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Abstract. In this study, we introduce the regenerator location problem in flexible opti-
cal networks. With a given traffic demand, the regenerator location problem in flexible
optical networks considers the regenerator location, routing, bandwidth allocation, and
modulation selection problems jointly to satisfy data transfer demands with the minimum
cost regenerator deployment. We propose a novel branch-and-price algorithm for this
challenging problem. Using real-world network topologies, we conduct extensive numer-
ical experiments to both test the performance of the proposed solution methodology and
evaluate the practical benefits of flexible optical networks. In particular, our results show
that, making routing, bandwidth allocation, modulation selection, and regenerator place-
ment decisions in a joint manner, it is possible to obtain drastic capacity enhancements
when only a very modest portion of the nodes is endowed with the signal regeneration
capability.
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1. Introduction
The wider availability of Internet access, introduc-
tion of mobile communication devices (smartphones,
tablets, etc.), and booming sector of mobile appli-
cations have taken the Internet age to a new stage
(Agrawal 2011). In 2011, global mobile data traffic was
eight times the size of the whole Internet in 2000, and
it is expected to increase 18-fold by 2016 (Index, Cisco
Visual Networking 2012). As the growth of the Internet
surpasses even the highest estimates, utilized band-
width of optical fibers rapidly approaches its theoret-
ical limits (Essiambre et al. 2010, Tomkos et al. 2012).
Just worsening the problem, the rigid nature of the cur-
rent optical networks cannot efficiently use available
optical bandwidth to support this increasing traffic.
The energy consumption of telecommunications net-
works is also adversely affected by wasteful resource
utilization. Such inefficiencies unnecessarily increase
the amount of required active network equipment, ulti-
mately increasing the total energy consumption of the
network. This is an issue of increasing importance since
the power consumption of the Internet is estimated to
reach 10% of worldwide energy consumption in a very
short time (Global Action Plan 2007). In the United
States alone, a 1% saving in the energy consumption
of the Internet due to the adoption of energy-efficient
network management strategies is estimated to result
in savings of $5 billion per year given that the price of
electricity is 17 cents per kWh (Shen and Tucker 2009).

The concern over climate change and the heavy car-
bon footprint of energy generation only increases the
importance of the energy efficiency of telecommunica-
tions networks.

Motivated by this urgent practical problem, re-
searchers developed the flexible optical network (FON)
architecture that can flexibly choose its transmission
parameters according to the varying traffic conditions
and significantly increase the resource utilization effi-
ciency (Essiambre et al. 2010, Tomkos et al. 2012). The
major sources of these inefficiencies, remedies offered
by FON architecture, and the algorithmic challenges
raised by the adoption of this novel technology can be
summarized as follows.

In the current optical network architecture, the
available bandwidth is divided into a set of fixed-
bandwidth channels, each serving a single trans-
mission demand. However, due to the increasing
variability of the offered online services, the capacity
demands of connections come from a much broader
range with granularities of several gigabits per second
to 100 gigabits per second or more. Due to the granu-
larity mismatch between the widths of these channels
and demand sizes, the already drained fiber band-
width cannot be fully utilized (Jinno et al. 2009). On
the other hand, with FON, the optical spectrum is
divided into fine bandwidths called slots, and custom-
size bandwidths are created by the contiguous concate-
nation of those slots. Such custom-size transmission
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channels can significantly reduce the bandwidth waste
and increase the amount of available fiber bandwidth.
The data transfer capacity of backbone networks

is not solely dependent on the range of the avail-
able bandwidth. Indeed, this capacity is jointly deter-
mined by the available bandwidth range of the fiber
and the modulation level that induces the amount
of data that could be transferred on a fixed band-
width. Modulation levels with higher bit rates can
carry more data on a given bandwidth, but the down-
side of using higher-bit-rate modulations is the shorter
optical reach defined as the maximum distance a sig-
nal can traverse before its quality degrades. As a sig-
nificant source of inefficiency, current optical networks
use fixed modulation levels and waste bandwidth by
using the same modulation level for both short- and
long-distance transmissions (Jinno et al. 2010). FON
has been designed to increase the data transmission
capacity of optical networks by smartlymanaging rout-
ing and modulation level selection in coordination
and, in particular, by utilizing high-bit-ratemodulation
schemas to increase bandwidth efficiency. However,
implementing such an approach is quite challenging
due to the optical reach limitations. Optical reach is a
decreasing function of the bit rate, and optical reach
limitations can significantly restrict the potential gains
of flexible modulation selection. One key technology to
extend optical reach and overcome this issue is opto-
electro-optical (OEO) regeneration. Processed by an
OEO regenerator, the optical signal is rejuvenated and
after this renewal it can travel up to its optical reach
before it arrives to a new regenerator or its final desti-
nation. So, with the expense of more capital investment
and operating cost (such as energy and maintenance),
it is possible to enhance the optical reach of a signal
by employing regenerator equipment. Moreover, FON
also allows different modulation levels at each segment
of a light-path that connects the source of a demand to
its destination possibly passing through several regen-
erators to maintain a certain level of signal quality. So
with this new architecture, it is possible to use regen-
erators to switch modulation formats on a light-path
such that the spectrum allocation is minimum while
the signal quality is within the predefined limits.

Since OEO regenerators are expensive devices to
obtain and operate, there is greatmotivation to design/
operate optical networks with few regeneration points.
In short, the better exploitation of the opportunities
offered by the FON architecture requires the solu-
tion of routing, bandwidth allocation,modulation level
selection, and regenerator location problems jointly.
The problem of solving all of these problems concur-
rently is a challenging one. Indeed, researchers indi-
cate that the lack of such an efficient algorithm con-
stitutes a major barrier to the adoption of this novel
technology (Tomkos et al. 2012). Despite this urgent

need, due to the novelty and the high complexity of
the problem, there are not so many studies in the
literature that address regenerator location problem
in flexible optical networks (RLP-FON). Considering
a static demand structure and assuming fixed routes
for each transmission demand, Klinkowski (2012) pro-
poses a heuristic algorithm for jointly solving spectrum
allocation and regenerator location problems. Similar
to our findings, his numerical experiments indicate
that a smart placement of regenerators could signifi-
cantly increase bandwidth efficiency in the network.
Relaxing the fixed route assumption, Kahya (2013)
presents a sequential solution heuristic approach to
solve routing, regenerator location, and spectrum allo-
cation problems in flexible optical networks. In this
study, a fixed modulation level is assumed. Motivated
by the recent developments in virtualized elastic regen-
erator (VER) technologies that enable efficient regen-
eration of various bandwidth super-channels, Jinno
et al. (2015) propose a heuristic algorithm for calcu-
lating the minimal VER placement, routing, and the
least congestion resources assignment in a translu-
cent FON based on Nyquist wavelength-division mul-
tiplexing (WDM) super-channels. The authors assume
a single modulation level and present computational
results which indicate significant efficiency gains in
the network due to the strategic VER placements.
In a recent study, Wang et al. (2015) investigate the
impact of modulation conversion in FONs. The authors
present a mixed integer programming (MIP) formula-
tion to solve RLP-FON. Since their formulation cannot
solve realistic-size problems, they propose a sequen-
tial solution heuristic in which they randomly parti-
tion the demand set. Their computational study results
show that benefiting from the elastic network struc-
ture, proper use of signal regenerators and wavelength
converters can significantly decrease the bandwidth
requirement depending on the topology of the net-
work. To the best of our knowledge, our study is the
first to present an exact algorithm to solve routing,
bandwidth allocation, modulation level selection, and
regenerator location problems jointly for realistic-size
problem instances.

