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Regeneration in Markov Chain Samplers 
Per MYKLAND, Luke TIERNEY, and Bin Yu* 

Markov chain sampling has recently received considerable attention, in particular in the context of Bayesian computation and 
maximum likelihood estimation. This article discusses the use of Markov chain splitting, originally developed for the theoretical 
analysis of general state-space Markov chains, to introduce regeneration into Markov chain samplers. This allows the use of regenerative 
methods for analyzing the output of these samplers and can provide a useful diagnostic of sampler performance. The approach is 
applied to several samplers, including certain Metropolis samplers that can be used on their own or in hybrid samplers, and is 
illustrated in several examples. 

KEY WORDS: Gibbs sampling; Hybrid sampler; Markov chain Monte Carlo; Metropolis algorithm; Simulation output analysis; 
Split chain. 

1. INTRODUCTION 
In Markov chain Monte Carlo, a distribution ir is exam- 

ined by obtaining sample paths from a Markov chain con- 
structed to have equilibrium distribution ir. This approach, 
introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, 
and Teller (1953), has recently received considerable atten- 
tion as a method for examining posterior distributions in 
Bayesian inference and for approximating the relative like- 
lihood function in maximum likelihood estimation (Besag 
and Green 1993; Gelfand and Smith 1990; Geyer 1994; 
Geyer and Thompson 1992; Gilks et al. 1993; Liu, Wong, 
and Kong, in press; Smith and Roberts 1993; Tanner and 
Wong 1987; Tierney 1991, in press; Yu 1993). 

The analysis of the output produced by Markov chain 
samplers is more challenging than for other Monte Carlo 
methods, such as importance sampling, that are based on 
independent observations. The dependence in the samples 
makes estimating standard errors of Monte Carlo estimates 
more difficult. Furthermore, because it is usually not possible 
to start a Markov chain sampler with its equilibrium distri- 
bution, it may take some time for it to reach equilibrium, 
and thus it may be useful to discard some initial portion of 
the sample to reduce the effect of the initial distribution used. 

One approach that can help reduce these problems is to 
try to identify regeneration times at which the chain restarts 
itself. The tours of the chain between regenerations are then 
independent and identically distributed. If the chain is ob- 
served for a fixed number of tours, then initialization issues 
are eliminated, and standard errors of sample path averages 
can be computed using methods based on iid observations. 
This approach is known as regenerative simulation (see, for 
example, Ripley 1987, sec. 6.4). 

Regeneration times are easy to find for discrete Markov 
chains, if we fix a particular state, then the chain starts over 
every time it returns to that state. In general state-space Mar- 
kov chains, where the transition densities and the stationary 
distribution may be continuous, the chain may never return 
to any particular state. Nevertheless, several authors have 
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developed ways of introducing regeneration times into gen- 
eral state-space Markov chains (Athreya and Ney 1978; 
Nummelin 1978). The method of Nummelin (1978), called 
splitting, is well suited for use in regenerative simulation 
(Asmussen, Glynn, and Thorisson 1992; Kalashnikov 1992). 
Splitting is particularly easy to apply to a class of Metropolis 
samplers that can be used on their own or as components 
in hybrid samplers. 

The article is organized as follows. Section 2 reviews the 
regenerative simulation method, and Section 3 introduces 
the general splitting technique of Nummelin. Section 4 dis- 
cusses the application of splitting to some Metropolis chains 
and Gibbs samplers. Section 5 illustrates these approaches 
using several examples, and Section 6 presents some final 
comments. Proofs of several results are given in an Appendix. 

2. REGENERATIVE SIMULATION ANALYSIS 

A stochastic process { X,: n = 0, 1, . .. } is regenerative if 
there are times To < T1 < ... such that at each Ti, the 
future of the process is independent of the past and identically 
distributed. Then the tours of the process between these times 
are iid, and the times themselves form a renewal process. 
The renewal process is delayed if To * 0. 

Suppose that a regenerative process has equilibrium dis- 
tribution ir, that we wish to estimate 0 = E1[f] for some 
function f, and that the process is ergodic in the sense that 
sample path averages of f converge almost surely to 0. Also 
assume for the moment that we observe the process for a 
fixed number n of complete tours. Let Ni = Ti -Ti1 and 

T, 

Yi= 2? f(AX) 
j=T,_X+l 

for i = 1, ..., n. Then the pairs (Ni, Y1) are iid, and if 
Et I Yi I I < oo) and E[Ni I < oo X then On = E yi l Z Ni = P/ 
N -* 0 by the strong law of large numbers. If the Yi and Ni 
have finite variances, then the distribution of VH(69n - 6) 

converges to a N(O, o-2) distribution, and aJ2 can be estimated 
using the variance estimation formula for a ratio estimator, 

I-Z(Yi - kNi )2 

^2 = n N2 .(1) N2 
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The accuracy of the ratio estimator variance formula ( 1 ) 
depends on the variability of its numerator and on the error 
in the Taylor series approximation of Y/N-0 by ( Y - ON)/ 
E[Ni ] used in the delta method derivation of this formula. 
Both depend on the sample size and the variability of the 
tour lengths. In particular, the Taylor series error depends 
on the relative error of N as an estimator of E [Ni ]; the ex- 
pected absolute value of the Taylor series error is bounded 
by (MSE(6n, f )CV(N))1/2, where MSE(On, 0) = E[On 
- 0)2] and CV(X) = var(X)/(E[X] )2 denotes the coefficient 
of variation of X. As a result, many simulation texts (such 
as Bratley, Fox, and Schrage 1987 and Ripley 1987 recom- 
mend using formula (1) only when the relative error of N 
is small; jackknife estimators are recommended as a possible 
alternative when the relative error is not small. The coefficient 
of variation CV(N) can be estimated by CV (N) 
- CV(Ni)/n = z (N,-N)2/(nN)2. Formula (1) should 
be used with caution if CV(N) is larger than, say, 1%; this 
corresponds to an estimated bound on the Taylor approxi- 
mation error in ( 1 ) of . 1 MSE(an 0) 1/2 

