
Pharmaceuticals 2011, 4, 848-879; doi:10.3390/ph4060848 

 

pharmaceuticals
ISSN 1424-8247 

www.mdpi.com/journal/pharmaceuticals 
Review 

Regeneration of Hair Cells: Making Sense of All the Noise 

Benjamin Kopecky 1,2 and Bernd Fritzsch 1,* 

1 Department of Biology, University of Iowa, Iowa City, IA, 52242, USA 
2 Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, 

IA, 52242, USA 

* Author to whom correspondence should be addressed; E-Mail: bernd-fritzsch@uiowa.edu;  
Tel.: +1-319-353-2969. 

Received: 2 May 2011; in revised form: 4 June 2011 / Accepted: 8 June 2011 /  
Published: 17 June 2011 
 

Abstract: Hearing loss affects hundreds of millions of people worldwide by dampening or 
cutting off their auditory connection to the world. Current treatments for sensorineural 
hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine 
as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair 
cells have been proposed and are actively pursued. Each route not only requires a keen 
understanding of the molecular basis of ear development but also faces the practical 
limitations of stem cell regulation in the delicate inner ear where topology of cell 
distribution is essential. Improvements in our molecular understanding of the minimal 
essential genes necessary for hair cell formation and recent advances in stem cell 
manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal 
neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in 
translational stem cell therapies for individuals with hearing loss. Despite this, more 
detailed network maps of gene expression are needed, including an appreciation for the 
roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness 
the true potential of stem cells for hair cell regeneration, basic science and clinical 
medicine must work together to expedite the transition from bench to bedside by 
elucidating the full mechanisms of inner ear hair cell development, including a focus on the 
role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.  
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1. Introduction 

Sensorineural hearing loss (SNHL) afflicts over 278 million individuals worldwide and nearly half of 
all individuals over the age of 65 [1-3]. This multifactorial disease results from gene mutations, ototoxic 
drugs, environmental insults, or aging, and is often irreversible. Hearing loss imparts a substantial 
financial cost to society and bears an emotional and quality of life burden to the affected individual along 
with his/her family [1,4,5]. Current treatments with cochlear implants require an invasive surgical 
procedure without faithfully recapitulating normal hearing. Cochlear implants do not represent a perfect 
cure but rather a crutch to obtain some hearing capability [1, 6-12]. Prevention of hearing loss and 
regenerative medicine are two alternative pathways toward a possible perfect cure [13-15]. While 
prevention of hearing loss through protection of hair cells is ideal, it is not always possible [16-19], 
leaving regenerative medicine the sole ex post facto option for a permanent and restorative treatment 
of hearing loss. However, regeneration of damaged sensory epithelia in the mammalian inner ear is 
complicated as differentiated adult inner ear neurosensory tissue cannot re-enter the cell cycle and be 
used to replace neighboring cells, as is spontaneously accomplished in non-mammalian systems. This 
absence of proliferative capacity necessitates the use of exogenous stem cells as a medium for hair cell 
restoration, unless possibilities are discovered to jumpstart adult neurosensory epithelia proliferation. 

The organ of Corti is a highly specialized sense organ with polarized and highly ordered inner and 
outer hair cells positioned in a stereotypic pattern on the basilar membrane surrounded by multiple, 
specialized supporting cells. Inner hair cells are innervated by approximately 95% of all sensory 
neurons and play the major role in sound perception while outer hair cells serve to fine-tune the 
hearing sensitivity. SNHL results primarily from damage to the inner hair cells in the organ of Corti. 
Regenerative treatment must therefore be aimed at replacing damaged organ of Corti inner hair cells; 
this can be done by either regenerating an entirely new organ of Corti or by replacing only the 
damaged hair cells, on a one-by-one basis. As inner hair cells die, morphologic changes occur to the 
organ of Corti including eventual loss of afferent neurons, making replacement of lost hair cells on a 
one-by-one basis problematic, in particular, years after loss of hair cells and subsequent organ of Corti 
dedifferentiation. In the absence of hair cells and key neurotrophins, originating from organ of Corti 
cells, spiral ganglion neurons are progressively lost [20,21]. The organ of Corti’s central projections [20] 
form a complex tonotopic map that may not be capable of being faithfully recapitulated in a 
regenerated organ of Corti as brain plasticity declines with age [22-26]. If central projections cannot be 
retained in patients suffering from SNHL for years, not only must the individual hair cells be reformed, 
but so too must the neurons. In such cases, regeneration of the entire organ of Corti (with its 
delaminating sensory neurons) may provide the only feasible therapeutic option. This approach 
requires an initial jumpstart of the organ of Corti developmental process using stem cells transplanted 
into the cochlea, after which the context within the cochlea may suffice to activate neurosensory cell 
developmental programs to form a replacement organ of Corti. However, it is unlikely that an adult 
cochlea will provide the contextual environment needed as developmental signaling has long been 
turned off [27]. Therefore, stepwise cell fate restriction of transplanted stem cells using molecular 
signals required for organ of Corti induction, specification, and neurosensory cell formation is needed. 
Alternatively, the development program for the organ of Corti must be re-initiated to reform through 
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proliferation and differentiation the lost organ. Additionally, applications of neurotrophic factors may 
be needed to facilitate a functional connection between the brain and the inner ear. 

