
Review

Regenerative medicine, organ bioengineering
and transplantation

L. Edgar1, T. Pu1, B. Porter2, J. M. Aziz1, C. La Pointe3, A. Asthana1 and G. Orlando1

1Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, and 2University of
Florida College of Medicine, Gainesville, Florida, USA, and 3Sherbrooke University, Sherbrooke, Quebec, Canada
Correspondence to: Dr G. Orlando, Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Medical Center Boulevard,
Winston Salem, North Carolina 27157, USA (e-mail: gorlando@wakehealth.edu)

Background: Organ transplantation is predicted to increase as life expectancy and the incidence of
chronic diseases rises. Regenerative medicine-inspired technologies challenge the efficacy of the current
allograft transplantation model.
Methods: A literature review was conducted using the PubMed interface of MEDLINE from the National
Library of Medicine. Results were examined for relevance to innovations of organ bioengineering to
inform analysis of advances in regenerative medicine affecting organ transplantation. Data reports from
the Scientific Registry of Transplant Recipient and Organ Procurement Transplantation Network from
2008 to 2019 of kidney, pancreas, liver, heart, lung and intestine transplants performed, and patients
currently on waiting lists for respective organs, were reviewed to demonstrate the shortage and need for
transplantable organs.
Results: Regenerative medicine technologies aim to repair and regenerate poorly functioning organs.
One goal is to achieve an immunosuppression-free state to improve quality of life, reduce complications
and toxicities, and eliminate the cost of lifelong antirejection therapy. Innovative strategies include
decellularization to fabricate acellular scaffolds that will be used as a template for organ manufacturing,
three-dimensional printing and interspecies blastocyst complementation. Induced pluripotent stem cells
are an innovation in stem cell technology which mitigate both the ethical concerns associated with
embryonic stem cells and the limitation of other progenitor cells, which lack pluripotency. Regenerative
medicine technologies hold promise in a wide array of fields and applications, such as promoting
regeneration of native cell lines, growth of new tissue or organs, modelling of disease states, and
augmenting the viability of existing ex vivo transplanted organs.
Conclusion: The future of organ bioengineering relies on furthering understanding of organogenesis,
in vivo regeneration, regenerative immunology and long-term monitoring of implanted bioengineered
organs.
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The challenges of organ transplantation have
been the overwhelming demand and the ideal of
immunosuppression-free strategies1. Allocation of donor
organs may exhibit racial, sex, age and geographical dis-
parity, and this may worsen as the gap between supply and
demand widens1–5. Based on the Organ Procurement and
Transplant Network database, by the end of 2009, there
were 105 567 patients waiting for solid organ transplanta-
tion (kidney, pancreas, liver, heart, lung and intestine) and
28 458 transplants performed, whereas by the end of 2019,
there were 112 568 patients waiting and 39 718 solid organ
transplants performed6. Regenerative medicine (RM) is

dedicated to replacing and/or repairing tissues and organs
for functional restoration, which may represent a solution
to these critical challenges.

The history of organ transplantation can be split into
three phases, or eras (Fig. 1)7. The first phase spans from
the early days of surgical science (surgery era). Technical
feasibility was proven, but outcomes were limited by the
lack of effective antirejection therapies until ciclosporin
projected the field into the immunology era. On the
one hand, immunosuppression allowed transplantation
to become the standard of care for many diseases but,
on the other, it does so at the cost of side-effects. For
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Fig. 1 Phases in the history of organ transplantation
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CRISPR, clustered regularly interspaced short palindromic repeats. Reproduced from reference 7 with permission.

this reason, research has focused on strategies to achieve
immune tolerance in an immunosuppression-free status
(IFS) whereby the recipient accepts an allograft without
immunosuppressants. In more recent years, the field has
been transitioning into the regenerative era in tandem
with other developments, such as big data, exchanged pair
donation chains, and transplants across blood groups or
among incompatible donors8–11. Recent achievements in
organ bioengineering and regeneration technologies to
manufacture organs from the patient’s own cells may offer
the genesis of organ-on-demand and IFS.

The long-term management of transplant recipients
is focused on reduction in morbidity and mortality and
improving quality of life, while balancing side-effects
of immunosuppressive drugs with risk of graft failure.
Chronic disease management may be termed a halfway
technology because the focus is not on cure12. Organ
transplantation should be considered a halfway technology
for two reasons: it does not directly target the underlying
disease, and long-term immunosuppression may induce
life-changing side-effects. RM may render organ trans-
plantation a full-way technology if medication can be
avoided. The feasibility of this approach has been proven
with implantation of sections of the urinary tract or upper
airways, but it is only a matter of time before complex
organs are bioengineered13–19.

