011) credits Stachel (1989) as the first person to recognize the “non-triviality” of the Hole
Argument. (Stachel’s paper was first read at a conference in 1980, but only published later.) See also Norton
(1984) and Stachel (1986) for preludes to Earman and Norton (1987).
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misleading use of the mathematical formalism of general relativity. If one is attentive to

mathematical practice, I will argue, the Hole Argument is blocked.

This thesis may sound radical, so let me be clear about just what I intend to say. As

presented by Earman and Norton (1987), the Hole Argument concerns two metaphysical

doctrines: one is something that they call “Leibniz equivalence”; the other is a certain

variety of indeterminism. Their claim is that if one rejects Leibniz equivalence in relativity

theory, one is compelled to accept this particular form of indeterminism. In this form, one

might think of the Hole Argument as a challenge for interpreters of general relativity—

particularly for a certain stripe of “substantivalist”, but also (perhaps) more generally.

The challenge is to find a way of interpreting the formalism so as to avoid this form of

indeterminism. The present paper may then be understood as providing one option for

how to meet this challenge. This particular option is distinctive—and, I think, attractive—

because it is essentially neutral on the metaphysics of space and time. Indeed, for the bulk

of the paper, I will set aside the interpretation of the Hole Argument as concerning Leibniz

equivalence and indeterminism (or substantivalism and relationism). My focus will be on

the mathematics underlying the Hole Argument.3

This strategy may immediately raise a worry. The Hole Argument concerns determinism

and the discrimination of possible worlds. An argument that focuses exclusively on math-

ematics cannot address what is ultimately an interpretive, or even metaphysical, question

about when two possible worlds are distinct.4 I am happy to concede this point, with two

caveats. First, (1) our interpretations of our physical theories should be guided by the for-

malism of those theories. And second, (2) insofar as they are so guided, we need to be

3This strategy may remind some readers of the “syntactic” or “formal” responses to the Hole Argument
found in Mundy (1992) and Leeds (1995). (See Rynasiewicz (1996) for a reply to these.) But I would
resist this way of understanding what I am doing. Instead, I take myself to be making a conceptual point
about the way in which mathematics is used in physics. In that vein, this paper’s closest cousin may be
Wilson (1993, esp. §XVI). (In another sense, the arguments here are close to those of Butterfield (1989) and
Brighouse (1994), in ways I will expand on in section 5.)

4 A version of this point was recently emphasized by Dasgupta (2011, pg. 126).
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sure that we are using the formalism correctly, consistently, and according to our best un-

derstanding of the mathematics. My argument here concerns only (2). In particular, I do

not intend to argue that there is a mathematical solution to an interpretational problem.

Rather, I will argue that the mathematical argument that allegedly generates the interpreta-

tional problem is misleading. The moral is that the standard formalism of relativity theory

does not force us to confront a dilemma about indeterminism.

The two caveats in the previous paragraph require some unpacking. In particular, re-

garding (1), there are many ways in which one might expect a mathematical formalism to

“guide” interpretation, and just as many ways in which such “guidance” might go awry. I do

not claim that there is some straightforward way to move from formalism to interpretation.

For the purposes of the present paper, the form of guidance I require is just this: the default

sense of “sameness” or “equivalence” of mathematical models in physics should be the sense

of equivalence given by the mathematics used in formulating those models.

This brings us to (2). In contemporary mathematics, the relevant standard of sameness

for mathematical objects of a given kind is given by the mathematical theory of those

objects. In most cases, the standard of sameness for mathematical objects is some form of

isomorphism.5 Familiar mathematical objects—groups, manifolds, graphs—are only defined

up to isomorphism. This means that two isomorphic groups (say) may be distinct in all

sorts of ways—they may be constructed from different sets, their operations may be defined

differently, they may be associated with different rings—but there is one way in which they

are the same: they are the same as groups, or in other words, they have the same group

5Here and throughout, I am using the term “isomorphism” in the broad sense of category theory, as any
invertible map within a category. This means that maps that are standardly called isomorphisms, such as
ring isomorphisms or group isomorphisms, count as isomorphisms. But other maps, such as diffeomorphisms
between smooth manifolds or homeomorphisms between topological spaces, also count as isomorphisms in
this sense. Still, not all maps corresponding to a standard of “sameness” are isomorphisms. For one example
where the relevant standard is usually not isomorphism, consider categories. Categories are standardly
taken to be “the same” when they are equivalent, where equivalence of categories is a weaker notion than
isomorphism of categories. But here, too, this is a feature of the relevant mathematical theory. For more
on categories, see Mac Lane (1998), Borceux (2008), or Awodey (2010).
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structure.6

Taken together, then, at least for present purposes, the caveats amount to the view that

mathematical models of a physical theory are only defined up to isomorphism, where the

standard of isomorphism is given by the mathematical theory of whatever mathematical

objects the theory takes as its models. One consequence of this view is that isomorphic

mathematical models in physics should be taken to have the same representational capac-

ities. By this I mean that if a particular mathematical model may be used to represent a

given physical situation, then any isomorphic model may be used to represent that situation

equally well.7 Note that this does not commit me to the view that equivalence classes of

isomorphic models are somehow in one-to-one correspondence with distinct physical situ-

ations.8 But it does imply that if two isomorphic models may be used to represent two

distinct physical situations, then each of those models individually may be used to represent

both situations.

The views expressed in the previous paragraphs seem reasonable to me, though I recog-

nize that they may be controversial. Still, I will not to defend them here. Rather, I take

them as background commitments that inform the arguments to follow. Some readers, then,

will want to take what follows in conditional form: if one is committed to the views about

6There is a sense in which the view described here is a variety of mathematical structuralism (Shapiro,
2014). But I want to be cautious about this term. Structuralism is often (though not always) associated with
a view about the ontology of mathematics, on which “structures” are taken to have some robust ontological
status. I do not need to endorse any such view here. Similarly, I take it that the views on structure in
mathematics defended by Maddy (2011) and Burgess (2015) are compatible with everything I say here, and
neither Maddy nor Burgess would take on the mantle of structuralism.

