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Regeneration of a full-thickness defect of
rotator cuff tendon with freshly thawed
umbilical cord-derived mesenchymal stem
cells in a rat model
Ji-Hye Yea1,2, Jin-Kyung Park2, In Ja Kim2, Gayoung Sym2, Tae-Soo Bae3 and Chris Hyunchul Jo1,2*

Abstract

Background: It is difficult to immediately use mesenchymal stem cells (MSCs) for the patient with rotator cuff
disease because isolation and culture time are required. Thus, the MSCs would be prepared in advanced in
cryopreserved condition for an “off-the-shelf” usage in clinic. This study investigated the efficacy of freshly thawed
MSCs on the regeneration of a full-thickness tendon defect (FTD) of rotator cuff tendon in a rat model.

Methods: We evaluated morphology, viability, and proliferation of cultured umbilical cord-derived MSCs (C-UC MSCs)
and freshly thawed umbilical cord-derived MSCs (T-UC MSCs) at passage 10 in vitro. In animal experiments, we created a
FTD in the supraspinatus of rats and injected the injured tendon with saline, cryopreserved agent (CPA; control), C-UC
MSCs, and T-UC MSCs, respectively. Two and 4 weeks later, macroscopic, histological, biomechanical, and cell trafficking
were evaluated. T test and ANOVA were used with SPSS. Differences with p < .05 were considered statistically significant.

Results: T-UC MSCs had fibroblast-like morphology and showed greater than 97% viability and stable proliferation
comparable to the C-UC MSCs at passage 10. In animal experiments, compared with the control group, the macroscopic
appearance of the T-UC MSCs was more recovered at 2 and 4 weeks such as inflammation, defect size, neighboring
tendon, swelling/redness, the connecting surrounding tissue and slidability. Histologically, the nuclear aspect ratio,
orientation angle of fibroblasts, collagen organization, and fiber coherence were improved by 33.33%, 42.75%, 1.86-fold,
and 1.99-fold at 4 weeks, and GAG-rich area decreased by 88.13% and 94.70% at 2 and 4 weeks respectively. Further, the
T-UC MSCs showed enhanced ultimate failure load by 1.55- and 1.25-fold compared with the control group at both 2
and 4 weeks. All the improved values of T-UC MSCs were comparable to those of C-UC MSCs. Moreover, T-UC MSCs
remained 8.77% at 4 weeks after injury, and there was no significant difference between C-UC MSCs and T-UC MSCs.

Conclusions: The morphology, viability, and proliferation of T-UC MSCs were comparable to those of C-UC MSCs.
Treatment with T-UC MSCs could induce tendon regeneration of FTD at the macroscopic, histological, and biomechanical
levels comparable to treatment with C-UC MSCs.
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Background
Rotator cuff disease is a major cause of shoulder pain, and ap-

proximately 300,000 operations are performed each year in

the USA [1, 2]. After conservative treatments such as rest,

non-steroidal anti-inflammatory drugs, physical therapy, and

various kinds of injections [3], at least 45% patients suffer

from persistent symptoms even after 12months [4]. These

symptoms are attributed to the low healing potential of the

rotator cuff tendon due to the avascular and acellular struc-

ture, and the tenocytes no longer participate in the regener-

ation of tendon after injury [5]. Thus, spontaneous healing of

tendon disease is a difficult proposition.

Recently, mesenchymal stem cells (MSCs) have emerged

as a promising candidate for fundamental tissue regener-

ation of rotator cuff tendon [6]. Bone marrow-derived

MSCs (BM MSCs) and adipose tissue-derived MSCs (AD

MSCs) improve collagen organization and collagen fiber

coherence and enhance the tensile strength of tendon in a

rat model of rotator cuff injury [7, 8]. However, the use of

these MSCs entails invasive harvesting techniques [9], low

collection efficiency [10], decreased ability with age, and

donor morbidities [11]. Especially, heterotopic bone for-

mation induced by BM MSCs is a crucial risk factor limit-

ing clinical application. Umbilical cord-derived MSCs (UC

MSCs) represent an alternative cell source. UC MSCs iso-

lated from the umbilical cord, which is a medical waste

following delivery, could be obtained non-invasively and

at relatively low cost [10]. It has higher proliferative and

self-renewal potential than other adult MSCs [12]. In

regenerative medicine, it is reported that UC MSCs can be

used to recover tissue structure in a mouse model of is-

chemic injury [13] and a C57BL6 mouse model of wound

injury [14]. Thus, UC MSCs could be used to potentially

recover the tendon tissue of rotator cuff.