Even in the current networks, regenerators are cru-
cial elements, as regeneration costs make up a signif-
icant portion of a network’s setup and management
costs (Yang and Ramamurthy 2005). Motivated by the
practical considerations, the RLP, which tries to find
the minimum cost regenerator deployment to facilitate
communication between network nodes, has attracted
significant research effort in the recent years. Yetginer
and Karasan (2003) were the first to introduce the
sparse regenerator placement in a static routing envi-
ronment. Taking the geographical aspect of the RLP
into account, Chen et al. (2009) introduce it to the oper-
ations research literature, proving its NP-completeness
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and showing that it can be modeled as a special Steiner
arborescence problem. Pointing to the equivalence of
the maximum leaf spanning tree problem, the mini-
mum connected dominating set problem and RLP, Sen
et al. (2008), Lucena et al. (2010) and, more recently,
Gendron et al. (2012) suggest several exact and heuris-
tic algorithms for RLP. Addressing the network surviv-
ability concerns, Yildiz and Karasan (2015) introduce
two new facets to the problem. They formulate the
RLP as a MIP and present an efficient branch-and-
cut algorithm which they extend to solve regenerator-
and node-reliable versions of the problem. In none of
these studies fiber capacity constraints are addressed.
Pavon-Mariño et al. (2009) explicitly address the fiber
bandwidth capacities and study the RLP in a static
demand environment. Different than our work, the
authors assume single modulation level and do not
consider FON architecture. A MIP formulation that
contains a large number of variables is presented. Two
heuristic algorithms are proposed to solve large prob-
lem instances that cannot be solved by the MIP formu-
lation. In a recent study, considering the FON setting
and multiple modulation levels, Castro et al. (2012)
investigate the dynamic demand routing and spectrum
allocation problem (RSA). The authors present a high-
quality heuristic that can solve the dynamic RSA prob-
lem, and propose a spectrum reallocation algorithm to
deal with the spectrum fragmentation problem which
can significantly limit the available fiber bandwidth.
Different than this study, the optical reach constraints
are not examined.
In this study, we introduce the regenerator location

problem in flexible optical networks (RLP-FON). RLP-
FON seeks the best routing, modulation level, and
regenerator location combination that minimizes the
regenerator deployment costs while not using more
than a predetermined portion of the fiber bandwidth.
In other words, promoting the exclusive capabilities of
the new FON architecture, RLP-FON finds the min-
imum amount of network resources needed to sat-
isfy a given set of transmission demands. Since FON
architecture is quite new, despite its immense practical
importance, this theoretically challenging problem is
not well studied in the literature, and this study is a
first attempt to close this gap.

RLP-FON arises both in the design and network
management layers. In the design phase, RLP-FON
determines the minimum amount of network equip-
ment (regenerators, router chassis, optic line cards, etc.)
required to satisfy the targeted demand, whereas in
the network operation layer, RLP-FON can help reduce
the operating cost of the network by identifying the
network elements that could be put into sleep mode
when the actual demand is less than the maximum
supported demand size. The significance of the lat-
ter can be better understood considering the fact that

optical backbone networks are designed somewhat to
support the worst-case demand scenarios and peak
demand is more than two times larger than the mini-
mum observed on the same day (Rizzelli et al. 2012).
Indeed, motivated by such an opportunity, hardware
developers intensified their research and development
efforts on manufacturing network devices with capa-
bilities to go into sleep mode to save energy.

Path-based formulations are very powerful to model
problems for which the amount of cost incurred/profit
gained or resource depleted depends on the routes cho-
sen. As such, they are widely used in network design
andmanagement problems in telecommunications and
transportation. Despite their advantages, path-based
formulations usually suffer from the exponential num-
ber of variables with only a fraction of them actually
appearing in a feasible solution. Column generation
and branch-and-price methods have been successfully
applied to those problems to develop efficient algo-
rithms (Parker and Ryan 1993; Barnhart et al. 1994; Park
et al. 1996; Barnhart et al. 1998, 2000; Cohn andBarnhart
2003; Degraeve and Jans 2007; Desaulniers 2010).

Within RLP-FON, for each transmission demand, a
routing problem is solved to find a path that connects
source and sink nodes and that respects regeneration
constraints. However, with a path-based formulation,
it is hard to address signal regeneration constraints
and consider nonsimple paths while generating new
columns in a column generation framework. Because
of that, we define path-segments as the simple paths
on which the signal does not get into regeneration, and
build the routes (both simple and nonsimple) by the
proper concatenation of these path-segments.

In this study, we:
• Introduce the RLP-FON problem that adds two

new facets to RLP:
—RLP-FON jointly solves routing, modulation

level selection, and regenerator location problems.
—RLP-FON respects the bandwidth capacity lim-

itations of the fiber links.
• Present a path-segment formulation for RLP-FON

and develop a branch-and-price algorithm to solve it.
To the best of our knowledge, this is the first study in
which path-segments instead of paths are used as the
variables in a column generation framework.

• Conduct extensive numerical experiments on real-
istic reference network topologies to test the compu-
tational performance of the proposed algorithm and
to offer managerial insights. In particular, results of
these experiments show that a strategic deployment of
regenerators on a small portion of nodes can achieve
capacity enhancements comparable to the case where
all of the nodes in the network have regeneration
capability.
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2. Mathematical Model
In this section, we formally define RLP-FON, present
the details of the proposed branch-and-price algo-
rithm, and examine the problem complexity.

2.1. Problem Definition and Notation
For each connection demand, there is a certain amount
of data at the origin coded into optical signals to be
carried to the destination in a unit time. This coding is
done with one of the technologically available modu-
lation levels. For an optical signal, the chosen modu-
lation level determines the number of bandwidth slots
required to transfer this signal on a fiber link and sets
the optical reach—i.e., the maximum distance to be
covered before a regeneration. Higher modulation lev-
els use optical bandwidth more efficiently (require less
bandwidth), but they have shorter optical reach. An
optical signal is a light-path; that is, a path from the
source node to the destination node in the given optical
network. When regenerator nodes are visited on this
path, the light-path can be viewed as the concatena-
tion of several path-segments where a path-segment is
a simple path joining two consecutive regenerators on
the light-path or joining a regenerator with the source
or the destination node. In other words, except for the
one that ends in the destination node, at the end of each
path-segment there is a regenerator that restores the
signal quality. Regenerators are also capable of recod-
ing and emitting the incoming signal with a different
modulation level—i.e., regenerators have the capabil-
ity to switch the modulation level of an optical signal.
Each fiber link in the network has a certain bandwidth
capacity which will be consumed by the light-paths
passing through it. Considering all of the demands
simultaneously, a solution for the RLP-FON needs to
respect these bandwidth capacities of fibers. Moreover,
the modulation level and the path-segment chosen
for a particular demand should be in harmony with
respect to optical reach considerations. Thus, the solu-
tion of the problem consists of the routing decisions
for each demand, location decisions of the regeneration
equipment, and the modulation level selections to be
used for each demand on each one of its path-segments
on its light-path. The objective is to find a solution that
minimizes the regenerator deployment costs and obeys
the link capacity and optical reach constraints.
We now provide some notation for formalism. Let

the undirected weighted graph G � (N,E) represent
a flexible optical network instance with node set N �

{1, 2, 3, . . . n} and edge set E. Edge lengths and the
total number of slots that exist on each fiber link e ∈ E
are denoted by l(e) > 0 and c(e) ∈ �, respectively. The
cost for regenerator placement in node i ∈N is denoted
by hi . Induced by the edge set E, we define the arc
set A which contains two arcs ē � (i , j) and

¯
e � ( j, i)

for each edge e � {i , j} ∈ E with l(ē) � l(
¯
e) � l(e). We

define M � {1, 2, . . . , µ} as the set of modulation lev-
els and assume that the mth component of vector ∆ �

(∆1 , . . . ,∆µ) is the threshold of regeneration-free com-
munication (optical reach) for the modulation level m.
In other words, two nodes with distance at most ∆m

can communicate without any need for signal regen-
eration using modulation m. We assume without loss
of generality that ∆m > ∆m̄ , ∀m < m̄, and l(e) 6 ∆1 for
every e ∈ E since any edge violating this condition can
simply be deleted from G.

Another problem instance parameter is the set of
transmission demands D � {1, 2, . . . , δ}. For each d ∈ D,
we denote S (d) as the source node and T (d) as the
destination node, and define ψ(d) as the data rate
demanded by d. The number of slots a demand d
requires on any fiber link is a function of the modula-
tion level chosen, say m, and the required data trans-
fer rate of the demand ψ(d). For practical purposes,
it is important to note that for the same transfer rate
ψ(d), higher modulation levels require less bandwidth
(less number of slots) but have more limited optical
reach. We define v(d ,m) as the number of slots a path-
segment of demand d occupies on each fiber optical
link it traverses for a chosen modulation level m.