In addition to computing CV(N), it is useful to examine 
the pattern of regeneration times graphically; for example, 
by plotting Ti / Tn against i/n. We will refer to this as a scaled 
regeneration quantile (SRQ) plot. An SRQ plot can provide 
a useful diagnostic for examining the performance of a sam- 
pler. If the total run length is long enough, then this plot 
should be close to a straight line through the origin with unit 
slope. This follows from the law of large numbers and also 
reflects the asymptotic uniform distribution of regenerations 
predicted by renewal theory; that is, the proportion of re- 
newals that fall in a fraction a of the observation period 
converges to a. Deviations from this straight line suggest 
that the observation period is not long enough for the sampler 
to have reached equilibrium. Deviations occur in particular 
when some tours are substantially larger than others. Ex- 
amining the states visited by the process during these longer 
tours might suggest improvements in the sampler. Otherwise, 
it may be necessary to use a longer run to reduce the impact 
of these longer tours. 

Another interpretation of the SRQ plot is that its reflection, 
the plot of i/n against Ti / Tn is a scaled plot of an estimate 
of the renewal function over the observation period [0, Tn]. 

The deviations of an SRQ plot from a straight line are 
related to CV(N) through the fact that CV(N) can be com- 
puted as the sum of the squares of the increments of the 
deviations Ti / Tn - i/n . The estimated coefficient of varia- 
tion CV(N) is asymptotic to CV(Ni)n. This provides a useful 
relationship between the coefficient of variation of the tour 
lengths, the number of observed tours, and the departure 
from uniformity of the regeneration time distribution. Once 
an estimate of CV(Ni) is available from a preliminary run, 
this relationship can be used to estimate a minimal number 
of tours for which formula (1) should produce acceptable 
results. Other numerical measures of uniformity of the re- 
newal time distribution are of course possible and may be 
worth exploring. Asymptotic properties of such measures 
can be derived from the fact that the normalized deviations 
process converges to a Brownian bridge. 

The assumption that the simulation is run for a fixed 
number of complete tours implies that the process is started 
with a regeneration and that the total run length Tn is ran- 
dom. Starting with a regeneration can be accomplished by 
running from an arbitrary starting point until a regeneration 
occurs and discarding the sample path up to this first regen- 
eration. It is also possible to run the simulation for a fixed 
period and either treat the first and last observations as re- 
generations or use only the portion of the sample path be- 
tween the first and last observed regenerations. This produces 
a bounded run length but a random number of observed 
tours. An intermediate option is to set a desired total run 
length t and continue until the first regeneration time greater 
than or equal to t. This has the technical advantage that the 
last observation time is a stopping time. All these approaches 
lead to sample path averages with the same asymptotic dis- 
tribution, and formula (1) remains asymptotically valid. 
Biases can occur because of the effect of the waiting time 
paradox on the final tour, but these biases should be small 
if the simulation run length is long enough to produce an 
approximately uniform regeneration pattern. Ripley ( 1987, 
sec. 6.4) and Bratley et al. ( 1987, secs. 3.3.2 and 3.7) discuss 
these issues and give further references. 

3. SPLITTING MARKOV CHAINS 

The terminology used in this section is based on work of 
Nummelin ( 1984) and also has been defined by Tierney (in 
press). Let {Xn: n = 0, 1, .. .} be an irreducible Markov 
chain on a state-space (E, 6) with transition kernel P 
= P(x, dy) and invariant distribution ir. The sigma algebra 
6 is assumed to be countably generated. These assumptions 
imply that Xn is positive recurrent (see, for example, Tierney 
in press, thm. 1). Assume in addition that Xn is Harris re- 
current; this is satisfied by most Markov chain samplers 
(Tierney, in press, cors. 1 and 2; Chan and Geyer, in press, 
thm. 1 ). 

A set A E 6 is a proper atom for the Markov chain if ir(A) 
> 0 and P(x, * ) = P(y, * ) for all x, y E A. If a chain has 
a proper atom, then the times at which the chain enters the 
atom are regeneration times. Few chains contain proper at- 
oms, but it is often possible to construct a related chain that 
does. Suppose that it is possible to find a function s(x) and 
a probability measure v(dy) such that ir(s) = f s(x)ir(dx) 
> 0 and 

P(x, A) 2 s(x)v(A) (2) 

for all x E E and all A E 6. A pair (s, v) satisfying these 
conditions is called an atom for the transition kernel P. At- 
oms represent a generalization of proper atoms: If A is a 
proper atom, then (lA(X), P(X, *)) for some x E A is an 
atom. Condition (2) implies that we can write P(x, dy) 
= s(x)v(dy) + (1 - s(x))Q(x, dy), where Q is a transition 
kernel defined as Q(x, dy) = (P(x, dy) - s(x)v(dy))/(1 
- s(x)) if s(x) < 1 and, arbitrarily, as Q(x, A) = 1A(X) if 
s(x) = 1. Thus we can imagine generating Xn+1, given Xn 
= x, in two stages: First, generate a Bernoulli variable Sn 
with success probability s(x). If Sn = 1, then generate Xn?1 
from v. Otherwise, generate Xn+1 from Q(x, * ). The marginal 
sequence { Xn } is a Markov chain with transition kernel P. 
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The pairs (X", S,) form a Markov chain, the split chain, 
with a proper atom E X { 1 }; the times at which Sn = 1 are 
regenerations times for this chain. This construction is given 
in Nummelin (1984, sect. 4.4). 