For clinical application, an “off-the-shelf” usage with allo-

geneic MSCs is more promising than usage after isolation

and culture in each case, or usage with rescue culture for

several days after thawing for allogeneic MSCs. However,

MSCs might be subjected to substantial physiological

changes such as cell growth, phenotype, differentiation, via-

bility, and safety profile in vivo during the freshly thawing

procedure [15, 16]. The results of applying freshly thawed

MSCs to animal models vary with the study. The freshly

thawed MSCs are impacted by factors associated with post-

infusion biodistribution as they bind poorly with fibronec-

tin, human endothelial cells, and cytoskeletal F-actin com-

pared with cultured MSCs. Freshly thawed MSCs were

undetectable in the lung tissues of C57BM/B6 mice

whereas the cultured MSCs could be detected for up to 24

h [17]. In contrast, another study reported that the freshly

thawed MSCs had a healing effect on allergic airway in-

flammation in a mouse model comparable to that of cul-

tured MSCs [18]. These conflicting results suggest a

potential risk associated with the clinical use of freshly

thawed MSCs. However, the healing potential of MSCs is

disease-specific and affected by factors such as tissue origin,

donor variation, culture time, supplements, and other as-

pects associated with delivery [16]. Thus, the efficacy of

specific cells under specific disease conditions remains to

be investigated. Until now, although some studies investi-

gated tissue healing using UC MSCs, the role of freshly

thawed UC MSCs (T-UC MSCs) in tendon recovery for

clinical use compared with continuously cultured UC

MSCs (C-UC MSCs) has never been reported.

Therefore, this study investigated the efficacy of T-UC

MSCs in a rat model of full-thickness tendon defect

(FTD) of the supraspinatus tendon. We hypothesized

that T-UC MSCs have comparable morphology, viability,

and proliferation to those of C-UC MSCs. The T-UC

MSCs could induce regeneration of tendon in terms of

macroscopic, histological, and biomechanical character-

istics comparable to C-UC MSCs.

Methods
UC MSCs isolation and culture

This study was approved by the Seoul Metropolitan

Government Seoul National University Boramae Medical

Center Institutional Review Board (IRB No. 16-2015-115).

Informed consent was obtained from all patients before

performing the study. Human umbilical cords were ob-

tained from full-term birth via cesarean section. Isolated

umbilical cords were washed 2 to 3 times with Dulbecco’s

phosphate-buffered saline (DPBS; Welgene, Daegu, Korea)

to remove blood products, and the length and weight were

measured, followed by sectioning into minimal cube ex-

plants, each measuring 2–4mm, using surgical scissors.

The cube explants (1 g) were aligned at regular intervals in

15-cm culture dishes and allowed to firmly attach to the

bottom of the dish for 60 min in a 5% CO2 incubator with

humidified air at 37 °C. The culture medium consisting of

low-glucose Dulbecco’s modified Eagle’s medium (LG-

DMEM; Hyclone, Logan, USA) supplemented with 10%

fetal bovine serum (FBS; Hyclone) and antibiotic-

antimycotic solution (100U/mL penicillin, 100 μg/mL

streptomycin, and 0.25 μg/mL amphotericin B; Welgene)

was gently poured into the dishes. The medium was re-

placed twice a week. Non-adherent cells were removed by

changing the medium. When cells reached 80% confluency,

they were detached by incubation for 3min with trypsin-

ethylendiaminetetracetic acid (EDTA) (0.05% trypsin, 0.53

mM EDTA; Welgene). The tissues were removed through

a 100-μm cell strainer (SPL Life Sciences, Pocheon, Korea),

and the cells were centrifuged at 500g for 5min at 20 °C

and then replated at a density of 3 × 103 cells/cm2. The cul-

ture medium was changed every 2–3 days and continuously

cultivated. The C-UC MSCs were continuously cultured up

to passage 10 before use in experiments and characterized

morphologically, in addition to the determination of growth
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kinetics, CFU-F, flow-cytometric, and trilineage differenti-

ation of cells as reported previously [19]. The T-UC MSCs

were cryopreserved with a cryoprotective agent (CPA) (in-

cluding 10% DMSO; ZENOAQ RESOURCE, Fukushima,

Japan). Cryovials were stored at − 80 °C in a deep-freezer

and transferred to − 196 °C liquid nitrogen tank for preser-

vation up to 1month. For use in experiments, T-UC MSCs

were thawed immediately in the 37 °C water bath within 1

min. The T-UC MSCs were also used at the same passage

as C-UC MSCs for each experiment.

Characterization of C- and T-UC MSCs

When C- and T-UC MSCs reached 80% confluence, cell

morphologies were observed under a microscope (CKX53

Olympus culture microscope; Olympus, Tokyo, Japan).