A directed path is a sequence of arcs (a1 , a2 , . . . , aβ)
with ai � (ni−1 , ni) ∈ A, ∀i � 1, . . . , β and ni ∈ N for i �
0, . . . , β. The directed path is nonsimple if it repeats
nodes and simple otherwise. Our formulation depends
on the notion of path-segments. A path-segment p is a
directed simple path with an associated modulation
level m(p). Thus, by associating different modulations
to the same simple path, it is possible to generate dif-
ferent path-segments. We denote the source and des-
tination nodes of a path-segment p as s(p) and t(p),
respectively. For each path-segment p, we denote p̄ as the
set of edges e ∈ E such that p passes through ē or

¯
e, and

define the indicator function I(e , p) that returns one if
e ∈ p̄ and zero otherwise. The length of a path-segment
l(p) � ∑

e∈p̄ l(e) is the sum of the lengths of the edges
contained in p̄. In our formulation, we only consider
path-segments with total length less than the optical
reach of the associated modulation level and call such
path-segments feasible. More formally, a path-segment
p is feasible if l(p) 6 ∆m(p). We define P as the set of all
of those feasible path-segments.

A light-path P � (p1 . . . , pk) is an ordered union
of path-segments p i , i ∈ 1, . . . , k where t(p i) � s(p i+1)
forall i � 1, . . . , k − 1. We call a light-path feasible for
a demand d ∈ D if s(p1) � S(d), t(pk) � T (d), l(p i) 6
∆m(p i ) , i ∈ 1, . . . , k, and t(p i) is a regenerator node ∀i �
1, . . . , k − 1. The regenerator usage cost for each trans-
mission demand is denoted as η.

A solution for RLP-FON is allowed to use only a
portion α ∈ (0, 1] of the available transmission capac-
ity (bandwidth slots) on a link. That is, the number
of slots available on a link e ∈ E is given by bc(e) × αc.
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Table 1. Outline of Notation

G: Input graph representing the optical network
N : Set of nodes in G; N � {1, . . . , n}
E: Set of edges in G
A: Arc set induced by E
D: Set of connection demands; D � {1, 2, . . . , δ}
M: Set of modulation levels; M � {1, . . . µ}
P: Set of feasible path-segments
l(e): Length of an edge e ∈ E
c(e): Number of slots that exist on each fiber link e ∈ E
S(d): Source node of a connection demand d ∈ D
T (d): Destination node of a connection demand d ∈ D
s(p): Source node of a path-segment p ∈P
t(p): Destination node of a path-segment p ∈P
m(p): Modulation level used by path-segment p ∈P
p̄: Set of edges a path-segment p ∈P passes through
I(p , e): Indicator function that returns one if e ∈ p̄

and zero otherwise
hi : Cost for regenerator placement in node i ∈ N
η: Regenerator usage cost
α: Maximum link utilization ratio
∆m : Optical reach for the modulation level m ∈M
v(d ,m): Number of slots required by demand d ∈ D transmitted

via modulation level m ∈M

The parameter α actually represents a managerial deci-
sion. Due to the quality of service considerations (such
as uninterrupted service, accommodating unexpected
demands, etc.), network management does not want to
use all of the existing bandwidth of a link, and smaller
values of α are preferred. However, smaller values for α
limit the data transfer capacity of the network and may
increase the required number of regenerators. A more
detailed discussion about this topic is presented in Sec-
tion 4. The notation we use throughout this paper is
outlined in Table 1.
The formal definition of RLP-FON is as follows.

Definition 1. Regenerator Location Problem for Flexible
Optical Networks (RLP-FON):AnRLP-FON instance has
associated data 〈G,D ,M, l , c , h , v , α, η〉. The aim is to
find the minimum cost regenerator deployment and
signal routing such that for each d ∈ D there is a fea-
sible light-path Pd in G such that for all links e ∈ E,∑

d∈D
∑

p∈Pd I(e , p)v(d ,m(p)) 6 bc(e) × αc.

2.2. RLP-FON Path-Segment Formulation (PS)
In this subsection, we present the path-segment formu-
lation PS for RLP-FON and provide the details of the
proposed branch-and-price algorithm to solve it.
Recall that each demand d is required to follow

a union of path-segments from S(d) to T (d) with a
regenerator at the end of each used path-segment p for
which t(p) , T (d). As such, our path-segment formu-
lation admits a very natural representation of signal
regeneration constraints. We define the following deci-
sion variables.

ri �

{
1, if node i ∈ N is a regeneration point
0, otherwise,

xd
p �

{
1, if demand d ∈ D uses path-segment p
0, otherwise.

We name ri , i ∈ N as the regeneration variables and
xd

p , d ∈ D , p ∈ P as the arc flow variables. With these
decision variables, PS can be stated as follows.

min
{∑

i∈N
hi ri +

∑
d∈D
p∈P

t(p),T(d)

ηxd
p

}
(1)

s.t.
∑
p∈P,

s(p)�i

xd
p −

∑
p∈P,
t(p)�i

xd
p �


1, if i �S(d),
−1, if i �T (d),
0, otherwise,

∀ i ∈ N, d ∈ D , (2)∑
d∈D

∑
p∈P:
e∈p̄

v(d ,m(p))xd
p 6 bc(e) × αc , ∀ e ∈ E, (3)

∑
p∈P:

t(p)�i

xd
p 6 ri , ∀ d ∈ D , i ∈ N\T (d), (4)

ri ∈ {0, 1}, ∀ i ∈ N, (5)
xd

p ∈ {0, 1}, ∀ d ∈ D , p ∈P. (6)

The objective function (1) has two components. The
first one represents the fixed cost of setting up a regen-
erator site on a node. Since some of its constituents
can be node dependent, regenerator placement cost
hi can take different values for different nodes i ∈ N .
The second piece represents the cost of adding a new
regenerator device to a regenerator site. Depending
on the features of the practical setting, this cost can
also represent the signal regeneration cost incurred at
the end of a path-segment. Note that, with this flex-
ible construction, the objective function is quite gen-
eral accommodating the cost structure of a wide range
of practical problems. In the next section, we present
a more detailed discussion on this topic. Constraints
(2) are the flow balance equations that force each
demand to be carried from its source to its destination
by the concatenation of feasible path-segments. Con-
straints (3) are the capacity constraints which ensure
that the number of slots occupied is not more than
the maximum allowed. Constraints (4) enforce regen-
eration requirements by ensuring regeneration at the
end of each feasible path-segment that does not end in
the destination node of the associated demand. Con-
straints (5)–(6) are the domain restrictions. Note that
this formulation is equivalent to a flow formulation
on a network where different path-segments between
pairs of nodes are simply represented by parallel arcs.

Although this formulation considers a static prob-
lem where all of the connection demands are known/
estimated and regenerator locations are chosen accord-
ingly, it is flexible enough to cover a more realistic case
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where demands emerge in an incrementalmanner; that
is, when there are a collection of flows already and we
need to solve the problem to accommodate additional
flows incurring minimum additional cost. In that case,
we can simply fix ri � 1 or assume hi � 0 for those
regenerators that are in use (already located) to enable
existing light-paths. Regarding the edge capacities in
the newproblem,we have two alternatives. If the initial
routes have to remain fixed, wewould reduce the num-
ber of available bandwidth slots on the edges which
have already been used. On the other hand, if we have
the rerouting capability, there is no need to update
edge capacities and we can solve the problem consid-
ering existing and new demands together by simply
updating regenerator placement costs as stated above.

2.3. Solution Approach
In this section, we present a novel branch-and-price
algorithm to solve PS. Column generation technique
is employed to solve the linear relaxation of PS, say
PS-LP, and obtain a lower bound for each node of the
branch-and-bound tree.

2.3.1. LP Solution (Column Generation).

Pricing Problem: Let RPS be the restricted PS-LP for-
mulation with a fraction of its columns. At every itera-
tion, we determine whether there exists a column with
negative reduced cost such that including it in the RPS
might improve the objective function. If such columns
are detected, we add them to the RPS and repeat the
procedure until there is no column left with a negative
reduced cost.
Let πd

i represent the unrestricted dual variables asso-
ciated with Constraints (2), and κe and γd

i be the non-
negative dual variables associated with constraints (3)
and (4), respectively. For a path-segment p of demand d
the reduced cost c̄d

p for a fixed modulation level m is
given as

c̄d
p �



πd
t(p) − πd

s(p) +
∑
e∈p̄

v(d ,m)κe ,

if t(p)�T (d),

πd
t(p) − πd

s(p) +
∑
e∈p̄

v(d ,m)κe + γ
d
t(p) + η,

if t(p),T (d).

(7)

Definition 2. An ordered node pair (i , j), ∈ N × N is
called a plausible-pair for demand d if the potential dif-
ference

πd
(i , j) �

{
πd

j − πd
i , if j �T (d),

πd
j − πd

i + γ
d
j + η, if j ,T (d), (8)

is negative. The set of all the plausible-pairs for de-
mand d is denoted by Πd .