In patients suffering from short-term hearing loss, regeneration of damaged portions of the organ of 
Corti on a one-by-one basis may be possible as sensory neurons have not undergone apoptosis and the 
organ of Corti has not dedifferentiated. This therapeutic option requires a similar molecular 
understanding of neurosensory cell development but in addition requires exact targeting of prosensory 
cells to regions of damaged sensory epithelia while retaining proper orientation, structure, and 
functionality of healthy neighboring tissue. Transdifferentiation of neighboring cells cannot be used in 
mammals as they would deplete supporting cell populations as supporting cells are currently unable to 
re-enter the cell cycle [28-38]. In vitro attempts using stem cells have been initiated to reconstitute hair cells 
in the murine system and have been shown to be capable of differentiating into hair cell like cells [33,39-46]. 
However, despite great advances, it is apparent that we do not quite understand the molecular basis of 
hair cell development in vitro or in vivo or have the ability to control the placement of stem cells 
and/or hair cell precursors to damaged tissue.  

Evolutionarily, the inability of mammalian neurosensory cell re-entry into the cell cycle may be due 
to the increased cellular diversity and complexity of the mammalian cochlea compared to  
non-mammalian species, where spontaneous proliferation does occur to restore lost hair cells [4,45,46]. 
For example, avian systems have two cell types (one supporting cell and one hair cell with graded size 
change) whereas mammalian cochleae have two distinct hair cell types (inner and outer) in a unique 
topographic distribution and at least six morphologically distinct supporting cell types in topographic 
restricted distribution in the organ of Corti [2]. Molecularly, a number of changes make cell re-entry 
difficult. In mice, hair cell precursors exit the cell cycle in an apex to base gradient from embryonic 
day 12.5 (E12.5) to E14.5 [47,48]. After cell cycle exit, re-entry is permanently prohibited by an 
increased concentration of cell cycle inhibitors, including p27Kip1 (now CDKN1) [49], an increased 
phosphorylation burden of the tumor suppressor retinoblastoma (pRB) [50], and a corresponding 
relative decrease in proto-oncogene (including Myc) levels. This evolutionary loss of proliferation may 
have evolved to protect the delicate inner ear from additional proliferation which would disrupt the 
existing stereotyped organization and has been shown to be impossible without causing cell death in 
adult hair cells [27,51]. In mitotically quiescent hair cell precursors, a bidirectional wave of Atoh1, 
originating in the middle-base portion of the cochlea [52], specifies hair cell fate [53-57] and stabilizes 
the cell fate of surrounding cells to differentiate as supporting cells [58-60] (Figure 1). 

Non-mammalian transdifferentiation and spontaneous cell cycle re-entry are seemingly 
incompatible with the mammalian system as far we understand it. Ideally, differentiated mammalian 
cells can be forced to re-enter the cell cycle. Forced expansion of proliferation through manipulation of 
both pRB and especially p27Kip1 lasts until P14 in mice but human restoration is needed much later 
than P14 mouse equivalent. Furthermore, hair cells formed during this time are not viable. While cell 
specification [47-49,52-57] may render cells incapable of cell cycle entry by changing their molecular 
signature and enacting epigenetic changes [61-64], inhibiting tumor suppressors and increasing 
endogenous levels of proto-oncogene may reinitiate the cell cycle for the generation of new hair cells 
and supporting cells. Important to this is a greater understanding of Myc, implicated in both hair cell 
precursor proliferation and stem cell maintenance [65-69]. Clearly, a more complete understanding of 
proliferative control in the mammalian ear, including the regulatory network of miRs, may provide 
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insights into the ability of neurosensory cells to re-enter the cell cycle. If the cell cycle could be 
reinitiated in adult and senescent ears to form either an asymmetrically dividing supporting cell or a 
symmetrically dividing inner ear stem cell, this could provide ample precursors available for 
transdifferentiation and/or cell fate re-specification (Figure 1). Until we possess the ability to restart 
proliferation in the adult ear, transplantation of stem cells seems to provide the sole avenue to hair cell 
regeneration and for enhancing our understanding of the molecular steps to turn a naïve cell into a hair 
cell. Some reports suggest the presence of an inner ear stem cell in mammals but the usefulness or 
potential for regeneration of these cells have not been studied. While a stem cell population in the ear 
would provide the ideal medium to manipulate hearing restoration, the same principles that would be 
applied to an ear specific stem cell population can be used with exogenous stem cells for the same 
purpose. Indeed, lessons learned through manipulation of stem cells in vitro may prove useful for the 
manipulation of ear stem cells in vivo. In conclusion, the apparent inability for adult mammalian 
neurosensory cells to re-enter the cycle makes stem cells the only viable therapeutic option for patients 
with SNHL. 

Figure 1. Four methods of regenerating hair cells. 