Cell viability of C- and T-UC MSCs was determined by

the trypan blue exclusion method and water-soluble tetra-

zolium salt (WST) assay. Cells were stained with trypan

blue (0.4%) solution and the live and dead cells were

counted using the hemocytometer. The percentages of cell

viability of C- and T-UC MSCs were calculated using the

following formula: total number of live cells/total number

of cells × 100 (%). For WST assay, cell suspensions were

plated at a density of 1 × 104 cells/well on a 96-well plate

and incubated for 0, 2, 6, 24, and 48 h in the presence of

5% CO2 with humidified air at 37 °C. At the respective time

points, 10 μL WST solution (WST assay kit; EZ3000, DAEI

LLAB SERVICE CO. Ltd.) was added to each well for 2 h in

a 5% CO2 incubator with humidified air at 37 °C. After the

2 h incubation, optical density (OD) was measured at 450

nm using a microplate spectrophotometer (Power Wave

XS; Bio-Tek Instruments, Winooski, VT, USA).

Proliferative capacities of C- and T-UC MSCs were eval-

uated by calculating the cumulative population-doubling

level (CPDL) and population-doubling time (PDT). Cells

were plated at a density of 3 × 103 cells/cm2 on a 6-well

plate in triplicate. Cells were harvested every 4 days up to

20 days. PDT of cells was calculated using the following

formula: PD = Log (Nf/Ni)/Log2, PDT =CT/PD, where CT

denotes culture time, and Nf and Ni refer to the final and

initial number of cell, respectively [20].

In vivo study design

Animal procedures were conducted in accordance with

the protocol approved by the Seoul Metropolitan Gov-

ernment Seoul National University Boramae Medical

Center Institutional Animal Care and Use Committee

(IACUC_2020_0004). One hundred twenty adult male

Sprague-Dawley rats (12 weeks old, 340~360 g) were di-

vided into one of the four groups and treated accord-

ingly: (1) saline group, (2) CPA group, (3) C-UC MSC

group, and (4) T-UC MSC group. Rats from each group

were sacrificed immediately after surgery, 2 and 4 weeks

after surgery. The supraspinatus tendon (SST) was

harvested and used for macroscopic and histological

evaluation (n = 4), biomechanical evaluation (n = 8), and

cell trafficking (n = 4). Workflow was schematized in an

Additional file 1.

Surgical procedures

Anesthesia was induced using zoletil and rompun (30mg/

kg + 10mg/kg). The left shoulder was operated in all cases.

A 20cm skin incision was made directly over the

anterolateral border of the acromion. After the SST was ex-

posed by detaching trapezius and deltoid muscle from the

acromion, a round FTD with a diameter of 2mm in the mid-

dle of the SST was created 1mm from the insertion using a

Biopsy Punch (BP-20F, Kai Medical Europe GmbH, Bremen,

Germany). This defect size was approximately 50% of the

tendon width, correlating with a large but not a massive tear

according to the method previously described [21]. Ten mi-

croliters of saline, CPA, C-UC MSCs (1 × 106 cells in saline),

and T-UC MSCs (1 × 106 cells in CPA) were intratendi-

nously injected adjacent to both sides of the defect in two di-

vided doses using a 30-G needle. After injection, the deltoid

and trapezius muscles were sutured with a 4–0 Vicryl suture

(W9074, Ethicon, Cincinnati, OH, USA), and the skin was

also sutured with a black silk (SK439, AILee, Busa, Korea).

After surgery, animals were allowed free cage activity.

Macroscopic evaluation

At 2 and 4 weeks after injection, the rats were sacrificed in

a carbon dioxide chamber. The SST of the rats was har-

vested along with the humerus head without removing the

muscle. For macroscopic evaluation, we used a modified

semi-quantitative system described by Stoll et al. [22] (see

Additional file 2). The 12 parameters in the system were

tendon rupture, inflammation, tendon surface, neighbor-

ing tendon, level of the defect, defect size, swelling/redness

of tendon, connection surrounding tissue and slidability,

tendon thickness, color of tendon, single strain of muscle,

and transition of the construct to the surrounding healthy

tissue. Each parameter varied from 0 or 1 except for swell-

ing/redness score (0 to 2) and tendon thickness score (0

to 3). Therefore, the total macroscopic score varied be-

tween 0 (normal tendon) and 15 (most severe injury).

Histological evaluation

After the macroscopic evaluation, the harvested tissues

were immediately fixed in 4% (w/v) paraformaldehyde

(PFA; Merck, Darmstadt, Germany) for 24 h, followed by

decalcification in 10% EDTA (Sigma-Aldrich, St Louis,

MO, USA) for 2 days. After decalcification, the tissues

were dehydrated through an increasing series of etha-

nol gradient, defatted in chloroform, and embedded

in paraffin blocks. The tissue was carefully trimmed

to the appropriate middle site of tendon and cut into

4-μm-thick serial sections.
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A randomly selected slide was stained with hematoxylin

and eosin (H&E) and analyzed by light microscopy (U-

TVO 63XC; Olympus Corp., Tokyo, Japan). For the evalu-

ation of tendinopathy, each slide was evaluated using the

semi-quantitative grading scale as previously described [23].