7To explain this way of putting the point it may be worth being explicit, here, that I take mathematical
models to be devices that we use for representational purposes, not objects that stand in some context- or
use-independent relation to physical situations that they “represent”. How we use mathematical models to
represent physical situations is something we get to stipulate in practice. When I say in the sequel that such
and such model “represents” some situation, it should be taken as short-hand for “may be used to represent
(by the lights of the relevant theory)”.

8See Belot (1995) for arguments against this view. Conversely, taking the members of an equivalence
class of isomorphic models to be in one-to-one correspondence with distinct physical possibilities is just as
troublesome, since then differences in how we construct mathematical objects from sets (as highlighted by,
say, Benacerraf (1965)) would lead to a proliferation of physical possibilities.
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(applied) mathematics just described, then (I claim) the reaction to the Hole Argument

described here follows. These commitments should also clarify the strategy described above,

of setting aside the Earman-Norton interpretation of the Hole Argument to focus on the

mathematical argument. My arguments below will not be devoid of interpretation of any

sort. But the interpretational issues I will address will concern the applied mathematics.

What I take myself to be setting aside, at least initially, is the further interpretational issue

of how the Hole Argument bears on issues of determinism or the ontology of spacetime.

The plan from here will be as follows. I will begin with a warm-up exercise. I will then

reconstruct the Hole Argument and describe what I take to be the problem. Next, I will

contrast the Hole Argument with a superficially similar argument in the context of classical

spacetime theory, with the goal of further illuminating what makes the Hole Argument

misleading. I will conclude by returning to the Hole Argument and addressing how one

might understand the morals often drawn from it in light of the arguments of the present

paper.

2. A Warm-Up Exercise

Consider the following argument. We begin with the set of integers, Z.9 These are naturally

understood to form a group under addition, where 0 is the additive identity. I will denote

this group by (Z,+, 0). Now consider the following map, ϕ : Z → Z, defined by ϕ : n 7→ n+1

for every n ∈ Z. This map is evidently bijective, and thus invertible. It can also be used

to induce a group isomorphism, as follows. We define a group whose underlying set is the

set Z, but whose group structure is inherited from ϕ. That is, the identity of this group is

0̃ = ϕ(0) = 1; for any n ∈ Z, the inverse of n is given by n−̃1 = 2− n; and for any n,m ∈ Z,

9I do not believe there is any ambiguity regarding what the “set of integers” is supposed to be. But for
the sake of precision, I take it to be a countably infinite set, along with canonical (and exhaustive) labels for
the elements. To this, one might add order structure, group structure, etc. in canonical ways. I do not have
a particular construction of the integers in mind, and for present purposes, nothing trades on the details of
any particular construction. For more on this last point, see Benacerraf (1965) and Burgess (2015).
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addition is given by n+̃m = n + m − 1. This group will be denoted by (Z, +̃, 0̃). Under

this definition, one can easily confirm that for any n,m ∈ Z, ϕ(n −m) = ϕ(n)+̃ϕ(m)−̃1,10

which, since ϕ is bijective, is sufficient to show that ϕ is a group isomorphism.

So far so good. But now (so the argument goes) we face a puzzle. The sets underlying

(Z,+, 0) and (Z, +̃, 0̃) are identical: they have precisely the same elements. And as groups,

they are isomorphic, which means that they are fully equivalent with regard to their group

structure. Indeed, there is a sense in which both are just the group of integers under

addition.11 But they disagree about what the identity element is. In (Z,+, 0), the identity

is 0; in (Z, +̃, 0̃), it is 0̃ = 1. And so it would appear that there is an ambiguity with regard

to which number is the identity in the group of integers.

This argument should give one pause. There is no ambiguity regarding the additive

identity of the integers. Indeed, the identity element is provably unique for any group.

Here, we have simply introduced a trivial notational variation, where we assign the symbols

“0̃” or “1” to the identity in (Z, +̃, 0̃) and the symbol “0” to the identity in (Z,+, 0). We

know this notational variation does not affect the group structure, since we have exhibited

a group isomorphism between (Z,+, 0) and (Z, +̃, 0̃). So it would seem something has gone

wrong in the previous argument. One way of putting the problem is that the argument

conflates two different senses of equivalence. When I defined (Z, +̃, 0̃), I stipulated that it

was a group “whose underlying set is the set Z”. In this way, I implicitly defined a bijective

map 1Z : Z → Z, where for any n ∈ Z, 1Z : n 7→ n. This is the identity map on the

underlying sets of the two groups. It is (again implicit) reference to this map that justifies

the claim that, as sets, (Z,+, 0) is “identical to” (Z, +̃, 0̃).

10To see this, note that for any n,m ∈ Z, ϕ(n)+̃ϕ(m)−̃1 = (n+1)+̃(m+1)−̃1 = (n+1)+̃(2− (m+1)) =
(n+ 1)+̃(1−m) = (n+ 1) + (1−m)− 1 = n−m+ 1 = ϕ(n−m).

11One might make this claim precise by characterizing the group of integers by its group theoretic prop-
erties. For instance, the group of integers is the unique (up to isomorphism) free group on a singleton set.
One can easily confirm that (Z,+, 0) and (Z, +̃, 0̃) are both free groups on one element. Note, too, that the
“canonical labels” associated with the integers play no role in the group structure. This is clear because, as
the example illustrates, these labels are not preserved under group isomorphisms.
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I then went on to define the group structure of (Z, +̃, 0̃) in such a way that (Z,+, 0)

and (Z, +̃, 0̃) were isomorphic by construction. This isomorphism was realized by the map

ϕ̃ : (Z,+, 0) → (Z, +̃, 0̃). (I have written ϕ̃ here because the map ϕ used to induce the

isomorphism had a different codomain—namely Z.) And so the claim that (Z,+, 0) and

(Z, +̃, 0̃) are isomorphic—that is, they “have the same group structure”—is made with

reference to ϕ̃. But of course, ϕ̃ and 1Z are different maps. And 1Z is not, nor does it

induce, an isomorphism between the groups (Z,+, 0) and (Z, +̃, 0̃).