Oct4 Klf4 Sox2 C-Myc, , , 

Atoh1

Delta/Notch

NeuroD1

HAIR CELLSUPPORTING 
CELL

Gata3, Nestin

EPI-NCSC

iPSC

ECTODERMAL 
CELL

NEURON

SENSORY CELL 
PRECURSOR

INNER EAR 
STEM CELL

FIBROBLAST

SKIN

3

2

4

1

NEUROSENSORY 
PRECURSOR

pRB/CDKI

BULGE 
REGION

 

1. Transdifferentiation. As hair cells differentiate, they express Atoh1, and drive the 
DELTA/NOTCH signaling cascade to force neighboring cells to adopt a supporting cell fate. By 
inhibiting the NOTCH pathway, it may be possible to change the cell fate from a supporting cell to 
a hair cell. In mammals, this method is not advisable, unless more cells proliferate. 2. Inner ear 
stem cells. A small subpopulation of cycling cells (either endogenous stem cells or made from 
differentiated supporting cells) will provide a source of cells for directed differentiation and 
replacement of nearby damaged tissue. These populations have not been well characterized and 
there is no current technique to restart controlled proliferation giving rise to long-term viable hair 
cells in the adult in vivo. However, it is hypothesized that by manipulating the balance between 
proto-oncogenes (Myc) and tumor suppressors (pRB and CDKIs), in addition to higher level 
regulation of tissue specific factors through localization of surface receptors and ligands, re-entry in 
the cell cycle may be possible. 3. Neural crest stem cells. Gata3 and Nestin positive multipotent 
stem cells in the bulge region of hair follicles have the capacity to differentiate into various cell 
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types. Gata3 is an important gene for the development of the organ of Corti. Selecting proper 
subpopulations of EPI-NCSCs may provide the necessary foundation to forming novel hair cells.  
4. Inducible Pluripotent Stem Cells (iPSCs). IPSCs derived from mouse embryonic fibroblasts, 
through the forced expression of C-Myc, Klf4, Sox2, and Oct4, have been important in providing 
alternative pluripotent cells from embryonic stem cells. From the pluripotent and multipotent state, 
an ectodermal and neurosensory fate restriction is necessary to form hair cells. Neurosensory cells 
can form neurons with the expression of both Neurogenin1 (Neurog1) and NeuroD1 while hair 
cells form in the absence of NeuroD1 combined with Atoh1 upregulation. Both EPI-NCSCs and 
iPSCs can be derived from the skin of the donor. Adapted from Fritzsch et al [60]. 

In summary, both replacement of the entire organ of Corti and the replacement of lost hair cells on a 
one-by-one basis require the use of stem cells as adult mammalian inner ear neurosensory cells cannot 
be forced to re-enter the cell cycle as far as we understand it currently. As a result, the potential use of 
stem cells as therapy for hearing loss has blossomed [1,70-73]. Because of the varied cell types 
necessary for permanent hearing loss restoration (i.e. inner ear hair cells, sensory neurons), using either 
multipotent or pluripotent stem cells transplanted to the cochlea followed by incremental inductive 
cues provides a reasonable therapeutic option. Further progress to a perfect and permanent cure 
demands first, an understanding of stem cell sources and differentiation potentials; second, a 
comprehensive knowledge of the minimally essential genes required for ear development, organ of 
Corti formation, and hair cell maintenance; and last, the technological savvy to safely and  
non-invasively introduce stem cells, their differentiated derivatives, and/or the appropriate genetic 
therapy into a damaged cochlea.  

2. Stem Cells 

Stem cells are self-renewing cells with variable differentiation potentials capable of both symmetric 
and asymmetric division. Stem cells are categorically divided into four groups depending on their 
potency: unipotent, multipotent, pluripotent, totipotent (Figure 2). The potency, or ability of a stem cell 
to differentiate into a specific cell type, is a property of intracellular gene regulation, epigenetics, and 
contextual interactions (the so-called stem cell niche) [74-80]. Stem cells exist throughout the body, but 
the skin, with both hair follicles and fibroblasts, are an easily accessible and non-invasive source of 
both multipotent and pluripotent stem cells. Depending on the potency of the stem cell, which ranges 
from the ability to make every cell type (totipotent) to the ability to make just a single cell type 
(unipotent), different stepwise cell fate restricting decisions must be used to direct the differentiation of 
the stem cell into a specific functional cell. Transplanted stem cells can survive in the cochlea to varying 
degrees but the cell type it differentiates into depends on the type of stem cell it originated from and the 
molecular signals it receives [81]. Directing the cell fate of stem cells requires knowledge of regulation 
of the cell cycle and the genes needed for specification of the desired tissue [1,39]. For example, a 
pluripotent stem cell (such as an iPSC) must first be stepwise restricted to an ectodermal fate, then 
directed toward an inner ear neurosensory cell fate, and finally to a hair cell fate. In contrast, an 
ectodermal multipotent stem cell (such as EPI-NCSC) need only be restricted to a neurosensory cell 
fate and then to a hair cell fate (Figure 1). Obviously, fewer local regulations (as seems to be the case 
in postnatal ears) [82] driving the direction of differentiation must be substituted by more specification 
prior to injection of cells to ensure that hair cells differentiate in the right type at the right place. 
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2.1. Unipotent Stem Cells: A One-Way Road 

Unipotent stem cells have the ability to differentiate into one cell type (or maximally two or three 
and then are termed bi- or tri-potent). Unipotent stem cells are present in nearly all tissue and primarily 
function to repair or replace aging or damaged tissue [83]. Unipotent stem cells are often considered 
progenitor cells [84] and conform to Hayflick’s limit which states that after 50-70 population 
doublings, the progenitor cells undergo apoptosis [84,85]. Unipotent stem cells do not respond to 
inductive cues along other lineages [84]. While unipotent stem cells are found throughout the body, 
their inability to differentiate into multiple cell types limits unipotent cells’ therapeutic usefulness. 