To identify columns that price out, it is required to
pick out plausible-pairs (i , j) for each demand d ∈ D
and check whether there exists a path p of modulation
m from node i to j with length ∑

e∈p̄ v(d ,m)κe < −πd
(i , j).

If the signal regeneration was not necessary, such a
path could be efficiently identified by solving a shortest
path problem for each modulation level m ∈ M, over
a graph with arc costs equal to v(d ,m)κe for each arc
ē ,

¯
e ∈A. However, a path-segment p is feasible only if it

satisfies signal regeneration constraint l(p) � ∑
e∈p̄ l(e)

6∆m(p). Thus, the pricing problem actually requires the
solution of a number of constrained shortest path prob-
lems (CSP) (Garey and Johnson 1979). Given a directed
graph with costs and resources associated with arcs,
the CSP problem seeks a minimum cost path from a
given source node to a given destination node with a
side constraint on the total resource of the path. Our
pricing problem can be solved exactly by solving a CSP
instance from node i to node j on a directed graph
(N,A) where the cost is v(d ,m)κe and the resource is
l(e) for each ē ,

¯
e ∈ A and the resource limit is ∆m . We

denote this pricing graph as Gd
m .

Algorithm 1 (Hk)
Input: 〈G,D ,M,Pk

(i , j) , π, κ, γ〉
Output: 〈Ω〉

1 begin
2 Set Ω��
3 for all of the d ∈ D do
4 for all of the (i , j) ∈Πd do
5 Set m � |M |
6 Set GoToNextPair� false
7 while m > 0 or GoToNextPair� false do
8 Set σ � 1
9 while σ 6 k or

GoToNextPair� false do
10 if ∆m > l(pσ(i , j)) and

πd
(i , j) + ld

m(pσ(i , j)) < 0 then
11 Ω�Ω∪ {pσ(i , j)}
12 GoToNextPair� true.
13 end
14 σ � σ+ 1
15 end
16 m � m − 1
17 end
18 end
19 end
20 end.

Since the number of plausible-pairs is O(n2), and
since CSP is NP-Hard (Garey and Johnson 1979), we
propose a heuristic method (Hk) to solve the pricing
problem and resort to the exact solution of CSP, which
employs the solution approach proposed by Santos
et al. (2007), if the heuristic method fails to produce a
negative reduced cost column.
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Figure 1. A Simple Example Depicting the Fact that Initial Columns Matter
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(a) Network instance (b) Initial columns (bold lines) (c) Optimal solution

For each node pair (i , j) ∈ N × N , paths with short
lengths are good paths in a sense that they can support
higher-bit-rate modulations and thus use less network
resources to transmit data. Therefore, those paths are
more likely to be detected as solutions of the pricing
problem. Thus, it is a fruitful idea to store some limited
number, say k, of those good path-segments and at each
pricing step check those paths first before resorting to
the costly solution of CSP.
Let Pk

(i , j) � {p1
(i , j) , p

2
(i , j) , . . . , p

k
(i , j)} be the set of k-short-

est paths from node i to node j in G with nondecreas-
ing order of lengths. For notational simplicity, we also
define the cost of the path-segment p ∈ Pk

(i , j) in the pric-
ing graph Gd

m as ld
m(p) �

∑
e∈p̄ v(d ,m)κe . Initially, we

store k-shortest paths for each node pair (i , j) and call
Algorithm 1 (Hk) to detect negative reduced cost path-
segments.
If Hk for a chosen k returns Ω � �, then we con-

tinue with the exact solution methodology. When solv-
ing the pricing problem after the application of Hk
there is no need to consider plausible node pairs (i , j)
such that l(pk

(i , j)) > ∆m . Thus, exact solution of the pric-
ing problem requires significantly less computational
effort when we first apply Hk . Note that, once we have
the solution of the k-shortest path problem, which
we solve just once at the very beginning, Hk requires
O(n2 |D |µ) time when seeking for a negative reduced
cost column among all plausible pairs, all demands
d ∈ D and modulation levels m ∈M. So the time com-
plexity of the heuristic solution of the pricing problem
is O(kn(|A| + n log n)+ n2 |D |µ).
Determining an Initial Set of Columns: Defining vari-
ables as the path-segments instead of light-paths
diverts from the widely used path-based formula-
tions for which column generation technique has been
applied very successfully for a wide range of prob-
lems (see Lübbecke and Desrosiers 2005 for a detailed
survey). Path-segments as variables necessitate a more
careful approach to determine the initial variable pool.
In a typical column generation algorithm it is suffi-
cient to have a feasible solution at hand to start the
procedure. However, in PS-LP, it is not enough to start
with an arbitrary feasible solution. Figure 1 depicts
a simple problem instance where there is only one
level of modulation with the maximum optical reach

of 1 unit. This instance contains a single data trans-
fer demand from 1 to 4 for which just one bandwidth
slot is enough to carry the signal with the available
modulation. Links contain two slots and have lengths
of 1 unit. All nodes have unit regenerator placement
costs and η � 0. Figure 1(b) shows an initial column
pool that consists of three path-segments (numerically
depicted). With these columns, one can build a feasi-
ble solution that requires two regenerators (at nodes 2
and 3). Figure 1(c) depicts the optimal solution with
one regenerator at node 5. However, starting with the
three path-segments given at (b) there is no way to
detect negative reduced cost columns and move to a
better feasible solution. Thus, PS-LP is stuck with the
initial solution and cannot obtain the optimal solution
from here.

We apply Algorithm 2 to obtain the set of initial
variables. Note that the data transfer capacity of the
network is maximum when all of the nodes have
the regeneration capability and each link e ∈ E uses
the most bandwidth efficient (highest bit rate) modula-
tion level m∗ such that l(e) 6 ∆m∗ . Thus, if the restricted
problem with the column set Ω0 is infeasible, PS-LP is
infeasible as well. Moreover, for each (d , a) pair d ∈ D,
a ∈ A, there exists a variable xd

p in Ω0 with p � a. Thus,
values of all of the dual variables can be properly cal-
culated once a solution is obtained with the variables
inΩ0. Thus, employing Algorithm 2, we can obtain the
initial set of columns in O(µ|A|) time.

Algorithm 2 (Initial variable set generation)
Output: 〈Ω0〉

1 begin
2 Set Ω0 ��
3 for all of the a ∈ A do
4 —find the highest-bit-rate modulation m∗

such that ∆m∗ > l(a)
5 —build the single arc path-segment p � a

with modulation level m(p)� m∗
6 —Set Ω0 �Ω0 ∪ {xd

p | d ∈ D}
7 end
8 end.

2.3.2. IP Solution.
Branching Rules: One key step toward develop-
ing an effective branch-and-price algorithm is the
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identification of a branching rule which eliminates the
fractional solutions but does not disrupt the special
structure of the pricing problem. Keeping this in mind,
we propose the following two branching rules: one for
the regeneration variables ri and one for the arc flow
variables xd

p .

Branching on Regeneration Variables: Encountering a
fractional solution, we first detect fractional regener-
ation variables and branch on the variable 0 < ri < 1
where i � arg min j∈N{|r j − 0.5|}.

Note that in formulation PS, arc flow variables xd
p

are tied to the regeneration variables ri by the con-
straints (4). Thus, branching decisions on regeneration
variables affect a significant number of arc flow vari-
ables. Let ri have a fractional value:

• Branching-cut-1 ri � 0: In this case the set of arc
flow variables

¯
Xi � {xd

p | d ∈ D ,T (d) , i and p ∈ P,
t(p)� i} are implicitly set to zero. Thus, we must make
sure that in the pricing problem any path-segment
xd

p ∈ ¯
Xi should not appear as a negative reduced cost

column. This can be easily done by setting γd
i � ∞

∀ d ∈D, T (d), i. Note that with this modification, only
the lengths of the arcs in the pricing graph are changed
and the structure of the pricing problem is not affected.

• Branching-cut-2 ri � 1: Implementation of this
branching cut is straightforward and does not require
any change in the pricing problem.

Branching on Arc Flow Variables: Our branching rule
on the arc flow variables is closely related with the one
proposed by Barnhart et al. (2000). For a branching rule
which is based on the arc flow variables, it is very likely
that branching cuts destroy the special structure of the
pricing problem. One remedy is to consider original
links and base the branching decisions on the usage of
an arc in A by a demand d ∈ D.
We derive our branching rule by observing that if

an arc flow variable has a fractional value, then there
must exist a node i ∈ N such that there are at least
two variables xd

p1 > 0, xd
p2 > 0 where s(p1) � s(p2) � i.