The 7 parameters of the system include fiber structure,

fiber arrangement, rounding of the nuclei, variations in cel-

lularity, vascularity, stainability, and hyalinization. Each par-

ameter in the grading scales varies from 0 to 3. The total

degeneration score for a given slide varied between 0 (nor-

mal tendon) and 21 (most severely degenerated).

For the evaluation of inflammation, infiltration of in-

flammatory cells was evaluated using a 0–3 grading

scale: 0 (normal), 1(slightly abnormal), 2 (moderately ab-

normal), and 3 (maximally abnormal) [24].

In normal tendon, the few fibroblasts with flattened nu-

clei are typically aligned parallel to the tensile axis. After

injury, the morphometric changes of fibroblast nuclei were

evaluated as previously described by Fernandez-Sarmiento

using H&E stained slides [25]. Fibroblast density (number

of nuclei per mm2), nuclear aspect ratio (the ratio of the

minor diameter to the maximal diameter), and nuclear

orientation angle (between the major axis of the nuclear

angle and the axis of collagen fibers) were evaluated. Five

regions of interest (ROI) were measured and the average

was used finally.

We also evaluated the occurrence of heterotopic ossifi-

cation when separated, clustered, and bar-shaped foci

were found in the whole tendon structure [26].

Slides were also stained with picrosirius red (PSR) for

analysis of collagen fiber organization and coherency

using circularly polarized light microscopy at × 200 mag-

nification. Collagen organization was measured as in-

tense white areas of brightly diffracted light on gray

scale (black, 0; white, 255) using ImageJ software with

installed NII plugin (National Institutes of Health, MD,

USA). Higher gray scale indicated more organized and

mature collagen [27]. The coherence of the collagen fi-

bers is a measure of the extent of fiber alignment in the

major axis of alignment. The coherence was quantified

using the Orientation J plug-in for ImageJ and then

multiplied by 100 to obtain the final coherence value [7].

Five ROIs were measured and the mean value was used.

Moreover, slides were stained with Masson’s trichrome

to evaluate collagen deposit, and immunohistochemistry

(IHC) was performed to assess type I collagen formation

after injury, using rabbit anti-type 1 collagen (1:300 dilu-

tion, Abcam; ab34710). Detailed procedures are de-

scribed in Additional file 3.

For evaluation of cartilage formation, slides stained

with alcian blue were used and observed via light

microscopy at × 40 magnification. The glycosamino-

glycan (GAG)-rich area was measured using ImageJ

[11, 28].

Biomechanical evaluation

For biomechanical testing, we harvested supraspinatus

tendon with humerus head and carefully removed the

muscles to leave only the tendon. The harvested tissues

were wrapped in saline-soaked gauze and kept at −

80 °C. Before testing, the tissues were thawed with saline

wet gauze at room temperature for 24 h, and the tissues

were kept moist with saline during all tests. The distal

part of the humerus bone was vertically embedded in an

aluminum tube full of polymethylmethacrylate (PMMA)

in the custom-designed lower jig of a testing system.

The proximal end of the tendon was compressed with

sandpaper, gauge, and rubber to prevent slippage and

to reduce damage of specimens. The complex was

clamped vertically in the custom-designed upper jig.

Testing was performed with shoulders at 90° of ab-

duction with a material testing system (H5K5, Tinus

Olsen, England, UK) [29, 30]. All specimens were

loaded to failure in tension at a constant rate of 0.1

mm/s. Slippage of the tendon was inspected visually.

The cross-sectional area of supraspinatus tendon was

measured at the center of defect region and was cal-

culated with the formula area = abπ/4. From the load-

displacement curve recorded during tests, the ultimate

failure load, the stiffness, and ultimate stress were cal-

culated [28, 31].

UC MSCs trafficking

UC MSCs were labeled with red fluorescent PKH26

(Sigma-Aldrich, St Louis, MO, USA) according to the

manufacturer’s protocol [32]. Detailed procedures are de-

scribed in Additional file 4. After labeling, the cells were

counted by hemocytometer and were confirmed by fluor-

escence microscope (Leica DMI 4000B, Leica, Wetzlar,

Germany). After injection, the tissues were harvested im-

mediately after injection and at 2 and 4 weeks after injec-

tion and used for evaluation (see Additional file 4). Five

fields were randomly selected in the slide and high-

powered images (× 400) were obtained by fluorescence

microscopy. The PKH26 positive cells coincident with 4′,

6-diamidino-2-phenylindole (DAPI) were counted per

area and the mean number was recorded by ImageJ [33].