2.2. Multipotent Stem Cells: A Bulge of Hope  

Multipotent stem cells have the ability to differentiate into multiple related cell types. In 2006, it 
was proposed to use the bulge region of hair follicles as a source of multipotent stem cells [60] as these 
epidermal neural crest stem cells (EPI-NCSC) [86-88] are capable of differentiating to cells of neural 
crest origin [89-91]. Using EPI-NCSCs, differentiation into a number of cells of ectodermal lineage 
has been accomplished [86,89,92], specifically neurons, where a proof of principle experiment was 
shown to repair a spinal cord injury [93]. Importantly to hair cell therapy, the bulge region is Gata3 
positive (Figure 1). Gata3 is essential for neurosensory development [94,95], most likely by defining a 
threshold within which other transcription factors operate to achieve their specific functions. Another 
multipotent and ectodermally defined stem cell population, neural stem cells (NSCs) have been shown 
to express hair cell markers when transplanted into the scala tympani [96-100]. NSCs have been 
isolated from the cochlear nucleus [101], providing a potential source of stem cells to the inner ear. 
Together, the accessibility and differentiation potential of multipotent stem cells provides a realistic 
and exciting avenue towards regenerative medicine for patients with hearing loss.  

2.3. Pluripotent Stem Cells: ESCs and iPSCs 

Pluripotent stem cells retain the ability to differentiate into nearly all tissue, including any of the 
three germ layers: ectoderm, endoderm, and mesoderm. Recent reprogramming of mouse embryonic 
fibroblasts (MEFs) into inducible Pluripotent Stem Cells (iPSCs) with the transcription factors Oct-4, 
Sox-2, Klf-4, and C-Myc [1,102-105] have provided an abundant and ethical alternative to embryonic 
stem cells (ESCs) [106,107]. Since the reprogramming technique was originally detailed in 2006 [107], a 
number of changes have made the induction more efficient, safer, and closer to clinical  
use [102,104,106,108-114]. ESCs are another example of pluripotent stem cells and are the focus of ethical 
debates due to their tremendous differentiation potential [115-117]. While possessing great differentiation 
capability, ESCs are susceptible to immune system rejection [118] whereas iPSCs were believed to be 
accepted [119,120]. However, recent findings show some immunogenicity of iPSCs, possibly due to 
expression changes due to the in vitro conditions they are kept in [121]. Both iPSCs and ESC transplanted 
in the cochlea differentiate into native tissue but not as efficiently as multipotent stem cells. ESCs 
transplanted into the spiral ganglion expressed neural markers [122-127] but are unable to express hair cell 
markers [81,128,129]. In general, pluripotent stem cells perform worse in the cochlea compared to 
multipotent stem cells. This decreased survival and efficiency is likely due to context [81,97] as the 
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molecular signature is different between ESCs and iPSCs than their counterpart cells of the developing 
embryo [130] and the fact that less naïve/more differentiated stem cells (i.e. neural stem cells) have 
differentiated along the same developmental pathway. 

Figure 2. Stem cell differentiation potential. 
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All stem cells have the ability to divide symmetrically and asymmetrically. As a stem cell 
asymmetrically divides it loses the potential to differentiate into cells of other lineage. Totipotent 
stem cells have the ability to form any cells derived from both pluripotent stem cells and 
extraembryonic tissue (including the placenta). Pluripotent stem cells, including both iPSCs and 
embryonic stem cells (ESCs), have the ability to differentiate into all three germ layers (ectoderm, 
mesoderm, and endoderm). Multipotent stem cells such as EPI-NCSCs and NSCs have less 
differentiation potential than pluripotent stem cells but both can form multiple cells of related 
lineage. Unipotent stem cells possess the least differentiation potential and can generate only a 
limited array of cell types.  

Both iPSCs and EPI-NCSCs are easily accessible from skin tissue and are promising sources to use 
for hair cell regeneration (Figure 1 and Figure 3). When stem cells are transplanted in the cochlea, it is 
necessary to guide the exogenous stem cell towards a hair cell fate through sequential induction of hair 
cell signals [39,81]. What factors are minimally needed is not yet known, but the current focus in 
developmental ear biology is on identifying the essential genes involved in ear development: otic 
placode induction, organ of Corti specification, and neurosensory development. Many reviews exist on 
this topic but we will attempt to briefly cover the essential genes necessary for stem cell applications in 
the next section. 
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Figure 3. Multipotent stem cells (EPI-NCSCs) and pluripotent stem cells (iPSCs) can be 
derived from donor skin (A). EPI-NCSCs from the bulge region of the hair follicle (B) and 
iPSCs formed from fibroblasts using C-Myc, Klf4, Oct4, and Sox2 (C) can be subsequently 
restricted in their cell fate to first an ectodermal cell (D) and then a neurosensory 
progenitor cell (E). The Fgfs, Dkk1, Sis1 and Igf are among the transcription factors 
experimentally shown to be important to ectodermal fate [39]. Sox2, Neurog1, Eya1 and 
Gata3 are important in defining a neurosensory cell. These neurosensory cells are primed 
to become neurons, hair cells, or supporting cells. Patients with high frequency hearing 
loss have damaged neurosensory epithelia near the base of the cochlea (F) which often 
results in the loss of hair cells, marked by a flat organ of Corti (G). In patients with  
short-term hearing loss, sensory neurons survive (blue) and replacement of hair cells alone 
may be sufficient treatment. Patients with long-term hearing loss will have a 
dedifferentiated organ of Corti and a loss of sensory neurons making regeneration of the 
entire organ of Corti the only solution. Transplantation of either stem cells or neurosensory 
progenitors into the scala media (H) with subsequent targeting to damaged tissue along 
with upregulation of hair cell specific genes may enable hair cell regeneration (I). Hair cell 
fate will be defined and subsequently stabilized through expression of Atoh1, miR183, 
Barhl1, Pou4f3 and Gfi1 (J). 
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3. Otic Placode Induction, Organ of Corti Specification, and Neurosensory Development 
Requires a Cornucopia of Genes that Play both Integrated and Independent Functions 