We call node i the root node. There are two possibili-
ties to consider. Either fractional path segments follow
the same route but stop at different regenerators or
there exists a node ı̄ after which these path segments
diverge. The first case is easy to handle since it can only
occur when xd

p1 and xd
p2 use different modulations (note

that if they use the same modulation, this fractional
solution cannot be an extreme point) and we can find
a partition M1 ,M2 of the modulation levels set such
that m(p1) ∈M1 and m(p2) ∈M2. Then we can gener-
ate a branching by restricting the modulation levels for
path segments that are utilized by demand d and orig-
inate from root node i. In one branch, we don’t allow
path segments to use modulation levels m ∈M1; in the
other branch, M2 modulations are not allowed. Such a

branching would not disturb the structure of the pric-
ing problem since we simply do not solve it for those
modulation levels banned for the current branch and
bound node. The second case is more complicated, and
we explain our branching policy in more detail. For
the distinct path-segments p1 and p2, starting with the
root node and inspecting one arc at a time, we can find
two different arcs a1 and a2 where s(a1)� s(a2)� ı̄. The
node ı̄ is called the divergence node. We denote the set
of arcs originating from ı̄ as A(ı̄) and let A(ı̄ , a1) and
A(ı̄ , a2) represent a partition of A(ı̄)where A(ı̄ , a1) con-
tains a1 and A(ı̄ , a2) contains a2. Let P(a) denote the set
of path-segments containing arc a ∈ A. Now consider
the following two sets of arc flow variables.

• X1 � {xd
p | s(p)� i , p ∈P(a) for some a ∈ A(ı̄ , a1)}

• X2 � {xd
p | s(p)� i , p ∈P(a) for some a ∈ A(ı̄ , a2)}

The main idea for the branching rule for the flow
variables follows from the observation that in the opti-
mal solution either arc flow variables in X1 or those in
X2 are all set to zero.

• Branching-cut-1 ∑
xd

p∈X1 xd
p � 0: In this case, the set

of arc flow variables in X1 are set to zero. Let i be the
root node and ı̄ be the divergence node. To force this
constraint in the following pricing problems, we sim-
ply remove arcs A(ı̄) from the arc set of the constrained
shortest path instances 〈Gd

m , i , j, ld
m , l ,∆

m〉 ∀m ∈ M,
d ∈ D and j ∈ N , where Gd

m is the input graph, i is the
origin node, j is the destination node, ld

m is the cost vec-
tor, and l is the resource vector. Similarly for Hk , we can
simply update ld

m(ē)�∞,∀ē ∈A(ı̄)when calculating the
lengths of the paths p ∈ Pk

(i , j) ∀ j ∈ N .
• Branching-cut-2 ∑

xd
p∈X2 xd

p � 0: The implementation
of this branching cut is analogous to the previous one.

2.4. Heuristic Solutions
The bulk of the columns generated in the branch-and-
price algorithm is actually obtained during the column
generation in the root node. Thus, solving the problem
with only those columns can provide a good heuris-
tic for RLP-FON. We call this heuristic H-Root and
apply it to obtain an initial feasible solution to reduce
the overall size of the branch-and-bound tree. Obvi-
ously, a similar procedure can be applied at any given
branch-and-bound node (other than the root node).
Indeed, during our implementation phase, at the end
of some definite intervals, we pause the branch-and-
price algorithm and try to find an integer solution with
the columns generated so far.

3. Insights to Problem Complexity
In this section, we investigate theoretical results about
the complexity of RLP-FON and its special cases in
an attempt to understand the challenges involved. We
start by presenting the computational complexity of
RLP-FON.
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Theorem 1. RLP-FON is NP-Hard.

Proof. Chen et al. (2009) prove that the RLP is NP-
Hard. The result follows from the observation that the
RLP is a special case of RLP-FON where

• only a single modulation level m is considered,
• regenerator usage cost η is zero,
• between any node pair (i , j) ∈N×N such that i < j,

the set D contains a demand di , j with a fixed trans-
mission rate (i.e., we have σ � v(d ,m) for each demand
d ∈ D),

• all of the links e ∈ E have capacities c(e) � (n ·
(n − 1)/2)σ. �

Establishing the computational complexity of RLP-
FON, the next question is to explore what makes this
problem hard. For most network problems, properties
of the input graph are important dimensions in an
answer to this question. For various well-known NP-
hard problems, there are polynomial time algorithms
to solve them if the input graph has some special struc-
ture. However, as we show by the next theorem, this
is not the case for RLP-FON, which retains its compu-
tational challenge even when we consider a tree as an
input graph.

Theorem 2. RLP-FON is NP-hard even if the input graph
is a tree.

Proof. We provide a polynomial time reduction that
transforms an arbitrary 0-1 knapsack instance into an
RLP-FON instance on a tree.

Consider a knapsack instance with n items of capac-
ity W with zi corresponding to the value and wi
corresponding to the weight of item i ∈ {1, . . . , n}
respectively. We construct an RLP-FON instance as
follows.

• N � {s , s̄ ,⋃n
i�1 ti ,

⋃n
i�1 t̄i},

• E � {{s , s̄},⋃n
i�1{s̄ , t̄i},

⋃n
i�1{ti , t̄i}},

• l(e)� 1 and c(e)� W ∀ e ∈ E,
• hs � h s̄ �∞, hti

� 0 and h t̄i
� zi for i ∈ {1, 2, . . . , n},

and η � 0,
• M � {1, 2} with ∆1 � 2 and ∆2 � 3,
• D � {1, . . . , n} where S(i) � s ,T(i) � ti for i ∈
{1, . . . , n},

• v(i , 1)� 0 and v(i , 2)� wi ,∀i ∈ {1, 2, . . . , n}.
Figure 2 depicts a small example of building the input
graph G for a given knapsack instance.
Note that, for the given RLP-FON instance, we have

two choices for each demand i ∈ D. We can either use
modulation level 2 and reach to the destination with-
out any regeneration but occupying wi number of slots
on the edge {s , s̄} or we can use modulation level 1
and reach to the destination by visiting a regenerator
at t̄ i and without consuming any bandwidth on the
edge {s , s̄}. Observing that it is always advantageous
to use modulation 2 and our freedom of using this

Figure 2. Depiction of a Small Transformation Example
with Three Knapsack Items 1, 2, and 3
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s t2

t3
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modulation is limited with the W capacity of the bot-
tleneck edge {s , s̄}, it is easy to see the relation between
the given knapsack problem and its RLP-FON trans-
formation. Item i for i ∈ {1, . . . , n} will be chosen in an
optimal solution of the knapsack problem if and only
if demand i in RLP-FON uses modulation level 2 in
an optimal solution for RLP-FON, and the RLP-FON
instance will have a solution of cost at most Z if and
only if the knapsack instance has a solution with value
at least ∑n

i�1 zi −Z. �

The number of transmission demands is another sig-
nificant dimension of the problem complexity. As we
see with the following two theorems, while there is
a polynomial time algorithm to solve RLP-FON when
we consider a single transmission demand, RLP-FON
is still a challenging problem even if we have only two
transmission demands.

Theorem 3. There is a polynomial time algorithm to solve
an RLP-FON instance with |D | � 1.

Proof. Let 〈G,D ,M, l , c , h , v , α, η〉 be an RLP-FON in-
stance with D � {d}. For each modulation level i ∈M,
we denote its feasible graph Gi � (N,Ei) as the subgraph
of G � (N,E) where Ei � {e ∈ E | v(d , i) 6 bc(e)αc}.
For each feasible graph Gi , consider the closure graph
Gc

i � (N,Ec
i ) . The notion of closure graph is introduced

by Chen et al. (2009) and used in Yildiz and Karasan
(2015). Namely, {i , j} ∈ Ec

i if and only if the length of
the shortest path from i to j in Gi is at most ∆i . Now
we define the united closure graph Gc � (N,Ec) where
Ec �

⋃µ
i�1 Ec

i .
Note that we can generate feasibility graphs and

solve all pairs shortest path problem on these graphs
to obtain their closure graphs in polynomial time. So
the generation of the united closure graph can be
accomplished in polynomial time. Let each edge in Ec

have cost η and node i ∈ N have cost hi . Solving a
node weighted shortest path problem on Gc from S(d)
to T (d) gives the optimal solution to the RLP-FON
instance. �

Theorem 4. RLP-FON is NP-hard even if |D | � 2.