Statistical analysis

All data are shown as mean ± standard deviation. A T test

was used to determine significance between the means of

two groups in vitro, and animal experimental data were

analyzed with one-way analysis of variance (ANOVA) with

post hoc analysis using Bonferroni multiple comparison

test. All statistical analyses were performed with SPSS

software version 23 (IBM). Differences of p < 0.05 were

considered statistically significant.
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Results
Characterization of C- and T-UC MSCs

Both C- and T-UC MSCs showed fibroblast-like morph-

ology (Fig. 1a). Viabilities of C- and T-UC MSCs were

98.25 ± 0.50% and 97.25 ± 1.50%, respectively, in trypan

blue assay (Fig. 1b). In WST results, the viabilities were

32.1 ± 7.95 in C-UC MSCs and 29.8 ± 4.76 in T-UC

MSCs at 6 h and 93.6 ± 6.68 in C-UC MSCs and 93.1 ±

4.48 in T-UC MSCs at 48 h (Fig. 1c). There was no sig-

nificant difference between C- and T-UC MSCs.

Results of the proliferative capacity showed that the

values of CPDL in C- and T-UC MSCs were 12.1 ± 1.9

and 12.0 ± 1.6, respectively, by day 20 (Fig. 1d). The

mean values of PDT in C- and T-UC MSCs were

32.36 ± 1.86 h and 33.36 ± 1.58 h, respectively (Fig. 1e).

No significant difference in proliferative capacity was de-

tected between C- and T-UC MSCs.

Macroscopic evaluation

The total macroscopic score was significantly lower in the

T-UC MSCs (8.75 ± 1.50) than in the CPA group (11.50 ±

1.29) (p = 0.044) at 2 weeks. Especially, the scores of

neighboring tendon and the defect level were at least 0.5

points less in the T-UC MSCs than in the CPA group. No

significant difference was found between C-UC MSCs

(7.25 ± 0.96) and T-UC MSCs at 2 weeks. At 4 weeks, the

total macroscopic score was significantly lower in the T-

UC MSCs (4.75 ± 0.96) than in the CPA group (9.50 ±

1.91) (p = 0.001). The scores of inflammation, surface, de-

fect size, neighboring tendon, defect level, swelling/red-

ness, and the connecting surrounding tissue and slidability

were at least 0.5 points lower in the T-UC MSCs than in

the CPA group. There was no significant difference be-

tween the C-UC MSCs (3.50 ± 1.00) and the T-UC MSCs

at 4 weeks (Fig. 2a, b).

Histological evaluation

The total degeneration score showed no significant dif-

ference between T-UC MSCs and CPA groups at

2 weeks. After 4 weeks, the total degeneration score was

significantly reduced in the T-UC MSCs group, 7.00 ±

2.16, compared with the CPA group, 17.25 ± 0.96 (All

p < 0.001). The scores of fiber structure, fiber arrange-

ment, rounding of nuclei, variations in cellularity, de-

creased stainability, and hyalinization were significantly

lower in the T-UC MSCs groups than in the CPA

Fig. 1 Characterization of C- and T-UC MSCs at passage 10. a Fibroblast-like morphology of cells (magnification; × 100). b Viability evaluated by
trypan blue exclusion. c Viability evaluated by water-soluble tetrazolium salt (WST) assay. d Calculation of cumulative population-doubling level
(CPDL). e Population-doubling time (PDT). Bar charts represent mean ± standard deviation; statistically significant at p < 0.050

Yea et al. Stem Cell Research & Therapy          (2020) 11:387 Page 5 of 13



groups. There was no significant difference in total de-

generation score between C-UC MSCs (7.00 ± 1.41) and

T-UC MSCs at 4 weeks. In vascularity, there were no

significant differences among groups (Fig. 3a, b).

There was no significant immune response in the MSCs,

and the inflammation scores were reduced in the C- and

T-UC MSCs groups compared to the saline and CPA

groups at 4 weeks, but there were no significant differ-

ences among groups at both 2 and 4 weeks (Fig. 3a, c).

At 2 weeks, the values of fibroblast density, nuclear as-

pect ratio, and nuclear orientation angle were not signifi-

cantly different between T-UC MSCs and CPA groups.

After 4 weeks, the fibroblast density was lower in T-UC

MSCs (1308.32 ± 164.69 cells/mm2) than in the CPA

group (1820.98 ± 117.20 cells/mm2) (p = 0.009), but there

was no significant difference. The nuclear aspect ratio

was significantly decreased in T-UC MSCs (0.26 ± 0.04)

compared with the CPA group (0.39 ± 0.03) (p = 0.003).

There was no significant difference between the C-UC

MSCs (0.23 ± 0.03) and T-UC MSCs group at 4 weeks.