3.1. Ear Development: Otic Placode Induction and Organ of Corti Specification 

A number of genes are essential to each step of ear formation. Fgf3, Fgf8, Fgf10 [131-134] and 
Wnt1/3a/8a [135-137] are sufficient as diffusible signals from the hindbrain to induce nearby ectoderm to 
thicken and form the presumptive otic placode. Induction changes the molecular signature of the placodal 
region [138-140] and includes the upregulation of Dlx5, Dlx6, Eya1, Foxg1, Foxi1, Gata3, Gbx2, Hes2, 
Hmx2, Hmx3, Pax2, Six1, Sox9 and Spry1 in the preplacode and invaginating placode. Many of these 
known and other unknown genes are required for axis formation and neurosensory formation as their 
absence leads to abnormal ear development. Pluripotent stem cells must first be restricted to an  
otic-ectodermal fate. Among others, signaling of the Fgfs, Dkk1, Sis1 and Igf have been shown to promote 
ectodermal fate while inhibiting both endodermal and mesodermal fates [39] (Figure 3). Importantly, 
cochlear duct elongation and patterning of the organ of Corti are dependent on Sox2 [141], Jagged1 [58], 
Gata3 [95,132,142], Lmx1a [143], Foxg1 [15,135,144] and Shh [145]. Stem cells aimed at forming 
inner ear hair cells must also be responsive to these signals (Figure 3). After translocation of naïve 
stem cells to the cochlea, contextual clues may suffice to provide the determination necessary for the 
differentiation and function of hair cells [104]. However, it is more likely that in the adult, the 
necessary co-factors are no longer expressed. Therefore, manipulating the above sets of genes is 
essential to priming stem cells to adopt an organ of Corti prosensory and subsequently a neurosensory 
cell fate. 

3.2. Neurosensory Cell Differentiation and Maintenance 

Neurosensory cells consist of hair cells, supporting cells, and sensory neurons. Neurosensory 
precursor populations follow nearly identical cell fate restriction pathways and appear to have a 
differentiation hierarchy from sensory neuron, to hair cell, and to supporting cell (Figure 1). 
Furthermore, it is believed that stem cells defined within the ear possess the capability to produce three 
distinct subsets of cells with either clonal [only neurons (Figure 4A) or only hair cell/supporting cells 
(Figure 4C)] or temporal restrictions [initially neurons form and later hair cells/supporting cells form 
(Figure 4B)] [60]. Terminally differentiated neurosensory cells are the ultimate goal of regenerative 
medicine. 

3.2.1. Sensory Neurons 

Sensory neuron formation requires a number of genes that are used to specify the neurosensory 
domain and differentiate pro-neuronal cells into neurons. Mutations in Eya1 and Six1 illustrate the loss 
of sensory neurons while mutations in Gata3 and Shh result in mice that have a reduction in sensory 
neurons [95,146,147]. Minimally, sensory neurons are dependent on Neurog1 [148,149] and  
NeuroD1 [56,150-153] as undifferentiated neuronal cells differentiate into hair cells in the absence of 
NeuroD1 [56,151] (Figure 1 and Figure 4). Neurotrophins Bdnf and Ntf3 are required for proper 
guidance and long-term survival of sensory neurons [154-157]. 
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Figure 4. Fate restriction of either an EPI-NCSC or iPSC (pink) yields an additional stem 
cell (through asymmetric division) and a stem cell/precursor cell which can form a neuron, 
hair cell, or supporting cell. Clonal and temporal definitions of stem cells in the ear yield 
unique subsets of differentiated cells. A neuronal precursor (green) will give rise to 
neurons in the presence of Neurog1 and NeuroD1 (A). Neurosensory precursor stem cell 
populations that will give rise to either neurons and hair cells (red) or hair cells and 
supporting cells (yellow) are Neurog1 and Sox2 positive [60]. In the presence of NeuroD1, 
a neuron is formed. In the absence of NeuroD1 but in the presence of Atoh1, a hair cell is 
formed. Lastly, in the absence of both NeuroD1 and Atoh1, DELTA/NOTCH signaling 
stabilizes the supporting cell fate [60]. It is possible that over time, there is a temporal 
restriction of a stem cell to allow for first a neuronal fate and later hair cell and supporting 
cell fate (B). Furthermore, a Sox2 positive cell may only give rise to hair cells and 
supporting cells but never neurons (C). 
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3.2.2. Hair Cells and Supporting Cells 