Proof. We prove this theorem by showing that a
set partitioning problem can be reduced to an RLP-
FON instance with two transmission demands. Let
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Figure 3. Depiction of a Small Transformation Example for
S � {3, 9, 12}

1

1

2

2

3

3

4

0 0

3

0 0

9

0 0

12

S � {a1 , . . . , a |S |} where ∑|S |
i�1 ai is even be an arbitrary

instance of a set partitioning problem. We construct an
RLP-FON instance as follows.

• N � {⋃|S |i�1{i , ı̄}, |S | + 1},
• E � {⋃|S |i�1{i , ı̄},

⋃|S |
i�1{ı̄ , i + 1},⋃|S |i�1{i , i + 1}},

• l({i , ı̄})� l({ı̄ , i + 1} � 0 for i ∈ {1, . . . , |S |},
• l({i , i + 1})� ai for i ∈ {1, . . . , |S |},
• c(e)� 1 for e ∈ E,
• hi � 1 for i ∈ N , η � 0, α � 1,
• D � {1, 2}, S(1)�S(2)� 1 and T(1)�T(2)� |S |+1,
• M � {1} and ∆1 �

∑|S |
i�1 ai/2,

• v(1, 1)� v(2, 1)� 1.
In Figure 3, we present a small example of trans-

forming a set partitioning problem into an RLP-FON
instance with the desired properties.

Nowobserve that any solution to the given RLP-FON
instance will construct two edge disjoint light-paths,
say π1 and π2, for each connection demand in D. Let
S1 � {ai ∈ S: (i , ı̄) ∈ π1} and S2 � S\S1. Then the given
set partitioning instance has a solution if and only if
RLP-FON has a zero cost solution. �

3.1. Uncapacitated Edges
Obviously, having capacity limits for the edges
increases the difficulty of RLP-FON. Now we investi-
gate the case in which these constraints are relaxed. In
many studies motivated by different practical applica-
tions, uncapacitated edges are considered for regener-
ator/relay/refueling station placement (Yetginer and
Karasan 2003, Kuby and Lim 2005, Cabral et al.
2007, Pachnicke et al. 2008, Chen et al. 2009, Üster
and Kewcharoenwong 2011, Flammini et al. 2011,
Kewcharoenwong and Üster 2014, Yildiz and Karasan
2015, Chen et al. 2015, Yildiz et al. 2016). We denote
this problem as RLP-FON-U. Note that, once the edge
capacities are relaxed, we can find the optimal rout-
ing by using only the lowest modulation level that can
transmit signals furthest since occupying more band-
width is not an issue when the capacity limits are not
considered for the edges. However, such a simplifica-
tion does not make the problem an easy one. Indeed,
RLP is a special case of RLP-FON-U in which all nodes
are required to communicate with each other and the
regenerator usage cost η is assumed to be zero. Thus,
RLP-FON-U is also NP-hard.
Depending on the application area, one of the

two costs—regenerator placement or usage costs—may

dominate the overall cost. Now we first consider the
case where the regenerator placement costs are neg-
ligible and show that there exists a polynomial time
algorithm to solve this special case.

Theorem 5. There exists a polynomial time algorithm to
solve an instance 〈G,D , l , h , η〉 of RLP-FON-Uwhere hi �0
for each i ∈ N .

Proof. By solving an all pairs shortest path prob-
lem on G and considering the reach limit ∆1, we
can easily generate a closure graph with edge lengths
all equal to regeneration cost η. Then solving the
RLP-FON-U instance entails finding the shortest path
from S(d) to T (d) on this closure graph for each de-
mand d ∈ D. �

The second case we investigate is the one for which
the regenerator placement costs dominate the total
cost. Unlike the previous case, this time RLP-FON-U
remains an NP-Hard problem. So we consider spe-
cial network topologies (i.e., path and ring networks)
for which we can present interesting characterizations
for the optimal solutions and attain polynomial time
algorithms.

Considering a special case of RLP-FON-U by assum-
ing unit costs for the regenerator placement, unit edge
lengths, and fixed routes for OD pairs, Flammini et al.
(2011) show that there exist polynomial time algo-
rithms to solve path (line) and ring network topolo-
gies. Now we show that these results can be extended
even when unit cost and fixed route assumptions are
relaxed.

Although path networks are seldom used in real-
world applications, investigating properties of the opti-
mal solutions for these networks can be quite useful in
developing solution algorithms for general networks.
Consider an RLP-FON-U instance 〈G,D , l , h , η〉 where
the input graph G � (N,E) is a path (line). Assume
without loss of generality that the nodes are labelled
from 1 to n such that {i , j} ∈ E if and only if |i − j | � 1.
For i 6 j, let [i , j] � {k ∈ N | k 6 j and i 6 k} be the set
of nodes lying in the interval from i through j in this
ordering. Since G is undirected, without loss of gener-
ality, we may assume that S(d) < T (d) with respect to
this ordering for each d ∈ D.

Lemma 1. Consider an RLP-FON-U instance 〈G, D, l,
h , η〉 where η � 0 and D � {1, 2}. If [S(2),T(2)] ⊂
[S(1),T(1)], then solving the problem for only D � {1} pro-
vides the optimal solution for D � {1, 2}.
Proof. It is clear that a subset of the regenerator loca-
tions enabling a feasible light-path from S(1) to T(1)
with ∆1 reach limitation will enable a feasible light-
path from S(2) to T(2) as well. �

Lemma 2. Consider an RLP-FON-U instance 〈G, D, l,
h , η〉 where η � 0 and D � {1, 2}. If [S(1),T(1)] ∩
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[S(2),T(2)]��, then it is possible to attain an optimal solu-
tion by solving the single demand subproblems individually.

Proof. Let R1 and R2 be the regenerator locationswhen
solving the given RLP-FON-U instance with D � {1}
and D � {2}, respectively. It is clear that R1∪R2 will be
an optimal solution for D � {1, 2}. �
Lemma 3. Consider an RLP-FON-U instance 〈G, D, l,
h , η〉 where η � 0 and D � {1, 2}. Assume [S(1),T(1)] ∩
[S(2),T(2)],�, [S(1),T(1)]1 [S(2),T(2)], [S(2),T(2)]1
[S(1),T(1)], and S(1) < S(2). Then one of the following
must hold.

• Solving the single demand subproblems individ-
ually will provide an optimal solution for the original
problem,

• Solving the single demand subproblem from S(1)
to T(2)will provide an optimal solution for the original
problem.

Proof. Let R be an optimal solution of the RLP-FON-U
instance. There are two cases to consider.

• Case-1: There are two feasible light-paths connect-
ing S(1) to T(1) and S(2) to T(2) visiting nonintersect-
ing sets of regenerators. In this case, it is clear that the
first claim holds.

• Case-2: Any two light-paths connecting S(1) to
T(1) and S(2) to T(2) in an optimal solution share at
least one regenerator. Let r be such a shared regen-
erator. It is clear that nodes S(1),S(2),T(1) and T(2)
all have feasible light-paths to connect to r. Let π1
and π2 be the light-paths through which nodes S(1)
and T(2) connect to r. Then the light-path π � (π1 , π2)
is a feasible one that connects S(1) to T(2) as desired.
By Lemma 1, the regenerator locations on π provide
feasible light-paths for both demands. �

Theorem 6. There is a polynomial time algorithm to solve
an RLP-FON-U instance 〈G,D , l , h , η〉, if η � 0 and the
input graph G is a path.

Proof. Without loss of generality, assume that the
demand set cannot be partitioned into nonoverlap-
ping intervals; otherwise, one can solve the problem
by solving the disjoint intervals independently as sug-
gested by Lemma 2. In a similar fashion, assume that
[S(d),T (d)] 1 [S(d′),T(d′)] for distinct d , d′ ∈ D since
otherwise demand d can be ignored without loss of
generality using Lemma 1. Assume the demands are
ordered such that S(1) <S(2) < · · · <S(δ).
Let Z(i), i � 1, 2, . . . , δ be the optimal solution value

of the RLP-FON-U instance 〈Gi ,Di , l , h , η〉 where Gi �

[S(δ− i + 1),T(δ)] and Di � D\⋃δ−i
j�1{ j}, i.e., Z(i) is the

optimal solution of the problem considering only the
last i demands in D. In particular, Z(δ) is the opti-
mal solution value for 〈G,D , l , h , η〉. We also define
Z̄(i) as the optimal solution value of the RLP-FON-U
instance considering the single OD pair (S(1),T(i)).
Finally, let T(i∗) ∈ {T(1),T(2), . . . ,T(n)} be the largest

index node that S(1) would have a feasible light-path
in an optimal solution of 〈G,D , l , h , η〉. Now observe
that for 〈G,D , l , h , η〉, adding an artificial demand d∗ �
(S(1),T(i∗)) to D does not change the optimal solution
and at the presence of d∗ we can disregard demands
i 6 i∗ since they are all dominated by it. Moreover, the
fact that S(1) cannot reach nodes T(i), i > i∗ in an opti-
mal solution implies that none of the demands i > i∗

uses a regenerator that could be reached by S(1) via
a feasible light-path since otherwise S(1) could reach
T(i) first reaching the shared regenerator. So we have

Z(δ)�
{

Z̄(i∗)+Z(δ− i∗), if i∗ < δ,
Z̄(δ), if i∗ � δ.