Decellularization is a process in which an acellular extra-
cellular matrix (aECM) scaffold can be obtained by using
chemical or physical means to remove cellular compo-
nents of living tissue20. The product of decellularization

is a three-dimensional (3D) ultrastructure of ECM that
may be used as a natural scaffold for application in tis-
sue engineering and RM21. Ideally, the aECM scaffold
retains both structural integrity and existing biochemi-
cal properties of the native tissue nanostructure. Studies
have shown that aECMs exhibit bio-inductive properties
comparable to those of native tissue for cellular chemo-
taxis, including attachment, migration, proliferation and
function22. These constructs have the advantage of main-
taining tissue-specific cell functions and phenotypes to
induce host tissue remodelling. Previous studies23–38 have
had success in obtaining aECM scaffolds from virtually
all mammalian organs. They preserve the native vascu-
lature for adequate perfusion of constructs able to with-
stand physiological blood pressures, something that has
been a challenge to RM methods relying on progenitor
cell embryogenesis39,40. Other obstacles include damage to
innate ECM during tissue processing or inadequate recel-
lularization of structurally complex organs.

Advantages of 3D printing, as an alternative strat-
egy for organ manufacturing, include automation of
construct fabrication, reliable reproducibility, increased
resolution and the potential for mass production. Appli-
cations of 3D-printed acellular constructs are prolific in
orthopaedics and maxillofacial surgery. They are used in
preoperative planning, personalized drug delivery, and
fabrication of models for use in dentistry, cardiovascu-
lar disease, facial plastic and reconstructive surgery, and
limb prostheses19,41–44. Possibly the most anticipated and
exponential applications of 3D printing are those in tissue
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engineering, which may collectively be referred to as
bioprinting. Biomaterials used for bioprinting constructs
compatible with human physiology include both naturally
derived polymers (such as alginate, gelatin, collagen, fibrin
and hyaluronic acid) and synthetic polymers (for example,
polyethylene glycol)7. A combination of synthetic and
naturally derived polymers produces a functionally supe-
rior material that retains both the structural integrity and
innate physiological interactions. Current resolution limits
of bioprinter technology are 2 μm for acellular constructs,
and 50 μm for those that include encapsulated cells45.
Successful preclinical studies46–48 have implemented 3D
bioprinted cartilage and bone tissues in animal models.
It has been difficult to produce vascular, neurological and
lymphatic networks in biologically printed constructs, or
to maintain viable tissues that exceed 1 cm in thickness49.
Slow printing speeds and printer resolution restrictions
have limited the size of 3D bioprinted constructs so
far. It is theorized that current bioprinting techniques
lack geometrical complexity owing to insufficient use of
multipolymer constructs and multiple cell lines, which
consequently extends to inadequate replication of organ
vasculature leading to inadequate tissue perfusion.

Use of embryonic stem cells (ESCs) remains one of
the earliest forms of RM technologies. ESCs, which
are found within the inner cell mass of blastocyst-stage
embryos, retain their ability to differentiate into all adult
cell types. ESC-based modalities, however, remain lim-
ited because of the potential tumorigenic risk, risk of
immune rejection, and ethical dilemmas surrounding use
of human embryos7. Another well described method is the
harvesting of mesenchymal stem cells (MSCs) from the
patient’s bone marrow, periosteum, periodontal ligament
or adipose tissue50. Initial animal studies47 suggested that
MSC-derived chondrocytes do not retain regeneration
abilities and fail to engraft, which limits their practical
application in RM therapies. Instead, MSC-based thera-
pies are useful for both direct and indirect stimulation of
endogenous repair, relying on paracrine factors to mediate
this process7. The concept of induced pluripotent stem
cells (iPSCs) navigates these challenges by reprogramming
somatic stem cells to have the same potential plasticity
as ESCs51.
β-Cell replacement offers a formidable platform for the

application of stem cell-based technologies to transplant
medicine. A new, potentially inexhaustible source of trans-
plantable insulin-producing cells, β-cells and islets for type
1 diabetes may be available soon52–54. Among the RM
technologies of interest to transplant medicine, stem cell
technology is the one that has the greatest potential for
clinical translation (Table 1).