The nuclear orientation angle was also lower in the T-

UC MSCs (11.49 ± 3.15) than in the CPA group

(20.07 ± 3.15) (p = 0.032). There was no significant dif-

ference between C-UC MSCs (7.59 ± 2.07) and T-UC

MSCs at 4 weeks (Fig. 3a, d). Heterotopic ossification

was not observed in any group at any time point

(Fig. 3a).

The scores of collagen organization and collagen fiber

coherence were not significantly different between T-UC

MSCs and CPA groups at 2 weeks. After 4 weeks, colla-

gen organization increased significantly in the T-UC

MSC group (106.83 ± 13.46) compared with the CPA

group (57.46 ± 16.94) (p = 0.002). There was no signifi-

cant difference between C-UC MSCs (101.78 ± 13.89)

and T-UC MSC groups at 4 weeks (Fig. 4a, d). The col-

lagen fiber coherence was also higher in the T-UC MSC

groups (39.94 ± 9.95) than in the control groups

(20.07 ± 5.99) (p = 0.008). No significant differences were

found between C-UC MSCs (42.95 ± 13.89) and T-UC

MSCs at 4 weeks (Fig. 4a, e).

Both collagen deposit and type I collagen formation

were higher in the T-UC MSCs group than those in the

CPA group at 2 weeks. At 2 weeks, the CPA group

showed low collagen formation which consists of low-

density type I collagen, and it remained until 4 weeks.

However, the T-UC MSCs group showed higher colla-

gen formation which consists of high-density type I col-

lagen than that in the CPA group, and the type I

collagen in T-UC MSCs group became more dense at

4 weeks. Moreover, there was no significant difference

between C-UC MSCs and T-UC MSCs groups at 2 and

4 weeks (Fig. 4b, c).

In terms of GAG-rich area, the area was significantly

smaller in the T-UC MSCs (42.49 ± 36.59N) than in the

Fig. 2 Macroscopic evaluation of regenerated tendons at 2 and 4 weeks after injection with saline, CPA, and C- and T-UC MSCs. a Macroscopic
appearance of the supraspinatus tendon (left side: shape of a supraspinatus tendon immediately after detachment; right side: shape of the
tendon without the loose connective tissue surrounding the defect site to observe the original defect). b The total macroscopic score. Bar charts
represent mean ± standard deviation; statistically significant at p < 0.050
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Fig. 3 Histological evaluation of regenerated tendon at 2 and 4 weeks after injection with saline, CPA, and C- and T-UC MSCs. a H&E staining of
tendon (magnification; × 100). b The total degeneration score and detailed parameters. c Inflammation at the tendon defect. d Density, nuclear
aspect ratio, and nuclear orientation angle of fibroblasts in the tendon. Bar charts represent mean ± standard deviation; statistically significant
at p < 0.050
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CPA group (358.05 ± 187.26N) at 2 weeks (p = 0.001), and

there was no significant difference between C-UC MSCs

(40.21 ± 13.99mm2) and T-UC MSCs. After 4 weeks, the

GAG-rich area was less in the T-UC MSC groups (36.59 ±

44.21mm2) compared with that of the CPA group

(690.99 ± 125.45mm2) (p = 0.024). There was no significant

difference between C-UC MSCs (30.72 ± 21.79mm2) and

T-UC MSCs (Fig. 5a, b).

Biomechanical evaluation

The value of ultimate failure load was significantly

higher in the T-UC MSCs (16.69 ± 2.20 N) than in the

Fig. 4 Quantification of collagen matrix changes in regenerated tendon at 2 and 4 weeks after injection with saline, CPA, and C- and T- UC MSCs.
a PSR staining of the tendon (magnification; × 200). b MT staining of the tendon (magnification; × 200). c IHC for type I collagen of the tendon
(magnification; × 200). d Collagen organization in the tendon. e Collagen fiber coherence of the tendon. Bar charts represent mean ± standard
deviation; statistically significant at p < 0.050
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CPA group (10.79 ± 1.18 N) at 2 weeks (p < 0.001). After

4 weeks, the value was also enhanced in the T-UC MSCs

(22.33 ± 1.75 N) compared with the control groups

(17.59 ± 4.12 N) (p = 0.043). There was no significant dif-

ference between C-UC MSCs at 2 weeks (18.40 ± 2.67 N)

and at 4 weeks (23.40 ± 2.06 N) and T-UC MSCs at both

2 and 4 weeks (Fig. 6b).

The value of stiffness was improved significantly in the

T-UC MSCs group (6.27 ± 0.95N/mm) compared with that

of the CPA group (4.97 ± 0.61N/mm) at 2 weeks (p =

0.008). There was no significant difference between C-UC

MSCs (7.30 ± 0.74N/mm) and T-UC MSCs groups. After

4 weeks, stiffness was higher in T-UC MSCs (8.08 ± 0.81N/

mm) than that in CPA group (7.04 ± 1.04N/mm), but there

was no significant difference between groups (Fig. 6c).