The problem, then, comes in using 1Z to compare the identity elements of the isomorphic

groups (Z,+, 0) and (Z, +̃, 0̃). Since 1Z does not realize the isomorphism, it is not the relevant

standard of comparison for the present purpose; conversely, if one insists on comparing

(Z,+, 0) and (Z, +̃, 0̃) using 1Z, one loses the grounds on which one claimed the groups were

equivalent in the first place. The general moral may be put as follows: all assertions of

relations between mathematical objects—including isomorphism, identity, inclusion, etc.—

are made relative to some choice of map. In many cases, one implicitly uses the identity

map to describe such relations. But, as the example above should make clear, one has to be

very careful when one does so. Often the map realizing a relation is not the identity at all,

in which case the identity map is not the relevant standard of comparison.12

The moral, here, is that the assertion above, that “[the two groups] disagree about what

the identity [of the group of integers] is,” was a non-sequitur. This is because the claim being

made amounts to the observation that 0 = 1Z(0) 6= 0̃ = 1, and here one is (incorrectly) using

the map 1Z to compare elements of (Z,+, 0) and (Z, +̃, 0̃). If one refers only to the map ϕ̃

that realizes the isomorphism (or ϕ = F (ϕ̃), for that matter), the apparent ambiguity does

not arise. One has, as required, ϕ(0) = 1 = 0̃.

12Of course, there are some senses in which the identity map is privileged, mathematically speaking.
For instance, given any mathematical object A, the identity map 1A : A → A is the unique map such
that, given any other map ζ : A → A, ζ ◦ 1A = 1A ◦ ζ = ζ. But the fact that the identity has certain
mathematical properties that distinguish it from other maps does not mean that it is privileged for the
purposes of characterizing relationships between mathematical objects.
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3. The Hole Argument

With the example of the previous section in mind, we can now turn to the Hole Argument.

At the heart of the Hole Argument is a mathematical argument that is strikingly similar to

the one I just discussed.

This argument may be reconstructed as follows. Fix a model of a relativity theory,

which is a relativistic spacetime, i.e., a Lorentzian manifold, (M, gab).
13 Now consider a

diffeomorphism (i.e., a smooth map with smooth inverse) ψ : M → M with the following

properties: there exists some (proper) open set O ⊂ M , with compact closure, such that

ψ acts as the identity on M − O, but on O, ψ is not the identity. This is sufficient to

guarantee that ψ is not the identity map on M . We can then use ψ to induce an isometry

as follows. We define a relativistic spacetime, (M, g̃ab), whose underlying manifold is once

again M , and whose metric is defined by g̃ab = ψ∗(gab), where ψ∗ is the pushforward map

determined by ψ.14 One can easily confirm that under this definition, (M, gab) and (M, g̃ab)

are isometric spacetimes, with the isometry realized by ψ. Now observe that, according to the

theory of smooth manifolds, diffeomorphism is the standard of isomorphism for manifolds;

just as other mathematical objects are only defined up to isomorphism, manifolds are only

defined up to diffeomorphism.15 Isometry, meanwhile, is the standard of isomorphism for

(pseudo-)Riemannian manifolds, including Lorentzian manifolds. So (M, gab) and (M, g̃ab)

are isomorphic as Lorentzian manifolds.

13Earman and Norton (1987) seem to take for granted that the models of relativity theory are manifolds
with various fields defined on them. To suppose that a Lorentzian manifold (M, gab) is a solution to
Einstein’s equation allows us to reconstruct what the energy-momentum content of the spacetime must
be, and so stipulating just the manifold and metric is sufficient to specify the model. (That said, fixing
the energy-momentum tensor will not, in general, be sufficient to fix the physical matter fields giving rise
to that energy-momentum tensor. But everything I say here could be carried over [mutatis mutandis]
to the context where one stipulates additional fields on spacetime, so I will focus on energy-momentum
here without loss of generality.) In what follows, I use the terms “Lorentzian manifold” and “relativistic
spacetime” interchangeably.

14Recall that in the case of diffeomorphisms, one can define pushforward maps for tensorial objects with
both contravariant and covariant indices.

15See O’Neill (1983, pg. 5) and Lee (2003, pg. 36) for explicit statements to this effect in the geometry
literature.
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But now we have a problem (according to the Hole Argument). These two spacetimes

have the same underlying manifold. And moreover, they are isometric, which means they

have the same structure as Lorentzian manifolds, and thus (as Earman and Norton argue)

they agree on all invariant, observable structure.16 And yet, within the region O, there are

points at which these two models disagree about the value of the metric. This suggests that

there is an ambiguity with regard to the value of the metric at a point p ∈ O at which the two

metrics disagree. Returning, for a moment, to the intended interpretation of the argument,

it is this ambiguity that Earman and Norton take to represent a kind of indeterminism. The

idea is that no matter what constraints one places on the metric outside of O (including,

say, at all times prior to O, provided the spacetime has a global time function), one cannot

uniquely determine the metric within O. And one is forced to accept indeterminism in

this sense, they argue, unless one accepts—as a substantive additional assumption—Leibniz

equivalence, which is the principle that “diffeomorphic models are equivalent” (Earman and

Norton, 1987, pg. 522).17

It is at this point that I want to object. I claim that the structure of the argument

just presented is the same as the one I analyzed in the previous section. On the one hand,

there is the claim that the spacetimes (M, gab) and (M, g̃ab) have the same “underlying

manifold”, just as the groups (Z,+, 0) and (Z, +̃, 0̃) have the same “underlying set”. As-

sertions concerning the point p in the context of both (M, gab) and (M, g̃ab) are implicitly

made relative to the identity map on this manifold, 1M : M → M . Meanwhile, we have

the map ψ : M → M , which is a diffeomorphism. It is ψ that gives rise to the isometry

ψ̃ : (M, gab) → (M, g̃ab), where I have again used a ˜ to be clear that ψ and ψ̃ are different

maps—ψ is an automorphism ofM , whereas ψ̃ is an isomorphism, but not an automorphism,

16Here I am using Earman and Norton’s language. To put the claim in the language of sections 1 and 5:
since these spacetimes are isometric, they have the capacity to represent exactly the same physical situations.

17 I think this way of expressing the principle may be a source of confusion, for reasons I will elaborate in
fn. 28.
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between the Lorentzian manifolds (M, gab) and (M, g̃ab).

When we say that (M, gab) and (M, g̃ab) are isometric spacetimes, and thus that they

have all of the same invariant, observable structure, we are comparing them relative to ψ̃.