Interspecies blastocyst complementation (IBC) is
another promising application of iPSCs for the generation
of autologous tissue. Targeted removal of cells destined
for development of a specific organ allows manipulation of
a host blastocyst. This permits insertion of donor iPSCs
into the host blastocyst to produce an autologous organ
in allogeneic and interspecies circumstances55,56. It is
possible to use a compatible host (such as pig) to create
organs for patients that will retain size, function and ade-
quate vascularization comparable to that of host organs.
The IBC method holds potential because of its ease of
application and increased viability of engineered tissue in
host animals, but has yet to produce complex organs57,58.
Potential problems include zoonoses, host contamination
causing organ rejection, and reverse contamination by the
donor iPSCs leading to health problems in the animals.

The toxicity of immunosuppressive drugs not only
poses a danger to the patient but is also a significant
alloantigen-independent factor in chronic allograft
nephropathy. As such, 50 per cent of nephropathic kidney
transplants are lost within 10 years secondary to chronic
allograft nephropathy59. The cost and encumbrance of
drugs is very difficult for patients60–62. A transplanted
organ must be from a genetically identical donor or
immunological tolerance must be achieved to get IFS.
Complete tolerance has been seen in a small proportion of
patients weaned off immunosuppressive drugs54,63,64, such
that IFS is not immediate or necessarily durable18,65,66.
Bioengineered organs hold promise in achieving IFS; how-
ever, the immune reaction to these organs remains largely
uncharacterized. Regardless of the fabrication method,
bioengineered constructs are composed of two structures:
the cellular compartment and the ECM. During implan-
tation of acellular allogeneic and xenogeneic scaffolds, the
host immunological response results in an acute cellular
infiltrate that includes both neutrophilic and giant cell
infiltrations67. The cellular component of a bioengineered
graft may also trigger an acute rejection response because
it is well known that both allogeneic pluripotent stem cells
and autologous adult cells may still elicit an inflammatory
response after manipulation in culture, even when har-
vested directly from the host. It has also been suggested
that the ECM component of scaffolds retains the ability to
induce T cell apoptosis and CD4-positive T cell conversion
through innate properties of transforming growth factor
β68–70. The transition of proinflammatory macrophage
phenotype M1 to an M2 phenotype occurring 1–2 weeks
after implantation may improve remodelling outcomes
by using host tissue remodelling and repair mechanisms7.
Thus, for successful implantation of bioengineered con-
structs in host organisms, a balance must be achieved
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Table 1 State-of-the-art regenerative medicine technologies

State of the art
Perspective and hurdles

to overcome
Potential for translation
within the next decade

Decellularization Virtually all organs from all clinically relevant
mammalian species including humans can
be decellularized to obtain acellular ECM
scaffolds

Acellular ECM scaffolds preserve most, yet
not all, molecular and physical
characteristics of the innate ECM, as the
decellularization process damages the ECM
to an extent that depends on the method
and organ

Partial regeneration of endothelial and
parenchymal compartments has been
reported, yet results are inconsistent and
difficult to reproduce

The maturation phase reported in the
literature for different organs was always far
inferior to the time needed in utero to
develop the organs in question

Implantation in vivo of a viable and
functioning bioengineered organ has never
been reported

In-depth understanding of mechanisms
underlying organ development, regeneration
and homeostasis

In-depth understanding of the mechanisms of
ECM scaffold–cell interactions

Cell selection for recellularization
Harmonious harnessing of lymphatic, nervous

and vascular components

Improving the design of ad hoc bioreactors to
support maturation

Strategies to achieve adequate recellularization

Low, not in the foreseeable
future for solid organs like
kidneys, hearts, etc.

3D printing Successful isolation and expansion of many
functional and supportive cell types

Replication of mechanical and biophysical
properties of simple tissues at the macro
level

Bioprinting of cells with natural and synthetic
biomaterials with high resolution

Implantation and in vivo maturation of small
avascular tissues

Production of an adequate number of
regeneration-competent cells that do not elicit
an immune response following transplantation

ECM-based materials that provide much stronger
mechanical strength while maintaining
cell-supportive environment

Improvements in speed, resolution, material
flexibility and scalability of bioprinters

Bioprinting of multiscale vascular networks within
instructive bioink that promotes angiogenic
sprouting and neovascularization