In ultimate stress, there was no significant difference

between T-UC MSCs and CPA groups at 2 weeks due to

the increased cross-sectional area of tendon in T-UC

MSCs. However, after 4 weeks, ultimate stress was

higher in T-UC MSCs (7.03 ± 0.71MPa) than that in

CPA group (5.85 ± 2.16MPa) although there was no sig-

nificant difference (Fig. 6d, e).

UC MSCs trafficking

At 2 weeks, the mean number of PKH26-labeled cells per

area was reduced by 21.40% in T-UC MSCs compared to

that at 0 day (p < 0.000), and there was no significant dif-

ference between C-UC MSCs (194.15 ± 24.28 cells/mm2)

and T-UCMSCs (168.83 ± 24.11 cells/mm2). After 4 weeks,

the mean number of cells significantly decreased 8.77% in

T-UC MSCs compared to that at 0 day, and there was no

significant difference between C-UC MSCs (64.07 ±

22.43 cells/mm2) and T-UC MSCs (69.17 ± 27.07 cells/

mm2) (p < 0.000) (Fig. 7).

Discussion
The most important findings of this study include (1)

The T-UC MSCs exhibited fibroblast-like morphology

and above 97% viability and stable proliferation compar-

able to that of the C-UC MSCs at passage 10. (2) In a

rat model of FTD, macroscopic appearance improved in

T-UC MSCs compared with the control (CPA) group at

both 2 and 4 weeks in terms of inflammation, defect

size, neighboring tendon, swelling/redness, and the con-

necting surrounding tissue and slidability, and there was

no significant difference between T- and C-UC MSCs

groups. (3) Histologically, compared to the control

group, the nuclear aspect ratio, orientation angle of fi-

broblasts, collagen organization, and fiber coherence

were improved by 33.33%, 42.75%, 1.86-fold, and 1.99-

fold and GAG-rich area decreased by improved by

88.13% at 2 weeks and 94.70% at 4 weeks. All improved

values of T-UC MSCs group were comparable to those

of C-UC MSCs group. (4) The ultimate failure load was

1.55- and 1.25-fold higher in the T-UC MSCs than in

the control group at both 2 and 4 weeks, respectively,

and there was no significant difference between C- and

T-UC MSCs. Taken together, these results showed that

T-UC MSCs showed comparable survival and prolifera-

tion to those of C-UC MSCs, and treatment with T-UC

Fig. 5 Quantification of GAG-rich area in the regenerated tendons at 2 and 4 weeks after injection with saline, CPA, and C- and T-UC MSCs. a
Alcian blue staining of the tendon (magnification; × 200). b GAG-rich area of the tendon. Bar charts represent mean ± standard deviation;
statistically significant at p < 0.050
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MSCs improved the regeneration of rotator cuff tendon

in terms of macroscopic, histological, and biomechanical

properties, which were comparable to those of treatment

with C-UC MSCs.

MSCs are known to be effective in preclinical immuno-

modulatory and regenerative studies; however, the use of

MSCs in clinical practice is a concern in that freshly

thawed MSCs may degrade during the thawing procedure.

Clinical trials generally use freshly thawed cells that are

readily retrieved from cryostorage whereas preclinical

experiments use fresh cells [34]. Thus, the difference in

effectiveness between freshly thawed cells and fresh cells

must be demonstrated. Although thawing afresh minimally

affected cell growth, differentiation, and general pheno-

types, viability and bioactivity were affected [16]. Some

studies reported that continuously cultured cells exhibit ~

100% viability after harvest afresh, whereas freshly thawed

cells have only ~ 70% viability [18] and in worst cases, ~

50% of viability [35]. Conversely, T-UC MSCs, in this

study, showed above 97% viability of cells with comparable

morphology and proliferation compared with the C-UC

MSCs even after fresh thawing procedure. Cell viability

depends on the thawing method, duration of cold storage,

and reagents used [36]. Relatively short storage periods

[37] and optimal concentration of DMSO (10%) are crucial

factors contributing to high cell viability in cryopreserved

conditions [35, 37–39]. Other conditions not mentioned

here may have an impact on the high cell viability in this

study. In conclusion, our results suggest successful cryo-

preservation of UC MSCs to maintain cell conditions simi-

lar to continuously cultured MSCs after fresh thawing

procedure [37].