Hair cell development and maintenance requires a set of genes mostly unique to sensory neurons to 
facilitate the placement, orientation, and maintenance of hair cells throughout all the sensory epithelia. 
Formation of hair cells requires proliferation of precursor populations within a specified organ of 
Corti, differentiation to mature hair cells, and maintenance of hair cells. Precursor proliferation 
controls the correct number of hair cells and is controlled through regulation of the cell cycle, in part 
by Myc [27,68,69]. After hair cell precursors exit to the post-mitotic state, upregulation of Atoh1 by 
E14.5 forces hair cell differentiation [47,158,159]. Lateral inhibition through the DELTA/NOTCH 
system inhibits hair cell fate for neighboring cells and forces adjacent cells to become supporting  
cells [15,160-162]. Downstream to Atoh1 are cell maintenance genes Pou4f3, Gfi1, Barhl1 and miR183 
family members [15,163-166] (Figure 5). In the absence of these genes, hair cells and other organ of 
Corti cells undergo progressive cell death [1,165-168].  
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Figure 5. Differentiation of a sensory progenitor cell to a hair cell is dependent on a 
number of factors.  
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Atoh1 is required for differentiation into hair cells whereas Pou4f3, Gfi1 and Barhl1 are downstream 
to Atoh1 and are important for the maintenance of the hair cells. A number of miRs have been shown 
to be essential in the formation of hair cells and include the miR183 family (miR96, 182, and 183) as 
their losses result in hearing loss [1,169-171]. Additionally, miRs 15, 99, 100, 125, 133 may also be 
important to hair cell development but have not been well characterized [172,173]. Adapted from 
Pauley et al [1]. 

4. Role of miRs: A Small Name for a Big Player 

If transcription factors are the hands on a clock, miRs may well be the gears that really make the 
clock tick. MiRs are small non-coding 20-25 nucleotide single stranded RNAs that have a two to eight 
nucleotide “seed” region that interacts with the 3’ end of mature mRNAs. MiRs repress translation of 
mRNA or degrade mRNA depending on degree of complementarity of the seed region to the target 
mRNA. MiRs are not fully functional until processed from their immature strands. Abnormalities of 
processing enzymes, specifically Dicer knockouts, have revealed a large impact of miRs (and other 
small RNAs) on the proper development of the embryo. Dicer cleaves the hairpin loop of the  
pre-miRNA to form the mature miRNA and controls regulatory activity [169]. Pax2-Cre Dicer 
conditional knockouts (CKOs) lose the ability to differentiate into the three germ layers and show 
defective differentiation [171] and conditional deletion of Dicer with Foxg1-Cre results in loss of 
almost all cochlear neurosensory elements [174]. However, Dicer also plays other roles making the 
correlation with miR loss somewhat tenuous. The DICER enzyme is also necessary for siRNA 
production, an area not well understood in its rapidly growing significance that will not be dealt with 
here. 

4.1. miR Control of Stem Cell Self-Renewal 

Both ESCs and iPSCs hold great regenerative potential, but this potential is lost if the stem cell state 
is lost. A number of genes control the transcriptional regulatory circuit necessary for self-renewal 
including Nanog, Oct4, C-Myc, Sox2, and Klf4 [175-179] (Figure 6). MiRs are essential to stem cell 
maintenance and play an important role in stem cell differentiation into hair cells [180]. Throughout 
the body, miRs are thought to regulate a wide array of genes with a subset of these miRs also 
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expressed in stem cells [180]. Much like the Dicer knockouts fail to develop a proper embryo, stem cells 
deficient in miR processing enzymes do not have proper proliferation or differentiation [181-183]. 
Identifying which miRs are important is difficult due to a lack of annotation and sheer numbers (over 
400 mature miRs in humans) [184,185]. Nonetheless, the four core transcription factors needed for 
stem cell identity co-occupy 55 distinct transcription units thought to regulate 81 mature miRs [180]. 
Among these miRs are miR-9, 124, 135, 148/152, 290/371 cluster, 302 cluster, 363 cluster, 615 and 
708, all of which show conserved binding [180]. While this may not be overly surprising as the four 
core transcription factors are thought to co-occupy over 14,000 sites on the human genome [180], it 
shows the importance of miRs to stem cell control (Figure 6). 

Figure 6. Oct4, Sox2, Klf4 and Myc are capable of reprogramming of mouse embryonic 
fibroblasts into pluripotent stem cells.  
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Nanog is known to be important for the maintenance of the stem cell state in a feedback loop with 
Oct4. While there are a number of transcriptional networks essential to the balance between stem 
cell self-renewal and differentiation, we omit the transcription factors to highlight the tight 
regulation and feedback loops that miRs play in stem cell control. Over eighty miRs are activated 
by the key stem cell transcription factors while other miRs are silenced. Most of these miRs have 
not been well characterized functionally but those that have display both positive and negative 
feedback loops as illustrated. Notably, miR145 is repressed by Oct4 to maintain pluripotency but at 
the onset of differentiation, lower levels of Oct4 allow miR145 to repress the pluripotent state 
through repression of Oct4, Sox2, Klf4, and Myc. Also note known feedback loops with miR9 and 
miR146. Among the 81 miRs upregulated by the binding of the four transcription factors is miR9, 
which after activation represses Sox2, Nanog, and Oct4. MiR146 forms a double negative feedback 
loop with Klf4. Together, the miRs are important to both maintaining the pluripotent state and when 
the balance is shifted towards differentiation, maintains the differentiated state by inhibiting stem 
cell transcription factors. Interactive pathways adapted from [114,186-191]. * See Figure 7 for Myc 
regulation. 