Indeed, we must be, because as in the previous example, there is no sense in which 1M

either is or gives rise to an isometry. In other words, relative to 1M , (M, gab) and (M, g̃ab)

are not equivalent, physically or otherwise. The reason is that there exist points p ∈ O at

which (gab)|p 6= (g̃ab)|1M (p). Consider an observer sitting at a point of spacetime represented

by the point p ∈ O of (M, gab). If one were to attempt to represent that same observer’s

location by the point 1M(p) = p of (M, g̃ab), one would conclude that the observer would

see measurably different metrical properties, different curvature, etc. In general only one

of these assignments can be correct.18 Meanwhile, if one only considers ψ̃, no disagreement

arises regarding the value of the metric at any given point, since for any point p ∈ M ,

(gab)|p = (g̃ab)|ψ(p) by construction.19

It might be helpful to make the point in the previous paragraph in a different way. To

begin, one might reason as follows. Suppose we do compare the points of (M, gab) and

(M, g̃ab) using 1M . As we have seen, by this standard, the two Lorentzian manifolds are

not mathematically equivalent, in the sense that this map does not realize or induce an

isometry. Moreover, an observer at any particular spacetime point represented by a point

p ∈ M will be able to distinguish the case where the metric at p is (gab)|p from the case

where the metric is (g̃ab)|p, and so in this sense, if one compares the manifolds using 1M ,

18To be perfectly clear, the idea is that one can perfectly well consider two fields, gab and g̃ab on the
manifold M such that ϕ∗(gab) = g̃ab. But if one has an observer at a given point p, the situation where the
metric at p is gab and the metric at that point is g̃ab will in general by distinguishable—for instance, in one
case one might be happily working at one’s desk, and in the other plummeting into a black hole. (See also
Maudlin (1993) for a related point, regarding the epistemological significance of shift arguments.)

19This is not to say that the metric is determined (up to isometry) within an arbitrary region O by a full
specification outside that region, even once one assumes Einstein’s equation. But whether or not it is fully
determined will depend on features of the spacetime in question such as whether there exists an appropriate
Cauchy surface. That is to say, there are still senses in which general relativity may be indeterministic, but
one does not have the kind of generic indeterminism associated with the Hole Argument. Still, for many
cases of interest, it is known that there do exist unique (up to isometry) solutions to Einstein’s equation.
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the two spacetimes make different predictions, only one of which can be correct. But, one

might think, there is still a (different) sense in which (M, gab) and (M, g̃ab) are equivalent:

namely, they are observationally or empirically equivalent. The idea here would be that

for any region R of spacetime that may be adequately represented by some region U of

(M, gab), there is a corresponding region Ũ = ψ[U ] of (M, g̃ab) that can represent that same

region of spacetime equally well, for all purposes. By the standard set by 1M , however, U

and Ũ correspond to distinct collections of points in M . And so, we have a sense in which

(M, gab) and (M, g̃ab) are inequivalent as mathematical objects—again by the standard set

by 1M—but nonetheless may represent the exact same phenomena, and thus, cannot be

distinguished by any experiment.

This argument is just a recapitulation of the Hole Argument in different terms. There

are several remarks to make. The first is that this new, different sense in which (M, gab) and

(M, g̃ab) turn out to be equivalent is precisely the sense we began with, namely that they

are isometric. One can see this by noting that, in the argument just given, the region R of

spacetime is represented by region U of (M, gab) and by region Ũ = ψ[U ] of (M, g̃ab). These

regions are related by the diffeomorphism ψ that generates the isometry between the space-

times. So even on this account, all one has done is argue that the spacetimes are empirically

equivalent by appealing to the fact that they are mathematically equivalent as Lorentzian

manifolds—namely, that they are related by ψ̃. Indeed, the fact that such an isometry exists

provides the only sense in which the two spacetimes are empirically equivalent—just as the

isometry provides the only sense in which the spacetimes are mathematically equivalent,

and the group isomorphism described above provides the only sense in which the groups

discussed in the previous section have the same structure as groups.

But we began by stipulating that we would compare points using 1M . What should

we make of this stipulation in light of the foregoing? In a sense, we have not kept to

it, since as we have just seen, the argument above turned on a relationship between the
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models that only holds relative to ψ̃—and indeed, if one is careful about only relating points

with 1M , the spacetimes are not empirically equivalent at all. But one might claim that,

nonetheless, 1M still plays some role. I see two ways of understanding such a claim. On

the first interpretation, one implicitly claims that the only map that could preserve all

of the salient structure of (M, gab) is the identity map. This claim effectively denies that

isometric spacetimes are mathematically equivalent—and thus, at least in the presence of

the background views on mathematics described above, implies that one is not representing

spacetime by (only) a Lorentzian manifold. Instead, one must be invoking some other,

additional structure that is not preserved by isometry and that allows us to draw a distinction

between the way in which (M, gab) represents the world and the way in which (M, g̃ab) does

so. Let me set this possibility aside for now, as it amounts to rejecting the assumption

we began with, that we could adequately represent spacetime using (only) a Lorentzian

manifold; I will return to to this proposal in section 5.

On the second interpretation, meanwhile, one maintains that even though isometry is

the relevant standard of sameness of the structures in question, and even though it is the

existence of an isometry that licenses the claim that (M, gab) and (M, g̃ab) are empirically

equivalent, nonetheless 1M may (or should) be understood to play a substantive role in

relating the two spacetimes, even in the context of assertions of their empirical equivalence

(which, as we have seen, is given by ψ̃). But it is precisely this position that I claim is

untenable. The reason is that it runs together two distinct ways of relating (M, gab) and

(M, g̃ab). And as we saw in the previous section, if one is not attentive to which maps

are being used to establish a given relationship between two mathematical objects, one can

draw very misleading conclusions. Indeed, this is precisely what has happened in the Hole

Argument.