Low, likely not in the
foreseeable future

Stem cells Generation of various types of complex
organoids in vitro (e.g. renal, liver, heart,
pancreas) from different strains of human
progenitors including iPSCs

Generation of human pancreatic tissue in vivo
following transplantation of multipotent
progenitor-derived organoids in mice

Multipotent progenitors can be generated
from individual patients, circumventing the
need for immunosuppressants after
transplantation

Organoids derived from multipotent progenitors
typically resemble fetal tissues/organs and are
unlikely to mature into functioning adult organs

Organoids derived from multipotent progenitors
that are generated in vitro do not have the
blood vessels, lymphatics and neuronal
innervation required to function in vivo

High, likely within the next
decade

IBC Development of functional rat pancreas
following IBC of Pdx1–/– mouse
blastocysts

Generation of a biallelic knockout in pigs
using nuclease-based genome editing
shows it could be possible to generate pig
embryos for IBC that lack specific organs

Development of mouse–human and
pig–human chimeric embryos using
‘primed’ human iPSCs

Low yield and efficiency: chimerism is extremely
low (<1%)

To improve the efficiency of generating
human–pig chimeric embryos, greater
understanding is needed of how the status of
human iPSCs (whether they are naive, primed
or intermediate) affects their ability to integrate
into postimplantation pig embryos

The contribution of human iPSCs to developing
pig embryos is limited and it has not yet been
possible to generate human organs using IBC

Even if the above challenges were addressed, a
further problem is that human organs
developed using IBC would have pig blood
vessels, lymphatics and neuronal innervation,
which would lead to immune rejection

Low, likely not in the
foreseeable future
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Table 1 Continued

State of the art
Perspective and hurdles

to overcome
Potential for translation
within the next decade

RM for ischaemia–reperfusion Multiple candidate cell populations
showing efficacy beyond previous small
molecule alternatives

Emerging evidence of favourable
biodistribution avoiding off-site effects

Natural organ architecture available in
transplant context

Complementary benefits with
normothermic ex vivo perfusion

Obtaining adequate numbers of
point-of-care-derived autologous cells

Obtaining adequate numbers of
efficacious, non-immunogenic
GLP-manufactured allogeneic cells

Reassurance regarding potential
vascular/microvascular complications

High, likely within the next
decade

ECM, extracellular matrix; 3D, three-dimensional; iPSC, induced pluripotent stem cell; IBC, interspecies blastocyst complementation; RM, regenerative
medicine; GLP, good laboratory practice.

Fig. 2 Strategies to bring the two fields of regenerative and transplant medicine together
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between subduing an immune response to the introduc-
tion of a foreign body while retaining an immunological
response to augment host regenerative processes.

Ante litteram, transplant medicine has applied RM con-
cepts since the dawn of the modern era. All attempts
to minimize organ damage – from procurement, stor-
age/transportation to implantation – are strategies to
enhance tissue repair and function. Ex vivo lung perfu-
sion allowed a quadrupling of transplantable lungs by
encouraging ‘marginal’ organs to achieve better functional

reserve in a modern world. In order for the organ to
be repaired, numerous therapies are being investigated,
among which are the in situ delivery of interleukin (IL) 10
or the infusion of MSCs71. RM therapies may augment
existing organ transplantation by reducing need for donor
tissue and increasing the viability of tissue ex vivo. Selected
RM technologies are currently in phase I and Ib clinical
trial studies, including the first RM therapeutic drug
(MSI-1436) for myocardial tissue repair72. A preclinical
large animal study73 has investigated the use of in situ
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delivery of IL-10 to repair injured donor lungs ex vivo for
transplantation, and combat ischaemia–reperfusion injury.

RM may be the new frontier for transplant medicine74.
Transplant conferences are now incorporating sessions on
RM and tissue engineering (Fig. 2). Transplant societies are
funding tissue engineering-driven research and launching
RM committees. The Cell Transplant Society, a sister soci-
ety to The Transplant Society, was founded in 1992 and
has been quite active ever since. As RM progressed, the
name of the society was recently changed to its current
Cell Transplant and Regenerative Medicine Society75. The
American Society of Transplantation established the Trans-
plant Regenerative Medicine Community of Practice76 at
the World Transplant Conference held in San Francisco in
2014, and the European Society for Organ Transplantation
inaugurated the European Cell Therapy and Organ Regen-
eration Section77 in 2019, at its biannual congress held in
Copenhagen, Denmark.
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