(9)

Since we have only δ possible values for i∗, and
Z̄(1),Z(1) can both be calculated in polynomial time
by Theorem 3, a dynamic programming algorithm can
find Z(δ) in polynomial time by recursively calculating
Z(i) for each i < δ. �

In telecommunications, ring networks are pervasive
as cost-effective and easy-to-implement solutions to
protect network traffic against edge and node failures
(Vachani et al. 1996). As minimal cycles, they have
interesting properties from a theoretical perspective
as well. So we pay a special attention to these net-
works and present two important results regarding the
RLP-FON-U.

Let G � (N,E) represent a ring. For a pair of nodes a
and b on this ring, let the interval [a , b] depict the path
starting from a and traversing the ring in a clockwise
manner to reach node b. Let 〈G,D , l , h , η〉 be an RLP-
FON-U instance where η � 0, the input graph G is a
ring, and R is the set of regenerator locations in an
optimal solution. Consider the graph T � (R, Ē) where
Ē � {{i , j}: i and j are two consecutive nodes of R on G
with clockwise distance at most ∆1}.

Proposition 1. The graph T is a forest.

Proof. Assume to the contrary that Ē includes a cycle.
Let r ∈ R be a regenerator node. Let r1 and r2 be the
neighbors of r in the clockwise and counter-clockwise
directions on the ring. Any node i in N which commu-
nicates through r will communicate through either r1
or r2; thus, removal of r will not spoil feasibility which
contradicts the optimality of R. �

Theorem 7. There is a polynomial time algorithm to solve
an RLP-FON-U instance 〈G,D , l , h , η〉 when the input
graph G is a ring and η is zero.

Proof. For the sake of simplicity, and without loss of
generality, we assume that there are at least four regen-
erator locations in any optimal solution. Note that if
this is not the case, one can find an optimal solution
by a simple enumeration since the feasibility of a given
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regenerator set can be checked in polynomial time. We
also assume that there is no OD pair in D with short-
est path distance less than or equal to ∆1 since it could
simply be omitted from D without loss of generality.
Let Y∗ be the value of the optimal solution for the prob-
lem instance 〈G,D , l , h , η〉 and R the collection of sets
of feasible regenerator locations for this instance.
Let i , j ∈N be such that the length of the interval [i , j]

denoted as l[i , j] is larger than∆1.We name nodes i and j
as detachment and attachment nodes, respectively.
Considering the demand set D[i , j] � {(i , j)} with the
single OD pair (i , j) and the path graph G[i , j] derived
from G by removing all of the edges on [i , j], we obtain
the reduced problem instance 〈G[i , j] ,D[i , j] , l , h , η〉 for
which we denote the optimal regenerator locations
as R[i , j]. We define

Ȳ[i , j] �

{∑
i∈R[i , j]

hi , if R[i , j] ∈R,
∞ otherwise.

(10)

Note that if T is a tree, then Y∗ � mini , j∈N Ȳ[i , j].
If T is a forest with more than one disconnected

trees, then there exist two sets of detachment–attach-
ment nodes (i , j), (l ,m) that we can visit i , j, l ,m
when traversing G in the clockwise direction. Let
〈G[i , j] ,D1

[i , j][l ,m] , l , h , η〉 and 〈G[i , j] ,D2
[i , j][l ,m] , l , h , η〉 be

two RLP-FON-U instances where the demand set
Dk
[i , j][l ,m] , k � 1, 2 initially set to D is updated as follows.

For an OD pair (s , t), s ∈ [i , j], if (s , t) can reach each
other using i , j, l or m as a regenerator, we remove it
from Dk

[i , j][l ,m] , k � 1, 2. If this is not the case, we proceed
as follows.

• If s can reach only one of the regenerators, say i,
we replace (s , t)with (i , t) in Dk

[i , j][l ,m] , k � 1, 2
• If s can reach both i and j,
—if t ∈ [m , i], we replace the OD pair (s , t) with

(i , t) in Dk
[i , j][l ,m] , k � 1, 2 (similarly we replace it with

( j, t) if t ∈ [ j, l])
—if t < [m , i] and:
∗ t can reach only one of the regenerators, say

m, we replace (s , t)with (i ,m) in Dk
[i , j][l ,m] , k � 1, 2

∗ t can reach both regenerators l and m, we
replace (s , t) with (i ,m) and ( j, l) in D1

[i , j][l ,m] and
D2
[i , j][l ,m], respectively.
Now let Rk

[i , j][l ,m] be the optimal regenerator locations
for the problem instances 〈G[i , j] ,Dk

[i , j][l ,m] , l , h , η〉, k �

1, 2, respectively. We define

Ȳk
[i , j][l ,m] �

{∑
i∈Rk
[i , j][l ,m]

hi , if Rk
[i , j][l ,m] ∈R,

∞ otherwise.
(11)

Let Ȳ[i , j][l ,m] � mink�1,2 Ȳk
[i , j][l ,m]. Then it is clear that if T

is a forest with more than one tree, we have Y∗ �
min{Ȳ[i , j][l ,m] | i , j, l , m ∈ N , l[i , j] > ∆

1 and l[l ,m] > ∆1}.

By Proposition 1, it must be the case that T is a
single tree or a forest with more than one discon-
nected trees. We have shown that for each case, we can
enumerate a polynomially bounded number of RLP-
FON-U instances on path networks, O(|N |2) for the
single tree case and O(|N |4) for the forest case, and
find the optimal solution. Hence, the result follows by
Theorem 6. �

3.2. Computational Performance of the
Branch-and-Price Algorithm for Special
Problem Instances

In this subsection, we investigate the computational
performance of our branch-and-price algorithm on
some special problem instances. In the first part, we
present some problem instances for whichwe can put a
theoretical performance guarantee for our pricing algo-
rithm; in the second part, we propose a useful optimal-
ity cut to improve the PS formulationwhen regenerator
usage costs are assumed to be negligible.
3.2.1. Ring Networks. In many practical settings, ring
networks are quite common in telecommunications.
For these networks our Hk heuristic can solve the
pricing problem exactly when k � 2. This is simply
due to the fact that in these networks, there could be
at most two different simple paths that connect any
two nodes. Since the computational complexity of our
heuristic solution approach is O(kn(|A| + n log n) +
n2 |D |µ), we can solve the pricing problem in polyno-
mial time. Obviously, for any network where the num-
ber of feasible path-segments between any two nodes
is bounded by some positive integer K (such as path
and tree networks), HK can solve the pricing problem
exactly in polynomial time. Moreover, since we solve
the K-shortest path problem just once in the beginning,
such a computational efficiency can boost the perfor-
mance of the branch-and-price algorithm significantly.
3.2.2. Networks with Equal Edge Lengths. Optical or
electrical signals do not lose their quality just traveling
long distances, they also deteriorate when they pass
through a switch, router, or any other network device
represented as a node. So especiallywhen the distances
between the network nodes are not large, the main
concern becomes the number of nodes a signal vis-
its instead of the total distance it travels. Considering
this situation, there is a wide stream of RLP literature
which considers the number of hops as the reach con-
straint instead of the distance travelled (Ramamurthy
et al. 1999, Huang et al. 2005, Cardillo et al. 2006,
Zsigmond et al. 2007, He et al. 2007, Pachnicke et al.
2008, Manousakis et al. 2009). Note that considering
such hop constraints is equivalent to having equal edge
lengths in the input graph and using the reach limit as
usual. For this case, solving the pricing problem can
be accomplished in polynomial time by iterating the
Bellman–Ford shortest path algorithm on the pricing
graph as many times as the allowed number of hops.
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3.2.3. Strengthening the PS Formulation. In this part,
we present a cut to tighten the LP lower bound and
improve the strength of the branching cuts specifically
for r variables when the regenerator usage cost η is
assumed to be zero.