To maintain the stem cell state, the core transcription factors regulate two sets of miRs, the first set that 
is actively expressed in stem cells, the other set that is silenced in stem cells and that are important in 
differentiation [180]. Important to this balance is the function of Myc, whose inhibition leads to the loss of 
self-renewal, while activation of Myc retains the ability of self-renewal [68,192,193]. Myc is both regulated 
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by and controls the regulation of a number of miRs, including miR141, 200, 249 [180,194,195], all 
important in self-renewal programs. The miRs in the 290-295 and 302 clusters are implicated in cell 
proliferation and are potential targets of the Mycs [196,197]. This suggests that Myc is an essential 
gene highly regulated by miRs to control the balance between self-renewal and differentiation  
(Figure 7). When the balance shifts away from proliferation, miR activity that was silenced in the stem 
cell state will repress the stem cell fate to favor the differentiated state (Figure 6 and Figure 7). 

4.2. miR Control of Stem Cell Differentiation 

During differentiation, stem cells must silence their self-renewal program [192]. miRs 9 [198-200], 
134, 203, [201-203], 296, and 470 repress Nanog, Oct4, and Sox2 [204, 205]. Oct4 and miR145 create 
a negative feedback loop that switches stem cells between self-renewal and differentiation [171]. In 
stem cells, miR145 is low but is highly upregulated upon differentiation and acts to inhibit Klf4, Oct4, 
Sox2 and Myc [206]. Exogenous increase of cellular miR145 decreases self-renewal capacity and 
induces stem cells into an ectodermal cell lineage [171]. Once started along the ectodermal fate, 
miR124 increases (due to its inhibitor REST decreasing) and leads to the differentiation of progenitor 
cells to specific cell types, including neurons [207]. In the bulge region of hair follicles in the skin, 
miR125 (ortholog of lin-4) is critical for exit of stem cells from the cell cycle, and for their 
differentiation [208-210]. Once cells are differentiated, a number of miRs stabilize this cell fate, 
including the let-7 family [192,211]. Among the nine-membered let-7 miR family functions is 
repression of the Myc family [211], suggesting one mechanism that maintains the differentiated state 
and prohibits cell cycle re-entry (Figure 7) [192,212-216]. These examples show the importance of 
miRs in exiting self-renewal, forced entry into differentiation, and how feedback loops are essential in 
the control of this process (Figure 6). 

4.3. miR Control of Hair Cell Differentiation 

There are over one hundred miRs present in the cochlea and vestibular systems [172,217,218]. 
Dicer CKOs have shown the importance of miRs (and other small RNAs) to both ear development and 
hair cell maintenance. Foxg1-Cre Dicer CKOs result in loss of almost all cochlear neurosensory 
elements [174] while Pax2-Cre Dicer CKOs [169] and Pou4f3-Cre Dicer CKOs [172] show less 
complete loss. 

In vertebrate sensory end organs, miR183 is highly conserved [1,219] and is formed from the same 
primary transcript as miR96 and 182 [220]. During ear formation, the miR183 family is restricted to hair 
cells and neurons. Levels of miR183 were characterized in the Dicer CKO murine malformed ear and a 
graded residual expression was seen which correlated to the degree of differentiation seen in the remaining 
sensory epithelium [169]. Mutations to a miR183 family subunit lead to hearing loss. A mutation in the 
seed region of miR96 also leads to an autosomal dominant progressive hearing loss [170,220]. These mice 
have irregular hair cell bundles and have a progressive hair cell loss after birth [221]. In non-mammalian 
systems, knockdowns of the miR183 family resulted in loss/reduction of hair cells and sensory  
ganglia [222,223]. Other miRs including miR15, 99, 100, 125, 133 all may play important roles in hair 
cell development and maintenance [172,173]. 
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Figure 7. Myc is a highly regulated transcription factor that plays roles in stem cell 
maintenance and proper hair cell formation. 
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Myc is also implicated in cancers, cell cycle regulation, apoptosis, metabolism, and cellular 
differentiation. Myc’s regulation is complex. Here we detail many of the known upstream and 
downstream miR regulators of Myc and the cell cycle. In blue are molecules that are important for 
proliferation and in red, molecules suppressing proliferation to favor cell cycle exit. At the core of 
the cell cycle is the tightly regulated G1-S checkpoint which is regulated by the phosphorylation 
state of retinoblastoma (pRB). When unphosphorylated, pRB binds E2F family members which are 
then unable to bind S-phase promoting genes. Phosphorylation of pRB releases E2F and the cell is 
able to enter the S-phase of the cell cycle. Myc is a central cog in cell cycle regulation through its 
signaling of miRs, the cyclins, and its repression of cyclin dependent kinase inhibitors (CDKIs) 
such as p27Kip1. Positive Myc regulation of a number of miRs, including the miR17-92 cluster, 
represses cell cycle inhibition. Negative regulation of other miRs, including miR15, 26a and 125b, 
de-represses negative regulation of the cell cycle. Other miRs, not currently characterized to be 
responsive to Mycs, are also responsible for cell cycle dynamics. Understanding the regulation of 
Myc, of the miRs and of the cell cycle is essential to manipulating stem cells and ultimately, 
manipulating these pathways may be the key to forced re-entry of hair cells into the cell cycle. Myc 
pathways adapted from [224-228]. 