Sampling from the kernel Q as required by the split chain 
construction may not be particularly convenient. Fortunately 
an alternative is available: We can generate the marginal 
sequence X, as usual from P, and then generate the splitting 
variables Sn from their conditional distribution given the 
{ X, } sequence. Conditionally, given the entire sequence {Xn, 
n = 0, 1, .. }, the Bernoulli variables { Sn } are independent. 
Furthermore, conditionally on Xn and Xn+1 the variable Sn 
is independent of all other Xi, and P (Sn = 1 Xn = x, Xn+ 
= y) = r(x, y), where 

r(x, ) = s(x)v(dy) (3) 
P(x, dy) 

is the Radon-Nikodym derivative, which exists by the ab- 
solute continuity implied by (2). Thus we can generate Sn 
as soon as Xn+ is available. This construction is summarized 
in the following theorem. 

Theorem 1. Suppose that the pairs (X", S,) are generated 
by choosing XO from E according to an arbitrary initial dis- 
tribution and for each n = 0, 1, . . ., generating first Xn+1 
from P(X,, . ) and then Sn as a Bernoulli variable with success 
probability r(Xn, Xn+,,). Then (Xn, Sn) is a Markov chain, 
the times when Sn = 1 are regeneration times (with proba- 
bility 1 that the tours are all finite), and the expected tour 
length is E[N ] = 1 / r(s), where ir(s) = f s(x)ir (dx). 

The construction of the split chain depends on an atom 
(s, v) only through the product s(x) v(dy). Thus it is not 
necessary to deterniine the normalizing constant needed to 
make v into a probability measure. It is sufficient to find a 
finite nonzero measure v' and a function s' such that 
s'(x)v'(dy) < P(x, dy) and lr(s') > 0; then the atom (s, v) 
is given by v(dy) = v'(dy)/v'(E) and s(x) = s'(x)v'(E). 

Atoms of a given transition kernel P need not exist. Num- 
melin ( 1984) showed that if e is countably generated, under 
the assumptions listed at the beginning of this section it is 
always possible to find an atom for the m-step transition 
kernel pm for some m 2 1. But in Markov chain simulations 
pm is rarely available in closed form for any m > 1, so we 
consider only the case m = 1. 

If an atom (s, v) of P does exist, then it is not unique. For 
any s' and v' with ir(s') > 0 and s'v' < sv in the sense that 
s'(x) v'(A) < s(x)v(A) for all x E E and A E 6, the pair (s', 
v') is also an atom of P. The relation s'v' < sv provides a 
partial ordering on atoms. If two atoms (s', v') and (s, v) 
satisfy s 'v' < sv, then we would prefer to use the larger atom 
(s, v), because it produces more regenerations in the sense 
that a split for (s', v') can be constructed by first generating 
a split based on (s, v) and then randomly deleting renewals. 
If two atoms are not comparable in terms of this relation, 
then it is not clear which one is preferred. If a choice has to 
be made, one approach is to pick a particular criterion, say 
mean tour length, and then choose the atom with the larger 
mean tour length as long as other characteristics, such as the 
coefficient of variation of the tour lengths, are reasonable. 

This is the approach that we adopt in the examples in Section 
5. The mean tour length can be estimated by the average of 
observed tour lengths or as the inverse of an estimate of the 
regeneration rate r(s) using a preliminary sample. The in- 
verse regeneration rate has the advantage that an estimate 
of the form 7rjs = (1 / n) E IO1 r(Xi, Xi,,) may provide a 
better estimate than the proportion of observations resulting 
in regenerations. 

The conditional regeneration probability (3) may not al- 
ways be easy to calculate. But in many examples the gen- 
eration of variables from P may produce additional infor- 
mation that allows generation of the Bernoulli variables Sn 
even if r( x, y) is not explicitly available. Two examples are 
the Metropolis kernel and hybrid kernel splits discussed in 
Sections 4.1 and 4.3. 

The split process is constructed by adding randomizations 
to an observed Xn sample path. Given the sample path, one 
could repeat the determination of the split variables several 
times and combine the resulting variance estimates. Sample 
path averages will not be affected, assuming that the entire 
observed sample path of the Xn process is always used. But 
variance estimates do change with the splitting variables, 
and repeated sampling can reduce the contribution of the 
splitting randomization to the variability in variance esti- 
mates. Conditional resampling with the first, last, or total 
number of regenerations kept fixed is also possible. 

4. SPLITTING SOME MARKOV CHAIN SAMPLERS 
Two general approaches to incorporating regeneration into 

a Markov chain sampler are available. The first approach is 
to attempt to find an atom for the sampler itself. This is 
possible for certain special Metropolis and Gibbs samplers. 
If it is not possible to find an atom for the original sampler, 
then the second approach is to form a hybrid sampler that 
incorporates steps from a sampler for which an atom is 
available. An atom for a component of a hybrid sampler can 
be used to produce an atom for the combined sampler. 

4.1 Splitting Metropolis Chains 
Suppose that the distribution ir we wish to sample has a 

density, also denoted by ir, with respect to a measure At, ir(dx) 
= 7r(x),u(dx). Hastings's (1970) version of the Metropolis 
algorithm originally introduced by Metropolis et al. (1953) 
generates the next step Xn+1 in a Markov chain from the 
current state Xn by first generating a candidate step Y from 
a transition kernel Q(Xn, dy) = q(Xn, y),(dy). This can- 
didate is accepted with probability a(Xn, Y), where 

= mIir(y) q(y, x) 1 ae(x, y) = mini (x)q(x , y) , (4) 

and X+ I is set equal to Y. Otherwise, the candidate is rejected 
and Xn+I is set equal to Xn. 

It is natural to find an atom for a Metropolis kernel by 
finding an atom for the subprobability transition density q(x, 
y)a(x, y); that is, by finding a pair (s', v') such that 

q(x, -)a-(x, y),u(dy) ? s'(x) '(d2-). (5) 
Because the Metropolis kernel P satisfies P(x, dy) 2 q(x, 
y)ae(x, y),u(dy), this provides an atom of the kernel P. In 
many cases there is no loss in this approach. 
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Proposition 1. Let (s, v) be an atom for the Metropolis 
chain and assume that v( { x }) = 0 for all x E E. Then i' has 
a density with respect to ,t, denoted by v(y), such that q(x, 
y)a(x, y) ? s(x)v(y); that is, (s, v) is an atom for q(x, 
y)at(x, y)tt(dy). 