This discussion may be summed up as follows. There is a sense in which (M, gab) and

(M, g̃ab) are the same, and there is a sense in which they are different. The sense in which they
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are the same—that they are isometric, or isomorphic, or agree on all invariant structure—is

wholly and only captured by ψ̃. The (salient) sense in which they are different—that they

assign different values of the metric to the “same” point—is given by an entirely different

map, namely 1M . But—and this is the central point—one cannot have it both ways. Insofar

as one wants to claim that these Lorentzian manifolds are physically equivalent, or agree

on all observable/physical structure, one has to use ψ̃ to establish a standard of comparison

between points. And relative to this standard, the two Lorentzian manifolds agree on the

metric at every point—there is no ambiguity, and no indeterminism. (This is just what it

means to say that they are isometric.) Meanwhile, insofar as one wants to claim that these

Lorentzian manifolds assign different values of the metric to each point, one must use a

different standard of comparison. And relative to this standard—that given by 1M—the

two Lorentzian manifolds are not equivalent. One way or the other, the Hole Argument

seems to be blocked.20

To close this section, I will address a worry that some readers might have at this stage.

The worry is that the diffeomorphism associated with the Hole Argument is meant to be a so-

called “active” diffeomorphism, whereas I am interpreting it as a “passive” diffeomorphism.21

Actually, it seems to me that this distinction is itself symptomatic of the problem with the

argument. The distinction between “passive” and “active” diffeomorphisms in the present

sense is supposed to arise in the context of the action of an induced pushforward map on

some field. The “passive” interpretation of such a map is supposed to correspond to a (mere)

re-labeling of points, effectively leaving the fields unchanged. This, I claim, is the only way

in which ψ̃ can be interpreted—and, for that matter, how ϕ̃ in the previous section should

20Iftime and Stachel (2006) also suggest that the Hole Argument can be blocked—but only if one adopts
a different formalism for relativity theory, where one effectively takes the models of the theory and quotients
out by isometry. My view here is different: I am claiming that the Hole Argument is blocked with no

modification to the formalism of relativity theory. One only has to recognize the mathematical significance
of an isomorphism.

21This distinction is described, for instance, by Wald (1984, pgs. 438–9) and Norton (2011, Supplement
on Active and Passive Covariance).
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be interpreted as well.

The “active” interpretation, meanwhile, involves keeping the points unchanged (i.e., by

somehow fixing the labels of the points, perhaps with a local coordinate system) and as-

signing fields differently to each point. I will not dispute that there are contexts in which

an “active” diffeomorphism may make sense—for instance, when one considers automor-

phisms of a manifold or a Lorentzian manifold and one has the identity map to refer to

as a background standard of “sameness” of points.22 But one has to be very careful. In

the general case, where an isometry is not an automorphism, one simply does not have the

structure to make sense of “active” diffeomorphisms as realizing some sort of equivalence.

As I have argued, any claim of equivalence must be relativized to a choice of isometry, and

if the identity map does not realize an isometry, then the identity map plays no role in

the equivalence. In particular, the relevant standard of “same” labeling available is the one

determined by the choice of isometry. When one “fixes” a labeling system and then con-

siders how fields transform within that system, one is conflating the identity map with the

(non-trivial) diffeomorphism generating the pushforward map, just as in the Hole Argument.

This last point can be made in fully physical terms. Suppose the “fixed” labeling system

represents coordinates associated with an observer’s laboratory instruments. Then holding

this constant while one transforms, say, the metric by the pushforward map of a non-trivial

diffeomorphism will not give rise to a physically equivalent configuration by the lights of

this observer. According to the observer, all of her stuff has been moved around! This is

despite the fact that the two configurations are isometric, in the sense that there exists an

isometry relating them.

22The (local) isometries generated by Killing fields are an example of this sort of automorphism.
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4. An Argument from Classical Spacetime Theory

To see what is going on in the previous section, it may be helpful to draw a contrast with

a (superficially) similar argument in the context of classical spacetime theory.23 Consider

the geometric structure sometimes known as “Newtonian spacetime”. This can be described

as an ordered quintuple (M, tab, h
ab,∇, ξa), where M is a smooth four dimensional man-

ifold, tab and hab are classical temporal and spatial metrics, respectively, ∇ is a smooth,

flat, geodesically complete derivative operator compatible with the classical metrics, and

ξa is a smooth timelike vector field satisfying ∇aξ
b = 0.24 A Newtonian spacetime in this

sense is invariant under any diffeomorphism generated by a constant timelike or space-

like vector field, in the sense that given such a diffeomorphism, ϑ : M → M , we find

(M, tab, h
ab,∇, ξa) = (M,ϑ∗(tab), ϑ∗(h

ab), ϑ∗(∇), ϑ∗(ξ
a)). These diffeomorphisms—or more

precisely, the maps ϑ̃ between Newtonian spacetimes generated by these diffeomorphisms—

are naturally interpreted as representing temporal and spatial translations (or a combination

of the two).25 Note, importantly, that here the automorphism from M to itself, ϑ, gives rise

to an automorphism of the Newtonian spacetime structure. In this sense, ϑ (or really, ϑ̃) is

a symmetry of Newtonian spacetime.

Now that I have defined this spacetime, I am going to describe three ways of modifying

it. First, consider what happens if we add matter to a Newtonian spacetime. We can

23Pooley (2013, §7) also contrasts the Hole Argument with the argument I describe here. As he draws it,
however, the distinction concerns whether empirically indistinguishable models of a theory have qualitative
differences (according to that theory). This is closely related to, but not quite the same as, the point I am
trying to make. My point is that even adherents to a strong form of substantivalism about classical spacetime
structure can still generate notational variants, and these notational variants play no role in the standard
(convincing) argument for adopting Galilean spacetime (say) over Aristotelian or Newtonian spacetime.

24This is not the occasion for a detailed treatment of classical spacetime structure. For more on this topic,
see Earman (1989, Ch. 2) and Malament (2012). (Malament does not describe Newtonian spacetime, but
what I am calling Newtonian spacetime is what he calls classical spacetime, with the additional structure of
a standard of rest, given by ξa.)