“Where there is smoke, there is fire”. This age old idiom holds true for our current knowledge of 
miRs. While in its infancy, we know miRs play a crucial role in the balance between proliferation and 
differentiation of the stem cell state and that the miRs are essential for the proper development and 
maintenance of tissues throughout the body, including the ear. Full understanding of the miRs is required 
prior to in vivo manipulation as deregulation of miRs is implicated in a number of tumors [192,229-232]. 

5. Gene Delivery: Penetrating the Problem 

Gene therapy has been achieved in principle in other systems [233-236] but the stereotypic order of 
cells combined with the complexity of the organ of Corti cellular distribution remains a roadblock in 
the ear. We have previously discussed the importance of understanding stem cell regulation and what 
genes are necessary for stem cell differentiation to form functional hair cells, but all this falls on deaf 
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ears unless the stem cells can target the appropriate tissue in vivo and the needed genes (i.e. Atoh1) can 
be regulated within the stem cells. Therefore, technical consideration must be given to both the 
targeting of stem cells to damaged tissue (and their survival) and the regulated gene expression within 
the stem cells (or in vivo newly proliferated cells). 

The endolymph can safely accept up to 0.5 µL of stem cells. Stem cells are capable of efficient migration 
from the point of injection through the entire scala media [40,96,237]. A number of attempts have been made 
to target damaged tissue in the ear using various stem cells including neural stem cells [96], embryonic stem 
cells [128,238], and bone-marrow derived stem cells [239,240] but many of these cells were 
immunorejected or otherwise had unremarkable results [40]. To date, targeting and survival of stem 
cells remains the limiting factor in applying stem cell therapy to the ear.  

Once established in damaged tissue, regulation of gene expression in the stem cell is necessary for tissue 
restoration. Regulation of stem cells in vitro has successfully established hair cell like cells, but 
manipulation of stem cells in vivo has not been accomplished. However, the ear is an ideal playground for 
viral transduction due to the encasement by the bony mastoid [241]. Three viral vectors are commonly used 
to target the inner ear tissue: Adenovirus (AV), Adeno-Associated Virus (AAV) and Lentivirus (LV). Each 
of these three viruses target cochlear cell types. AV targets hair cells, supporting cells, spiral ganglion 
neurons, fibrocytes, stria vascularis, and Reissner’s membrane [40]. AAV targets hair cells, supporting 
cells, spiral limbus, spiral ganglion neurons, Reissner’s membrane, and the spiral ligament [40]. LV targets 
spiral ganglion neurons, fibrocytes and Reissner’s membrane [40]. Each of these vectors have been used to 
successfully transfect target cells with different genes: GDNF [242], HGF [243], Catalase [244],  
BDNF [245-247], NTF-3 [248], Atoh1 [249], EGFP [250, 251], and GJB2 [252] in the inner ear. 
Unfortunately, each of these vectors have shown off-target effects, notably in vivo injections of Atoh1 in 
the mammalian cochlea have resulted in both normal hair cell formation [158,249,253,254] and Atoh1 
positive hair cells outside the organ of Corti [255]. While viruses do have some tropic specificity, they 
can target ectopic tissue. Furthermore, viruses themselves may pose a health risk if injecting DNA. 
The ability to stably and specifically target damaged tissue safely with both exogenous stem cells and 
the necessary genes is the final step necessary for hearing loss restoration. Multiple laboratories are 
working on other stem cell targeting and gene regulation expression methods including the use of 
nanoparticles [256] and other non-viral vectors [257-260] that will be safer, more efficient [261] and 
will reduce auditory trauma [237,262-264]. For example, regulated expression of target genes could be 
accomplished through the conditional activation of non-mammalian promoters that drive hair cell 
specific genes in target tissue, not ectopic sites [265]. Regardless of method, implanted stem cells must 
be cell fate restricted through regulated gene expression to achieve gene therapy in the ear. 

6. Conclusion: There is Hope! 

With the dawn of gene therapy and technological booms in stem cell technology, regenerative 
medicine appears to be the wave of the future, promising cures to a wide array of human diseases. While 
regenerative medicine is still in its infancy and years away from clinical adaptation, it represents new 
interactions between basic scientists and clinicians. Unprecedented in applicability, regeneration of any 
tissue requires a solid foundational knowledge of the molecular basis of developmental processes and 
stem cell regulation. As basic scientists dredge through thousands of genes in the hopes of elucidating 
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the minimal essential gene networks required for induction of directed differentiation and clinicians have 
increasing numbers of patients asking about permanent cures, the race from bench to bedside has never 
been more important as well as challenging. Progress in network analysis highlights the controllability of 
a cell network and the minimal nodes needed to control that network [266]. 

Millions of patients suffer from hearing loss resulting from lost hair cells in the organ of Corti. Gene 
therapy and stem cells may offer a permanent cure for afflicted individuals, but the complexity of the ear 
compared to other systems, makes regeneration of hair cells a daunting task. Yet, the past ten years have 
shown an incredible advancement in the molecular understanding of ear development [15,267]. A 
continued improvement in understanding of ear development amalgamated with the nonstop 
advancements of gene therapy and stem cell biology may someday be fine-tuned music to the ears of 
many.  
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