For a Metropolis chain, the splitting variables Sn of Theo- 
rem 1 can be generated by allowing a split to occur only 
when a candidate step is accepted. 

Theorem 2. Suppose that the Metropolis chain satisfies 
(5), and suppose that X,+1 and S, are generated as follows: 
(1) draw X,+ I conditionally on X, by taking candidate steps 
from q(Xn, y),u(dy) and accepting or rejecting according to 
at(Xn, y); (2) if the candidate in step ( 1 ) is rejected, then set 
Sn = 0; otherwise, generate Sn as a Bernoulli random variable 
with success probability rA(Xn, Xn+ I), where 

_ s'(x)v'(dy) 

rAx q - (x, y) a(x, y)(6 
Then the process (X", Sn) has the same distribution as the 
process described in Theorem 1. 

The success probability rA(x, y) is the conditional prob- 
ability of a regeneration, given Xn = x and X,+1 = y and 
given that the candidate is accepted. In principle, it is possible 
to generate the splitting variables Sn directly using the success 
probability (3). But when v'({x}) > 0 for some x, the 
expression for r( x, x) can be complicated to derive, due to 
the fact that Xn = Xn?1 can occur with positive probability 
when the candidate step is accepted. An estimate of the re- 
generation rate 7r(s) can be computed using rA(x, y) as 

(1 /n) I 7n- Zi+lrA(Xi, Xi+l), where the Zi = 1 if the can- 
didate for Xi is accepted and Z7 = 0 otherwise. 

This leaves the question of finding a pair (s, v) that satisfies 
(5). This can be done by finding an atom (Sq, vq) for the 
kernel Q, provided that there exists a positive function h 
such that 

h(x)q(x, y) = h(y)q(y, x) (7) 
for all x and y. This condition is formally similar to a re- 
versibility condition, but h is not required to be a probability 
density. Under (7), the candidate acceptance probability 
becomes a(x, y) = min{w(y)/w(x), 1}, where w(x) 
- r(x)/h(x). 

Theorem 3. Suppose that a Metropolis chain satisfies (7), 
and let (sq, vq) be an atom for Q. For any c > 0, set s'(x) 
= sq(x)min { c/ w(x), I } and v'(dy) = Vq(dy)min { w(y)/c, 
I} . Then (5) holds. 

The v' given in Theorem 3 is not a probability measure, 
but this does not matter in (5), as v'(E) can be absorbed 
into s'. 

The tour length distribution for this atom depends on 
the choice of the constant c. The product s'(x)v'(dy) 
= sq(x)vq(dy)min { c/w(x), I } min { w(y)/c, I } will be small 
if c is far above or below typical values of w(x). This suggests 
that a good choice for c will usually be in the center of the 
distribution of the weights w(x) under ir. 

The most important case where condition ( 7) holds is an 
independence Metropolis chain (Tierney, in press, sec. 2.3 ). 
In an independence chain, candidates are generated from a 

fixed density f, regardless of the current state of the chain; 
thus q(x, y) = f(y). Equation (7) holds for any h propor- 
tional to f. To apply Theorem 3, choose sq = 1 and vq(dy) 
= f(y),u(dy). Independence chains are useful primarily as 
components in hybrid chains, as discussed in Section 4.3. 

For an independence chain with the split of Theorems 2 
and 3, the distribution v' has density proportional to 
f(y)min { w(y)/c, 1}. This can be sampled by rejection 
sampling to obtain an initial value Xo for the chain corre- 
sponding to a regeneration. The conditional probability (6) 
of a regeneration at step n, given Xn = x, Xn+I = y and no 
rejection, simplifies to 

rA(X, Y) 

= max{c/w(x), c/w(y)} if w(x) > c and w(y) > c 

= max { w(x)/c, w(y)/c} if w(x) <c and w(y) <c 

= 1 otherwise. 

(8) 
Thus a regeneration is certain to have occurred if w(x) and 
w(y) are on opposite sides of.c. 

As a special case, suppose the candidates for an indepen- 
dence chain are produced by a rejection algorithm with en- 
velope function g (Tierney, in press, sec. 2.3); the function 
g is usually chosen to give the set C = { x: lr(x) < g(x) } 
high probability under r. Then the candidate generation 
density f is proportional to min {g(x), lr(x) }. Taking h 
= min { g(x), 7r(x) } in (7) and c = 1, the regeneration prob- 
ability 4.5 becomes 

rA(x,y)=l ifxEECoryEC 

= min {g(x)/1ir(x, g(y)/ir(y)} otherwise. 

The set C, where g dominates ir, is a proper atom for this 
chain. It would be possible to base a regenerative analysis 
entirely on this proper atom alone, but the atom based on 
Theorem 2 is larger in the sense described after Theorem 1 
and thus produces more regenerations. 

A simple calculation shows that the regeneration rate for 
an independence chain using this atom can be written as 
ir(s) = ( f min {cll;w(x),l xzd)2 x/ 

w(x),u(dx). The effect of c on the regeneration rate or the 
mean tour length thus can be assessed by comparing values 
of( 1/n + 1) E min{ l// w(X( ), l/c , for a preliminary 
sample. 

Another case where (7) holds is the original version of the 
Metropolis algorithm of Metropolis et al. (1953), where it 
is assumed that the candidate generation kernel is symmetric, 
q(x, y) = q(y, x). In this case, Equation (7) holds with h a 
constant. To apply Theorem 3, an atom (Sq, Vq) of q must 
be found. One approach to finding such an atom is to choose 
a point x E E and a set D E 6, usually a compact set, and 
to set vq(dY) = q(x, y) I D(Y)A(dY)/ I D q(x, u)g(du) and 
Sq(X) = inf{ q(x, y)/q(x&, y): y E D }. It is possible to start 
the chain with a regeneration by rejection, smpling the initial 
state XO from a density proportional to q(x, Y) 1D(Y). 