25Note that there is a certain poignance here, in that what we now call “Newtonian spacetime” is actually
invariant under the classical example of a “Leibniz shift”, namely a transformation that moves everything
to the left by five feet. One might take this as evidence that “Newtonian spacetime” is not what Leibniz
and Clarke had in mind.
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represent matter in this context by a smooth scalar field, ρ; we can then write the Newtonian

spacetime with this matter field as (M, tab, h
ab,∇, ξa, ρ). Assume that ρ has compact spatial

support, like a beach ball. (So, the support of ρ looks like a tube through four dimensional

spacetime.) Such a matter distribution is manifestly not invariant under spatial translations,

even though the spacetime itself is. This can be made precise by noting that if ϑ :M →M

is a diffeomorphism generated by a constant (non-vanishing) spacelike vector field, then ϑ

does not give rise to an automorphism of (M, tab, h
ab,∇, ξa, ρ), even though it does give rise

to an automorphism of (M, tab, h
ab,∇, ξa). Nonetheless, ϑ may still be used to generate an

isomorphism of this new Newtonian spacetime+matter structure, by defining a new matter

field, ρ◦ϑ−1. Now the two Newtonian spacetime+matter structures, (M, tab, h
ab,∇, ξa, ρ) and

(M, tab, h
ab,∇, ξa, ρ ◦ ϑ−1), are isomorphic, with the isomorphism given by a map generated

by ϑ. These two structures are fully equivalent; they both represent (or rather, have the

capacity to represent) the same beach ball. In particular, there is no ambiguity regarding

where the beach ball is located, because one only gets this sense of equivalence by associating

points using ϑ.

Now consider what happens if we add further structure to the Newtonian spacetime. One

can do this by picking out a particular maximal integral curve of ξa, γ : R →M . The result-

ing spacetime structure, (M, tab, h
ab,∇, ξa, γ), is sometimes called “Aristotelian spacetime”.

It differs from Newtonian spacetime in that, in addition to a privileged standard of rest,

there is now a privileged center of the universe. Much like the beach ball described above,

this new structure is not invariant under spatial translations—in other words, the diffeomor-

phism ϑ above does not give rise to an automorphism of (M, tab, h
ab,∇, ξa, γ). Still, it does

generate an isomorphism, now between the Aristotelian spacetimes (M, tab, h
ab,∇, ξa, γ) and

(M, tab, h
ab,∇, ξa, ϑ ◦ γ). In other words, these two Aristotelian spacetimes represent (or,

again, have the capacity to represent) the exact same physical situations—they even agree

on where the center of the universe is at all times—even though they are related by a map
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generated by a diffeomorphism that, in a different context, could be interpreted as a spatial

translation. How could this be? It is because these two spacetimes are only isomorphic,

equivalent, etc. insofar as one associates points using the map ϑ. By the standard according

to which they are isomorphic, they agree on all structure.

As a final variation on the theme, consider what happens when we put the beach ball,

represented by ρ, into Aristotelian spacetime. We now get an Aristotelian spacetime+matter

structure of the form (M, tab, h
ab,∇, ξa, γ, ρ). This may be a perfectly adequate representa-

tion of the beach ball in spacetime. But suppose that, instead of using ρ, we represented

the beach ball using ρ ◦ϑ−1, yielding (M, tab, h
ab,∇, ξa, γ, ρ ◦ϑ−1). One might then argue as

follows: (M, tab, h
ab,∇, ξa, γ, ρ◦ϑ−1) also provides a perfectly adequate representation of the

beach ball in spacetime. The reason is that these two structures disagree only with regard

to where the beach ball is located relative to the center of the universe, and since the center

of the universe is unobservable, even in principle, the two Aristotelian spacetime+matter

structures are physically, or at least empirically, equivalent. But now we have a problem:

these two Aristotelian spacetime+matter structures are not isomorphic relative to ϑ or any

other map.26

It seems the adherent to Aristotelian spacetime theory is thus forced to either accept

that there are physically distinct configurations that nonetheless agree on all observable

properties, or else accept—as a substantive additional assumption—that Aristotelian space-

times differing only in the position of a beach ball relative to the center of the universe

must be physically equivalent. And taking the second of these routes amounts to adopting

Newtonian spacetime structure over Aristotelian spacetime structure.

Arguments such as this last one have been very persuasive against adopting Aristotelian

26One has to be careful here, since ϑ can be used to generate an isomorphism between two Aristotelian
spacetime+matter structures: namely, (M, tab, h

ab,∇, ξa, γ, ρ) and (M, tab, h
ab,∇, ξa, ϑ ◦ γ, ρ ◦ ϑ−1). These

would be perfectly equivalent for the Aristotelian, relative to the map induced by ϑ. The example in the
text does not concern this transformation, but instead what happens if we do not transform γ with ϑ.
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spacetime. And analogous arguments have weighed against Newtonian spacetime, in favor

of “Galilean spacetime”, which lacks a standard of absolute rest (i.e., there is no privileged

vector field ξa).27 The Hole Argument, on its face, may appear to be like this argument

against Aristotelian spacetime. But in fact it is different. Mathematically, the Hole Argu-

ment trades on a construction analogous to the first two variations on Newtonian spacetime,

where one used an automorphism of one object (in these cases, Newtonian spacetime; in the

Hole Argument, the bare manifold) to generate an isomorphism between two other objects.

The crucial observation, here, is that in these three cases, one already has a perfectly

good sense in which the structures in question are “the same”—namely, the sense given by

the maps generated by ϑ (or, respectively, ψ̃ in the Hole Argument above). One does not

need to accept some new form of equivalence in order to avoid an ambiguity regarding which

of various possible spacetime structures represents the world, because the relevant standard

of equivalence is already manifest in the map that relates the structures in the first place. It

is only in a case where the empirically indistinguishable structures are not isomorphic—as

in the argument just above regarding Aristotelian spacetime—that one runs into a genuine

problem. As we have seen, however, this is not the situation with the Hole Argument.

5. The Hole Argument Revisited

At this point, the principal arguments of the paper are complete. But I have said almost

nothing about how the these arguments relate to the standard interpretation of, or the

extensive literature on, the Hole Argument. I will conclude by turning to this topic. Even

so, this will not be the occasion for a general discussion of the substantivalism/relationism

debate. I will focus on two connections to the rest of the Hole Argument literature. The

first concerns Earman and Norton’s own views on the significance of the Hole Argument, as

27I focus on Newtonian and Aristotelian spacetimes here because the automorphisms of Galilean spacetime
that fail to be automorphisms of Newtonian spacetime are more complicated to describe in terms of their
generating vectors. But the argument has precisely the same form.
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expressed in Earman and Norton (1987), and the second concerns the relationship between

the present view and other responses to the Hole Argument.