Recent studies reported the efficacy of cryopreserved

MSCs with inconsistent results in animal models. Moll

et al. demonstrated that freshly thawed MSCs showed re-

duced viability and increased apoptosis and were associated

with negative immunomodulatory effects and blood regula-

tion resulting in faster complement-mediated elimination

after blood exposure [16]. However, Cruz et al. reported

that freshly thawed human BM MSCs could regulate aller-

gic airway inflammation in an immunocompetent mouse

model, and no significant differences were found between

cultured MSCs and freshly thawed MSCs [18]. In fact, the

freshly thawed MSCs numbered 1.3 × 106 cells, whereas the

Fig. 6 Biomechanical procedure and quantification of the properties of regenerated tendons at 2 and 4 weeks after injection with saline, CPA,
and C- and T-UC MSCs. a A harvested supraspinatus tendon attached to the proximal humerus, and the procedure outline the biomechanical
experiment. b Ultimate failure load. c Stiffness. d Ultimate stress. e Cross-sectional area of the supraspinatus tendon at defect site. Bar charts
represent mean ± standard deviation; statistically significant at p < 0.050
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cultured MSCs were only 1 × 106 cells considering dead

cells because the freshly thawed MSCs showed a viability of

70% [18]. These results suggested that an adequate number

of living cells are important for healing capacity, and thus,

the high cell viability of freshly thawed MSCs is also a cru-

cial factor determining the efficacy comparable to the fresh

cultured MSCs. In this study, we used the same num-

ber of MSCs in both C- and T-UC MSCs for animal

experiments and found comparable potential for ten-

don regeneration using T-UC MSCs and C-UC MSCs.

This study demonstrated that the high viability of

cells and adequate cell numbers positively contributed

to recovery from tendon injury.

European studies of ex vivo-expanded cells generally use

passages 1–4, whereas passages beyond 5 were commonly

used in company-sponsored phase three trials [34]. In pa-

tients with acute graft-versus-host disease, 75% of early-

passage BM MSCs (passage 1–2) survived after 1 year and

only 21% of later passage MSCs (passages 3–4) survived

[40], suggesting the reduced therapeutic value and potency

of high passage MSCs [16]. By contrast, we found the effi-

cacy of UC MSCs even though passage 10 was used

(although not compared by passage) because UC MSCs re-

main immature even after several passages, and no genetic

changes were detected following long-term expansion

[41]. Further, using our isolation and culture method to

manipulate UC MSCs, no difference was found in CPDL,

proliferation, pluripotent stem cell markers, or differenti-

ation among UCMSCs with passages 2, 3, 7, and 9, and

the stemness persisted even with passaging and senes-

cence. Telomeric results showed no difference according

to the passage [19]. Furthermore, Zhuang et al. reported

that human UC MSCs after passage 15 exhibited stronger

immunosuppressive activity than those after early passage

(passage 3), suggesting that at later passages, human UC

MSCs represent a good therapeutic option for patients

with graft versus host disease and other immune diseases

[42]. Hence, it is suggested that MSCs at an early passage

might not necessarily be better, and T-UC MSCs at pas-

sage 10 exhibit enough positive effect on tendon regener-

ation suggesting the possibility of using UC MSCs as “off-

the-shelf” treatments for patients clinically.

Although there were histological and biomechanical

improvements until 4 weeks after UC MSCs injection,

most of the injected UC MSCs faded away at the injured

tendon over time. Recently, several studies have shown

that the healing effect of MSCs comes from the para-

crine effect, which secrete cytokines and growth factors

Fig. 7 Cell trafficking for UC MSCs within the tendon and quantification of the UC MSCs on the day after injection and at 2 and 4 weeks after
injection. a: PKH26-labeled UC MSCs with DAPI within the tendon (magnification; × 400). b The number of the UC MSCs per area (mm2). Bar
charts represent mean ± standard deviation; statistically significant at p < 0.050
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to recruit, proliferate, and differentiate tissue-specific pro-

genitor cells to synthesis-specific matrix [43]. Moreover,

MSCs have the ability to modulate local inflammatory en-

vironment by regulating inflammatory cell function by in-

ducing macrophage recruitment and polarization to

alternatively activated macrophage suppressing inflamma-

tion and the inflammatory-related cells [44, 45]. Thus, the

injected UC MSCs disappeared over time, but the local

environment influenced by UC MSCs has a positive effect

on the regeneration of the structure of the injured tendon.

However, more study is needed to explain the healing ef-

fects of UC MSC on tendon regeneration.

There are several limitations in this study. First, we did

not perform gene expression and protein synthesis evalu-

ation, and it is difficult to prove the mechanism of the

healing effects of UC MSCs. Second, we only investigated

tendon regeneration at 2 and 4 weeks after injecting UC

MSCs, which was a brief period to adequately determine

the efficacy of T-UC MSCs. Thus, a long-term follow-up

study is needed to confirm the sustained efficacy of treat-

ment with C- and T-UC MSCs.

Conclusions
The morphology, viability, and proliferation of T-UC

MSCs were comparable to those of C-UC MSCs. Treat-

ment with T-UC MSCs could induce tendon regener-

ation of FTD at the macroscopic, histological, and

biomechanical levels comparable to treatment with C-

UC MSCs.
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