As an example, consider q(x, y) Xc exp { -4 (Y -x) T(y 
- x) }, a random walk chain with normal- increments, and 
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let D = {y: I YI < d} for some d > 0. Then forx = 0, we 
have sq(X) = exp { - xx - d XI }I . A similar approach can 
be used for any random walk chain based on a spherically 
symmetric increment distribution. 

4.2 Splitting a Gibbs Sampler 

Suppose that the state space E is a product of d compo- 
nents, E = E1 X . X Ed, an element of E is written as x 
= (xl, . .., Xd) with xi E Ei, and ir(x) is a density with 
respect to a product measure g(dx) = A1(dxl) X >. 
X Id(dxd). Let rir(xi I xi, . . ., xi_1, xi, 1,. . ., Xd) denote the 
conditional density of the ith component given all the others. 
The Gibbs sampler (Gelfand and Smith 1990) starting with 
X, = x generates X,+I by successively replacing the com- 
ponents of X, by draws from the conditional distributions 
-xi for i = 1, . . ., d. Even though examples of very strong 
dependence are available, experience suggests that for many 
problems, the dependence in the Gibbs sampler sequence 
drops off very quickly, often within 10 to 20 cycles. As a 
result, its seems reasonable that a regeneration scheme with 
mean tour lengths on the order of 10 to 20 should be available 
in these cases. 

The transition kernel of the Gibbs sampler has transition 
density 

p(X, y) = Irl-(Yx2, I * *,Xd)r2(Y21Y1, X3, . . ., Xd) 

* *rd(Yd I Y1, , Yd-1). (9) 

In some cases it may be possible to find an atom for this 
density by direct examination. In others, it may be possible 
to follow the strategy used to find an atom for the standard 
Metropolis transition kernel by choosing a distinguished 
point xZ and a set D E 6, taking v(dy) to have density p(x, 
y), and setting 

s(x) = inf P(x, Y) (10) 
yF-D p(X, y) 

In many problems the minimization required to compute 
s(x) can take advantage of the exponential family structure 
often present in problems where a Gibbs sampler is used; 
this is the case for the first example discussed in Section 5. 

Computation of s(x) may also be simplified by a suitable 
choice of the ordering of the components. For example, the 
final factor in (9) does not depend on x and thus cancels 
from the ratio in the definition of s(x) in (10). For the pur- 
poses of computing an atom, it thus is useful to place the 
most complicated conditional distribution last in the update 
sequence. In the case of two components (i.e., for d = 2), 
an atom for -rx or w2 thus provides an atom for the Gibbs 
sampler. 

Once again, starting the chain with a regeneration is easy, 
because sampling from v(dy) corresponds to taking one 
Gibbs sampler cycle starting at xZ. 

4.3 Hybrid Samplers 

If an atom of a particular kernel is not available, then it 
may be possible to form a hybrid (Tiemney in press, sec. 2.4) 
with another kernel, such as an independence kernel, for 

which an atom is available. If PI and P2 are transition kernels 
with invariant distribution wr, then the cycle hybrid kernel 
P1P2 and the mixture hybrid kernel axPI + (1 - a)P2 for 0 
<?e a< 1 are also transition kernels with invariant distribution 
ir. The cycle hybrid corresponds to alternately using P1 and 
P2 to generate a new state; for a mixture, at each step kernel 
P1 is used with probability a and kernel P2 is used with prob- 
ability 1 - a. If an atom of one of the kernels in a hybrid is 
available, then an atom of the hybrid chain is available. 

Proposition 2. Suppose that PI and P2 are transition ker- 
nels with invariant distribution r and that (s, v) is an atom 
for PI. Then (s, vP2) is an atom for the cycle kernel P1 P2, 
and (as, v) is an atom for the mixture kernel aP, + (1 
- a)P2 if 0 < a < 1. 

Computing the conditional regeneration probability (3) 
for the hybrid sampler may be quite difficult, but it is not 
necessary. Instead, the splitting variables S, can be con- 
structed by applying the appropriate construction to the PI 
transitions alone. For a cycle, this requires using the value 
of the intermediate state produced by applying PI; for a mix- 
ture, it requires using the variable that indicates whether PI 
was used. 

As shown in Section 4.1, it is particularly easy to find 
atoms for independence chains. To introduce regeneration 
into a chain with kernel P, we can choose a suitable inde- 
pendence kernel PI and take P2 = pm for some m 2 1 in a 
mixture or a cycle. If the candidate generation density of PI 
approximates wr well, then the hybrid sampler may mix faster 
than a sampler based only on P. Split t distributions (Geweke 
1989) or the overdispersed distributions of Gelman and 
Rubin ( 1990) may be useful as candidate generation den- 
sities. Alternatively, if the transition probabilities P(x, * ) 
have densities, then we can generate candidates for P, from 
P(x, * ) for some reasonable initial point x. The resulting 
hybrid will usually not mix any faster than a pure P sampler, 
but it will be possible to split the chain by identifying regen- 
eration times that roughly correspond to returns of the chain 
to states that can be reached in a single step from x. 