To begin, recall that the moral of the Hole Argument is supposed to be that one must

accept that “diffeomorphic models represent the same physical situation.”28 If one were

to modify this slightly, and instead say that the moral is that isometric models represent

the same physical situations, or even better, isometric models may be used to or have the

capacity to represent the same situations, then the moral is untouched by the considerations

in sections 2 and 3. Indeed, this conclusion follows immediately from the background com-

mitments concerning mathematics and its application to physics that I described in section

1. On the view described there, once one asserts that spacetime is represent by a Lorentzian

manifold, one is committed to taking isometric spacetimes to have the capacity to repre-

sent the same physical situations, since isometry is the standard of isomorphism given in

the mathematical theory of Lorentzian manifolds. To deny this would be in effect to insist

that it is some other structure—one that is not preserved by isometries—that represents

spacetime in relativity theory.

But if the Hole Argument merely supports a view one could have had independent reasons

to accept, what becomes of the Hole Argument’s intended target—that is, the substanti-

valist who rejects Leibniz equivalence? It might seem that the arguments above, if correct,

would render this substantivalist position incoherent.29 But this reaction is too quick. As I

28 As I indicated in fn. 17, I believe this way of putting the principle is potentially confusing. The
reason is that, as Earman and Norton characterize them, models of a “local spacetime theory” consist in a
specification of a manifold and a collection of tensor fields on the manifold; “diffeomorphic models,” then,
are models where the two manifolds are related by a diffeomorphism and the associated tensor fields are
related by the pushforward map associated with that diffeomorphism. And here is where the slippage arises.
A diffeomorphism is, unambiguously, an isomorphism of manifolds. The map relating two “diffeomorphic
models” in the Earman-Norton sense is not a map (isomorphism or otherwise) between two manifolds. It is
a map between two manifolds endowed with additional structure that is, in a precise sense, generated by a
diffeomorphism. The difference matters. The diffeomorphism in the Hole Argument is an automorphism of
the manifold, but not an automorphism of the manifold with additional fields. My main point in sections 2
and 3 has been that running these two kinds of map together is what makes one slip into thinking that the
identity map on the manifold has some role to play.

29I take it this would be a problem for the views described here, since it would then seem that mathematical
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anticipated in section 1, the arguments here do not rule out (or even rule on) substantival-

ism or relationism. All I have argued here is that, if one adopts the standard formalism of

relativity theory, on which one represents spacetime with a Lorentzian manifold, the Hole

Argument does not force one to confront a metaphysical dilemma.

This point may be clearer if we reconsider Earman and Norton’s substantivalist in terms

of the background views on (applied) mathematics described in section 1. From that per-

spective, the substantivalist who denies that isometric spacetimes are equivalent must be as-

serting that spacetime is not or cannot be adequately represented by (precisely) a Lorentzian

manifold, at least for some purposes. So what sort of structure would be adequate to rep-

resent spacetime? Earman and Norton appear to suggest that the substantivalist believes

spacetime may be represented by just the manifold, not the manifold with metric.30 But,

at least from the present perspective, this proposal cannot be right, for several reasons.

One problem is that, on a natural understanding of “structure” in mathematics, this pro-

posal implies that the substantivalist takes spacetime to have less structure than on the

alternative view, insofar as manifolds have less structure than pseudo-Riemannian mani-

folds. Even more troubling, such a substantivalist would apparently be committed to the

radical view that any two spacetimes are equivalent as long as their associated manifolds

are diffeomorphic—whether the two agree on other structure, such as fields defined on the

manifold, or not. Indeed, a substantivalist in this sense would not reject Leibniz equivalence

as Earman and Norton describe it.

These considerations suggest that Earman and Norton’s substantivalist must actually

hold the opposite view, that spacetime is properly represented by a Lorentzian manifold plus

something else, such that the relevant standard of isomorphism would be more restrictive

considerations would have addressed the interpretive or metaphysical question about possible worlds after
all, suggesting that I have bundled in more metaphysics than I acknowledge.

30See Earman and Norton (1987, pgs. 518–20); cf. Stachel (1993, pgs. 135-6). Readers may rightly worry
that I am being uncharitable to Earman and Norton, here, or misrepresenting their substantivalist. But
bear with me.
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than isometry. (One might think of this sort of substantivalist as similar to someone who

accepts Aristotelian spacetime over Newtonian spacetime.) On this reading, one might

argue that my characterization of the Hole Argument above missed the point: Earman

and Norton take as a premise that spacetime has at least as much structure as a model

of a local spacetime theory—that is, as a Lorentzian manifold—but may, perhaps, also

have more structure. The Hole Argument, then, does have a substantive role to play: it

blocks this possibility, by showing that this extra structure is subject to a pernicious form

of indeterminism. But if this is right, it seems to me that simply putting the point in these

terms is helpful. In particular, it shows that the would-be substantivalist, in order to reply

effectively to the Hole Argument, needs to stipulate what the additional structure might be

and why we should think it matters. And it is difficult to see how this could be done in a

mathematically natural or philosophically satisfying way.31

All that said, I think it is fair to say that Earman and Norton did not intend their sub-

stantivalist foil to hold either of these positions—both are merely reconstructions motivated

by the background views on mathematics described at the beginning of this paper. What

Earman and Norton appear to have had in mind is a view on which one represents space-

time with a Lorentzian manifold (and no more), such that the manifold is understood to

represent spacetime points in some sense prior to or independently of the value of the metric

at those points. Various metric fields, then, would correspond to different assignments of

properties to the spacetime points. The pushforward of the metric along an automorphism