5. EXAMPLES 

5.1 A Hierarchical Poisson Model 

One of the examples presented by Gelfand and Smith 
(1990) is a hierarchical Poisson model. Failures in ten pumps 
at a nuclear power plant are assumed to occur according to 
independent Poisson processes, with each pump having its 
own failure rate X1, ..., X10. The pumps were observed for 
periods ti of varying lengths, and the numbers of observed 
failures si for each pump were recorded. The data were orig- 
inally analyzed by Gaver and O'Muircheartaigh ( 1987) and 
are also reproduced by Tierney (in press, Table 1). Condi- 
tional on a hyperparameter f, the individual pump failure 
rates are assumed to be independent random variables with 
a gamma distribution G( a, 3) with density proportional to 
x- e-x. The hyperparameter f has a gamma distribution 
G(y, b), with y = .01 and 3 = 1. For the gamma exponent 
of the rate distribution, Gelfand and Smith ( 1990 ) used the 
method of moments estimator, ae = 1.802. 
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For the resulting posterior distribution, given (, the Xi are 
independent G( a + si, ti + 3) random variables, and, given 
XI, . , AX10, the distribution of ( is G(y + 10a, E Xi + 6 ). 
For constructing an atom of the Gibbs sampler, suppose that 
we first generate (, then generate XI, .. ., X10. Then the new 
values of d and Xi depend only on the previous values through 
A = E Xi, and the ratio of the Gibbs sampler transition 
densities started with two different values of A depends only 
on the next state through its value of (: 

p(x, y) _ A(x) + (3\Y+lOa 

p( , y) 
= 

A(si() + 6) exp{(A(xZ) - A(x))((y)}. 
In this equation x and y represent different combinations of 
d and X's. To apply the approach outlined in Section 4.2, 
we need to choose a distinguished value x, or its correspond- 
ing value of A, A = A(xZ), and a set D, which need only 
depend on (, and compute 

/A + (3\Y+1Oa 
s(A) = P{( E D 1I} inf ( 1 exp{(A-A)(}. 

j1E D A +( / 
For an interval D = [di, d2], the minimization produces 

s(A) = P{dIl < d2l XI(A 
+ 

a )Y+1a 

X exp{(A - A)d(A)}, 
where d(A) = d1 if A < A and d(A) = d2 if A 2 A. The 
corresponding conditional probability of a regeneration, 
given X, = x and X,+1 = y, is r(x, y) = exp{(A 
- A(x))(d(A(x)) - 3(y))} if di ? 3(y) < d2 and r(x, y) 
- 0 otherwise. 

Based on examining a short preliminary run of a Gibbs 
sampler, a reasonable approach to choosing the three pa- 
rameters A, di, and d2 of this atom is to set A equal to 6.7, 
the approximate posterior mean of A based on the prelim- 
inary sample, and to choose di of the form ( ? kg , where 
(3= 2.35 and S = .69 are the approximate posterior mean 
and standard deviation of (, again based on the prelimi- 
nary sample. We chose k = 1.1, because this value pro- 
duced the largest estimated regeneration rate. Using this 
atom to split a Gibbs sampler run of length 5,000 produced 
1,967 complete tours, an average tour length of N = 2.56, 
and an estimated coefficient of variation of CV(N) = .03%. 
The SRQ plot for the observed regeneration times is shown 
in Figure 1. 

As a second approach, we used an alternating sampler in 
which a Gibbs cycle was followed by an independence step. 
The independence step candidates were generated by a single 
Gibbs cycle starting with A = 6.7, the approximate posterior 
mean of A, and generating first ( and then the Xi. The weight 
function for this independence kernel is w(x) = e&:(X) T (ti 
+ ((x))-(si+a). This can be standardized to be near 1 by 
dividing by its value at ( = 2.35, the estimated posterior 
mean of ( based on the preliminary sample. By maximizing 
the estimated regeneration rate for the independence steps 
based on a preliminary Gibbs sample of 100, we chose a 
value of c = 1.1 for the constant in Theorem 3. A run of 
5,000 from this alternating chain, consisting of 2,500 Gibbs 
cycles and 2,500 independence steps, produced 2,069 com- 

(a) (b) 
Figure 1. SRQ Plots of T1/T, (Vertical Axes) Against i/n (Horizontal 

Axes) for the Gibbs Sampler (a) and an Alternating Gibbs/lndependence 
Sampler (b) for the Pump Failure Data Based on Runs of Length 5,000. 
Lines through the origin with unit slope are shown dashed; axis ranges 
are from 0 to 1 for all axes. 

plete tours, an average tour length of N = 2.41, and an es- 
timated coefficient of variation of CV(N) = .01%. The SRQ 
plot for this run is also shown in Figure 1. 

Both the split Gibbs sampler and the alternating sampler 
have very small average tour lengths and uniform regener- 
ation patterns, suggesting that the Gibbs sampler works very 
well in this problem. Because the independence steps used 
here only use a single Gibbs step to generate their candidates, 
they do not significantly accelerate convergence of the al- 
gorithm; but additional acceleration does not seem necessary 
in this case. 

5.2 An Artificial Example 
As an artificial example that illustrates the diagnostic value 

of a regenerative analysis, we considered a distribution wr 
that is a mixture of a bivariate standard normal distribution 
and a bivariate standard normal distribution shifted to have 
its center at the point (,u, ,u). The mixing probability was .5. 
For sufficiently large ,u, the density wr is bimodal with the 
modes displayed along the diagonal; the Gibbs sampler thus 
should have some difficulty in moving from one mode to 
the other. An alternating Gibbs/independence hybrid sam- 
pler was constructed with a single Gibbs step from the origin 
as the candidate generation density for the independence 
steps. This example is intended to model a situation where 
preliminary exploration has revealed one mode, the mode 
at the origin; but a second, and equally important, mode is 
in fact present at (,, ,u). 

Runs of length 5,000 were performed for ,u equal to 1, 3, 
5, and 7. Table 1 shows the number of complete tours, the 
mean tour lengths N, the estimated coefficients of variation 
CV(N), and the sample means of the two coordinates. Two 
estimated standard errors are given for each sample mean: 
a batch mean estimate based on batches of size 50, and a 
regenerative estimate based on (1). The means of the mar- 
ginal distributions of the two coordinates under ir are equal 
to ,u/2. Figure 2 shows the SRQ plots for the observed re- 
generation times. As expected, the performance of the sam- 
pler deteriorates as ,u increases. At ,u = 5, there are several 
large gaps in the regeneration times, corresponding to periods 
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when the sampler is in the mode at (,u, u). For ,u = 7, the 
sampler starts in the mode at the origin, moves to the second 
mode after approximately 800 observations, and returns to 
the mode at the origin after a total of approximately 3,800 
observations. The estimated standard errors are also consid- 
erably larger for u = 5 and ,u = 7. 

The regenerative simulation analysis clearly reveals that 
the sampler is not behaving well for ,u = 5 and ,u = 7. In a 
real example, further exploration should reveal the second 
mode. Incorporating this mode into a candidate generation 
density for independence steps in a hybrid sampler should 
produce a sampler with much better properties. 

5.3 Splitting and the Swendsen-Wang Algorithm 

Even though our work is primarily motivated by appli- 
cations in Bayesian and maximum likelihood computations, 
the ideas can also be used in other Markov chain Monte 
Carlo problems. As an illustration, we show how they can 
be applied to the Swendsen-Wang algorithm. 

Swendsen and Wang ( 1987) proposed a method for sam- 
pling the Potts (1952) model (Besag and Green 1993), the 
multicolor generalization of the Ising model. This model 
assumes the vertices V = { 1, . .. , M} of a graph (V, E) are 
each given one of L colors, xi. The distribution of the colors 
is assumed proportional to exp { -f77(x) }, where 77(x) is the 
number of edges (i, j) E E for which xi * xJ and d is a 
nonnegative constant. 

Given the colors xi, the algorithm adds auxiliary bond 
variables, bij. No bonds are placed between vertices with 
different colors. If xi = xj and (i, j) is an edge in the graph, 
then with probability 1 - exp ( - f), a bond is placed between 
vertices i and j, and bij = 1. Otherwise, no bond is placed 
between the vertices, and bij = 0. A set of bonds partitions 
the vertex set V into connected components. Conditional 
on the bonds bij, the xi's are the same within components, 
and the component colors are selected independently and 
uniformly from the available L colors. The joint distribution 
of (x, b) is proportional to e- (IEl-bij)( 1- e -) lbi on the 
set of (x, b) values such that bij = 0 whenever xi * xj and 
is zero elsewhere; here I El is the number of edges in the 
graph, and sums are over edges. The algorithm is a two- 
coordinate Gibbs sampler that alternates between selecting 
bonds and colors from these conditional distributions. 

It is possible to find an atom for this Gibbs sampler along 
the lines of Section 4.2. A natural choice for the distinguished 
state x is the state where all vertices have the same color; 
the sampler then generates a new set of bonds as iid. Bernoulli 
random variables and then selects a new set of colors for the 

[1=5 /l=7 

Figure 2. SRQ Plots of T1/Tn (Vertical Axes) Against i/n (Horizontal 
Axes) for the Bivariate Normal Mixture Example Based on Runs of Length 
5, 000 From Alternating Gibbs/lndependence Samplers. Lines through the 
origin with unit slope are shown dashed; axis ranges are from 0 to 1 for 
all axes. 

resulting components. In computing the infimum needed to 
find the splitting probability s( * ) in Equation ( 10), taking 
D = E, it is easy to see that any difference in color produces 
an infimum of zero. So s(.) will be just the indicator of 
whether all vertices have the same color or not, and the split 
will occur each time the sampler returns to a configuration 
in which all states have the same color. The set of configu- 
rations that are all the same color forms a proper atom. 

An alternating sampler using independence steps can also 
be constructed using Gibbs steps started at a uniform color 
configuration as the candidate generator. Because the con- 
ditional distribution of the colors given bonds is just uniform 
on the LC(b) possible component colorings, where c(b) is the 
number of components, the weight function for this inde- 
pendence step is proportional to LC(b). 

Both the split of the Gibbs sampler itself and the split of 
the alternating chain should work reasonably well if f is not 
too small and the graph not too large. As a simple illustration, 

Table 1. Summary Statistics for Gibbs/lndependence Samplers for Mixtures of Bivariate Normal Densities 

i 6'Tours N (N) X, X2 SEB(X1) SER (X-) SEB(X9 SER(X9d 

1 1458 3.42 0.03% 0.516 0.493 0.018 0.019 0.020 0.020 
3 1289 3.88 0.16% 1.449 1.458 0.061 0.070 0.062 0.068 
5 1311 3.81 2.05% 2.374 2.355 0.218 0.375 0.219 0.381 
7 988 5.06 36.52% 4.233 4.214 0.342 1.671 0.346 1.691 

NOTE: Standard errors were computed using batch means (SEB) and the regenerative method (SE.). 
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we used an m X m grid with m = 32 and two colors, L = 2. 
The parameter A was chosen to make the bond placement 
probability (1 - e-) equal to .8. This corresponds to a tem- 
perature well below the freezing point of the infinite Ising 
lattice; a more elaborate candidate generation density would 
be needed for lower values of A or higher values of m. Both 
samplers were started with all vertices the same color. 

For the pure Gibbs sampler with a split on returns to all 
one color, using a run of 20,000 gave 780 complete tours, 
an average tour length of N - 25.57, and an estimated coef- 
ficient of variation of CV(N) = .20%. Using a preliminary 
Gibbs sampler run of length 100, the choice of c that max- 
imized the estimated regeneration rate for the independence 
split was found to be c = e4. In a run of 20,000 of the alter- 
nating chain, 1,857 complete tours, a mean tour length of 
N = 10.76, and an estimated coefficient of variation of 
CV(N) = .05% were obtained. The SRQ plots for the two 
sampler runs are given in Figure 3. 

6. CONCLUSIONS 
Markov chain splitting provides a useful way of introduc- 

ing regenerations into a Markov chain simulation. This al- 
lows the use of the regenerative simulation method, which 
can be used to avoid initialization issues and allow variance 
estimates to be computed based on iid observations. In ad- 
dition, it allows Markov chain sampling to take advantage 
of a parallel computing environment without the problems 
created by many short Markov chain runs when regeneration 
points are not available. Examining the pattern of regener- 
ations can also give useful diagnostic information about the 
performance of the sampler. 