31 Some authors have appeared to suggest that the substantivalist’s additional structure consists in “space-
time points”. But manifolds (and Lorentzian manifolds) already have points, and so it is not clear what
would be added. On another way of construing things, it would seem that Earman and Norton’s substanti-
valist wants to consider manifolds in which, in addition to the manifold structure, every point has a unique
label. (Stachel (1993) calls this sort of construction a “color manifold,” following an example of Riemann’s
(pg. 139); he, too, takes the Earman-Norton substantivalist to be proposing that we need this sort of extra
structure to represent spacetime (pg. 146).) This would be a mathematical structure for which only the
identity map is an isomorphism. One could certainly do physics with such a structure, but it is hard to see
what one would gain. Indeed, as (Stachel, 1993, pg. 141) points out, the fact that we use the particular
mathematical structures we do use is the end result of a long process of developing and interpreting general
relativity—including Einstein’s own discovery of and reckoning with the Hole Argument.
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of the manifold would represent different property assignments to the same spacetime points,

corresponding to prima facie different physical situations. And this view, I take it, is in-

compatible with the background views on mathematics described in section 1. The problem

is essentially the same as for the Hole Argument itself: this view depends on taking the

identity map to provide a prior notion of when the points of two Lorentzian manifolds are

“the same”. But once again, it bears emphasizing that the tension concerns how we use

mathematics to represent certain physical or metaphysical possibilities, and not whether the

views on the metaphysics of space and time that one would like to represent are tenable in

the first place.

The discussion here and in section 3, concerning standards of “sameness” for spacetime

points, may evoke a now-common response to the Hole Argument. Many commentators

have suggested that one can defend substantivalism by denying haecceitism about spacetime

points, which amounts to denying that there exist physically possible worlds that differ only

with regard to which spacetime points exhibit certain metrical features.32 One version of this

view that is particularly similar to what has been defended here is due to Butterfield (1989)

and Brighouse (1994). These authors argue that the appropriate notion of “sameness” of

points across possible worlds (or spacetimes) should be given by the qualitative properties

of the points, including metrical properties. This leads them to conclude that, given two

isometric spacetimes, the right trans-world (or trans-spacetime) identity relation is the one

given by the isometry relating them, since this map takes points to points with the same

qualitative properties.33

32This sort of response to the Hole Argument is sometimes known as “sophisticated substantivalism.”
Varieties of it (with a good deal of variation!) have been advocated by, for instance, Butterfield (1989),
Maudlin (1988), Stachel (1989), Brighouse (1994), Rynasiewicz (1994), Saunders (2003), and Pooley (2006,
2013); the expression was coined (and the view criticized) by Belot and Earman (1999). See Pooley (2013,
§7) for an extended discussion.

33Butterfield (1989) goes on to argue that given a collection of isometric spacetimes, at most one of them
can represent a given physical situation. Brighouse (1994), meanwhile, holds that all of these isometric
spacetimes are physically equivalent, in the sense that they can represent precisely the same isometric
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Brighouse puts the point as follows.

[The Hole Argument assumes] that a substantivalist identifies spacetime points
across the possible worlds in question independently of any of their qualitative
properties. It is assumed that independently of the properties of points coded by
the fields Oi the issue of identifying points across possible worlds has been settled.
The substantivalist who then wants to claim that Leibniz equivalent models
represent the same world has to deal with a given spacetime point having different
properties in worlds that she wants to say are the same. But realism about
spacetime points [i.e., substantivalism], just as realism about any other entities,
does not commit you to a transworld identification thesis that is independent of
the qualitative properties of an object. (Brighouse, 1994, p. 121)

In other words, Earman and Norton commit their substantivalist to the view that there is a

prior notion of identity between points of isometric spacetimes—i.e., that the identity map is

privileged. Without that assumption, the Hole Argument has no force. This response to the

Hole Argument, understood as a diagnosis of why the Hole Argument should not be taken

to have the force it is often credited with, is very close indeed to the view presented here.

But there are also several differences that are worth emphasizing. The first difference is that

Brighouse and Butterfield both aim to articulate and defend varieties of substantivalism,

and their responses to the Hole Argument are cast in those terms. I do not take myself to be

defending substantivalism, or relationism for that matter, here.34 In a sense, my goal is to

show that one can and should reject the Hole Argument along Butterfield-Brighouse lines,

independently of any substantivalist thesis.

A second, related, difference is that Butterfield and Brighouse base their arguments on

a view of trans-world object relations motivated by Lewisian counterpart theory. One gets

the impression that to respond to the Hole Argument in the way these authors do, one needs

spacetimes. In this sense, then, the views of the present paper are somewhat closer to Brighouse than to
Butterfield, though most of what I say here applies to both.

34In fact, I am not sure what the difference is supposed to be. Once substantivalists agree that spacetime
is (or can be) represented by precisely a Lorentzian manifold, that isometries are isomorphisms of this
structure, and thus that isometric spacetimes are equally good representations of the world—i.e., that they
do not correspond to physically different worlds—it is difficult to see how to distinguish the two views. At
least, no physics is at stake. Pooley (2013, pgs. 578-9) and Curiel (2009, §3) draw similar conclusions.
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to be committed to Lewis’ system. My arguments here, meanwhile, have required no such

commitments. Of course, one does have to accept the views about (applied) mathematics

described in section 1, so I have not gotten something for nothing. But at very least, the

starting point for the present paper is quite different from Butterfield and Brighouse’s, and

perhaps less controversial.

This difference in starting points highlights a more significant difference between the view

defended here and the one Butterfield and Brighouse defend. Butterfield and Brighouse, and

indeed, virtually all of the literature on the Hole Argument and anti-haecceitistic substan-

tivalism, take for granted that there are mathematical differences to reckon with between

isometric spacetimes—that is, that there are distinct models of relativity theory that differ

only with regard to which spacetime points exhibit certain metrical features—and that the

puzzle concerns whether these mathematical differences correspond to differences of phys-

ical possibility. In other words, the Butterfield-Brighouse response to the Hole Argument

appears to grant that the identity map plays a privileged mathematical role in comparing

isometric spacetimes. They then question whether it also plays a privileged physical or

metaphysical role in distinguishing possibilities. The argument here, meanwhile, was that

those alleged mathematical haecceities are spurious.

In this regard, more than Butterfield or Brighouse, I am echoing Wilson (1993, §XVI),

who laments a tendency in the Hole Argument (and among philosophers more generally) to

“focus upon the unwanted extrinsic aspects of” (pg. 238) mathematical constructions. The

mathematical haecceities in question concern precisely those unwanted “extrinsic” features

of isometric Lorentzian manifolds; “intrinsically”, isometric Lorentzian manifolds are the

same, in the sense given by the isometry.
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