It is, however, important to emphasize that regenerative 
simulation is essentially only a method of analysis. By itself 
it does not improve a sampler. A sampler that mixes very 
slowly will still mix very slowly even if regeneration points 
have been identified. The tours of such a sampler will be 
independent, but the slow mixing rate results in heavy tails 
for the tour length distribution. The regenerative approach 
can help reveal problems with a sampler; for example, by 
showing a nonuniform regeneration pattern. But, as with 
any method based on examining sample paths from Markov 
chains, absence of a problem signal does not guarantee that 
the sampler is working properly. In the ,u = 7 case of the 
artificial example of Section 5, the pattern of regenerations 
looks perfectly uniform for the first 800 iterations, up to the 
transition into the second mode. Had sampling been ter- 
minated before this jump, then the problem would have gone 
undetected. 

In principle, the methods outlined in this article can be 
used to split samplers whenever the single step transition 
density is available; this is the case for most samplers pro- 
posed for exploring posterior distributions. The resulting 
splits will not always be satisfactory-there are many rea- 
sonable samplers for which the basic mixing rate is too slow 
to provide reasonable splits based on a single transition. As 
pointed out by Tierney (in press), it may be possible to im- 
prove the mixing rate of a sampler by forming a hybrid that 
uses independence chain steps based on a distribution fevery 
m iterations. This has advantages over using multiple short 

(a) (b) 

Figure 3. SRQ Plots of Ti/TN (Vertical Axes) Against i/n (Horizontal 
Axes) for the Swendsen-Wang Gibbs Sampler (a) and an Alternating 
Gibbs/lndependence Sampler (b) for the Ising Model Based on Runs of 
Length 20,000. Lines through the origin with unit slope are shown dashed; 
axis ranges are from 0 to 1 for all axes. 

runs of length m started independently from the initial dis- 
tributionf, as advocated by some authors. If the initial dis- 
tribution is well chosen, then most independence steps will 
be accepted and result in regenerations, thus producing suf- 
ficient independent tours to allow examination of diagnostics 
based on many short runs. In addition, by preserving the 
invariant distribution through the use of the Metropolis al- 
gorithm, a hybrid sampler produces a single long sample 
path that gets closer to equilibrium and can be averaged to 
produce estimates with smaller bias than many independent 
short sample paths. Finally, the acceptance rate for the in- 
dependence steps and the rate and pattern of regenerations 
in a hybrid sampler may be able to detect problems with the 
independence candidate distributionf. The only additional 
cost of a hybrid algorithm over short runs started with the 
initial distribution f is the cost of the Metropolis accept/ 
reject steps, which will usually be small in relation to the 
total sampling cost if m is of moderate size. 

APPENDIX: PROOFS 

Proof of Theorem 1. 

The construction of (Xn, Sn) was given by Nummelin ( 1984, pp. 
61-62). Nummelin's corollary 4.2 shows that the recurrence of Xn 
implies that the renewal sequence Ti is recurrent; that is, all regen- 
eration times are finite. The expression for the mean time between 
regenerations was given by Nummelin (1984, p. 76). 

Proof of Proposition 1. 

Let A E 6 and x E E be arbitrary, and set B = A-{ x {}. Because 
v({x}) = 0, 

s(x)v(A) = s(x)v(B) < f q(x, y)a(x, y)(dy) 

< q(x, y)a(x, y)g(dy). 

This yields the required result. 

Proof of Theorem 2. 
Let P(x, dy) denote the Metropolis kernel, and let An+1 be the 

event that the candidate for X"+ 1 is accepted. The conditional prob- 
ability of An+1, given Xn = x and Xn+i = y, is given by P (A"+1 I X 
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= x, X,n+1 = y) = q(x, y)a(x, y)1(dy)/P(x, dy). Thus the con- 
ditional probability that Sn = 1, given Xn = x and X,+1 = y, is 

P (Sn = 1 X" = x, Xn+I = Y) 

= P({S, = 1}i nA,+ IX= x,X+ = y) 

= P {S, = I Xn= x, Xn+i =y, A,+, } 

X P (A,+,|XI = x, Xn+l= y) 

= A(,Y (x, y)at(x, y),g(dy) 
= rA(x, J) P(x, dy) 

s'(x)v'(dy) q(x, y)a(x, y),g(dy) 
q(x, y)at(x, y),u(dy) P(x, dy) 

s'(x)v'(dy) 
P(x, dy) 

which is the conditional regeneration probability (3) used in the 
construction of Theorem 1. 

Proof of Theorem 3. 

It is sufficient to show that min{c/w(x), l}min{w(y)/c, 1} 
< min { w(y)/w(x), 1 } for all x and y and for any c > 0. To see 
this, note that if c/w(x) < 1, then 

c w(y) c = c mi (y) 
lW(X) Jmlc J w(x) c 

=mnIw(y) c mnfw(y) 
W(X) 'W(X)J W(X) J 

whereas c/w(x) ? 1 implies min{c/w(x), 1}min{w(y)/c, 1} 
= min{w(y)/c, 1} and min{w(y)/c, 1} ? min{w(y)/w(x), 1}. 

Proof of Proposition 2. 

For the cycle kernel, 

(P1 P2)(x, dy) = f P1(x, du)P2(u, dy) 

? s(x) f v(du)P2(u, dy) = S(x)v(P2) (dy); 

thus (s, vP2) is an atom of P1 P2. For the mixture kernel, 

aP1 (x, dy) + (1 - a)P2(x, dy) ? aP1 (x, dy) ? as (x)v(dy). 

So (as, v) is an atom of aP1 + (1 - a)P2 as long as a > 0. 

[Received November 1992. Revised May 1994.] 
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