Definition 3. A node i ∈ N is called an internal node of
path-segment p if it is visited by p and it is neither the
source nor the destination node of p. The set of path-
segments that contain a node i as an internal node is
denoted by P(i).
Proposition 2. Let (x , r) be a feasible solution of an RLP-
FON instance. If there exists a node i ∈ N for which ri � 1
and i is an internal node of a path-segment p such that
xd

p � 1 for some d ∈D, then there exists an alternative feasible
solution (x̄ , r) which satisfies the following conditions.

• i is not an internal node of any path-segment p
that satisfies x̄d

p � 1 for some d ∈ D,
• for each arc ē ∈ A the number of slots occupied by

the solution (x̄ , r) is less than or equal to that of (x , r).
Proof. Let (x , r) be a feasible solution of an RLP-FON
instance and assume ri � 1 and i is an internal node of
a path-segment p � (p1 , p2) where t(p1) � s(p2) � i. Let
D̄ � {d ∈ D | xd

p � 1}. Assume D̄ is not empty.
Since l(p) > l(p1) and l(p) > l(p2), we can choose

m(p1) > m(p) and m(p2) > m(p). Now we modify x
by setting xd

p � 0 and xd
p1 � xd

p2 � 1 ∀ d ∈ D̄ and obtain
the vector x̄. By our assumption, we have ri � 1 and
rt(p) � 1. Thus, replacing x with x̄ does not necessitate a
change in the number and location of regenerators. The
same will be true if t(p) � T (d) holds as well. More-
over, m(p1) > m(p) and m(p2) > m(p) implies that p1

and p2 utilize optical bandwidth more efficiently and
the amount of bandwidth slots used by (x̄ , r) is less
than or equal to the one used by (x , r). Since i was
arbitrary and this procedure can be repeated as many
times as needed, the result follows. �

By Proposition 2, the following is an optimality cut
for PS. ∑

d∈D ,
p∈P(i)

xd
p 6 K(1− ri), ∀ i ∈ N, (12)

where K is a large number.
The proposed cut forces that if a node i ∈N is chosen

as a regeneration node (i.e., ri � 1), none of the path-
segments utilized by a positive x variable should con-
tain i as an internal node. The modified formulation
containing (12) is denoted as PS. Note that choosing
K � bc(e∗) × αc, where e∗ is the highest capacity edge,
is sufficient to assure the validity of the cut, since each
path-segment xd

p occupies at least 1 bandwidth slot.
In a branch-and-price framework, adding cuts to the

model requires special attention since maintaining the
structure of the pricing problem is crucial to retaining
tractability of the solution approach. In our case, we

can easily modify the reduced cost calculations and
preserve the special structure of the pricing problem
as follows.

Let θi , i ∈N be the dual variables associated with the
constraints (12) in PS and po denote the set of internal
nodes of a path-segment p. With the following modifi-
cations, solution of the pricing problem for PS follows
exactly the same steps explained in Subsection 2.3.1.

• The reduced cost calculation (7) is changed as:

c̄d
p �



πd
t(p)−πd

s(p)+
∑
e∈p̄

v(d ,m)κe +
∑
i∈po

θi ,

if t(p)�T (d),

πd
t(p)−πd

s(p)+
∑
e∈p̄

v(d ,m)κe +
∑
i∈po

θi +γ
d
t(p) ,

if t(p),T (d).

(13)

• The length function for the pricing graph ld
m(e) is

modified as

ld
m(ē)�

{
v(d ,m)κe + θi , if t(ē) ∈ po ,

v(d ,m)κe , o.w.
(14)

The main function of the cut (12) is not to raise
the LP bound in the root node; it helps to speed up
the solution procedure by reinforcing the strength of
the branching cuts that remove the fractional solutions
for the regeneration variables r. This is because when
a variable ri is set to its upper bound one, variables
xp

d , ∀ d ∈ D and p ∈ P(i) are all forced to zero with the
presence of the constraints (12). As such, we need to
modify our branching rule for the Branching-cut-2 as
follows.

• Branching-cut-2 ri � 1: In this case, the set of arc
flow variables X̄i � {xd

p | d ∈ D , p ∈ P and i ∈ po} are
implicitly set to zero. To make sure that any path-
segment xd

p ∈ X̄i would not appear as a solution of the
pricing problem,we can simply remove the node i from
all of the pricing graphs where i is neither the source
nor the sink node. Similarly for Hk , we can update
ld

m(ē) �∞, ∀ ē ∈ {a ∈ A | s(a) � i ,T (d) , i and S(d) , i}
and implement the algorithm without any change.

4. Numerical Experiments
Extensive numerical experiments are conducted to
both test the performance of the proposed solution
methodology and derive insights from the instances
closely representing the real-world problems. We
implemented the branch-and-price algorithm using
Java under Linux and CPLEX 12.4. All experiments are
done on an AMD Opteron Processor 6282 SE machine
with 2 GB RAM.
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Table 2. Topological Parameters

Node degree Edge length (km)

Network #nodes #edges Min Max Mean Min Max Mean

NSF 14 21 2 4 3 312 3,408 1,299.1
COST-266 28 41 2 5 2.9 218 1,500 625.4

4.1. Network and Traffic
For our experiments, we studied two well-known net-
work topologies from the literature: NSF-US network
(Figure 4(a)) and COST-266 Pan European network
(Figure 4(b)) (Hulsermann et al. 2004). Table 2 presents
the topological parameters of these networks. In this
table, for each optical network, we denote the mini-
mum (min), maximum (max), and average (mean) val-
ues for the node degrees and physical edge lengths in
kilometers.
For both network topologies, we studied problem

instances with 75, 100, 125, and 150 number of trans-
mission demands. For each connection, the demanded
data transfer rate (DTR) is assumed to be a uniform
random variable that attains values of 10, 40, 100, and
400 Gbps. For each demand, we randomly choose an
origin–destination (O-D) pair among all possible node
pairings. For the O-D pair selection, we investigate two
cases: uniform distribution (U) and traffic density distribu-
tion (TD). In the first case, all pairs have equal probabil-
ity, whereas in the second case, the probability of a pair
is assumed to be proportional to its IP traffic volume as
reported in Hulsermann et al. (2004).
Abidingby thegeneral approach in theRLP literature

(Kim and Seo 2001, Yetginer and Karasan 2003, Pach-
nicke et al. 2008, Chen et al. 2009, Kewcharoenwong and
Üster 2014, Duarte et al. 2014, Yildiz and Karasan 2015,
Chenetal. 2015), we assumed η� 0 and considered unit
cost for the regenerator placement. There are mainly
two practical reasons for such an approach. The first
one is the high set up and maintenance costs of regen-
eration sites for OEO regenerators (Yang and Rama-
murthy 2005, Wang et al. 2015). Thus, placement and
operation of such a regenerator site ismuchmore costly
when comparedwith the addition of an extra regenera-
tor slot in an existing site. Secondly, once a regenerator
site is deployed on a node, it is very costly to relo-
cate it. Thus, as a strategic level problem, RLP is more
concerned about the locations of the regenerator sites
rather than the number of regenerator devices in each
site. Moreover, as we have shown in the previous sec-
tion, the problem gets harder under the cost structure
when the regenerator placement costs are dominant.

4.2. Fiber and Modulation Level Parameters
Cables are assumed to be nonzero dispersion-shifted
fiber (NZDSF) and four modulation formats are
considered: BPSK, QPSK, 8-QAM, and 16-QAM. The
number of frequency slots per fiber is 360 (Klinkowski

Table 3. Modulation Level Parameters

DTR (Gbps)
Modulation
format (m) ∆m (km) 10 40 100 400

BPSK (1) 2,880 2 4 8 32
QPSK (2) 1,080 2 2 4 16
8-QAM (3) 630 2 2 4 12
16-QAM (4) 270 2 2 2 8

2012), and Table 3 shows the optical reaches (∆) (Bosco
et al. 2011) and the number of slots required by each
modulation format (Klinkowski 2012).

We generated problem instances with six different α
values from the set C � {αmin , 0.2, 0.4, 0.6, 0.8, 1} where
the value αmin represents the smallest α value forwhich
the problem is feasible with the given set of parame-
ters. Since the problem has no solution for α < αmin,
for each problem setting, we studied α ∈ C such that
α > αmin.
There are two main motivations to generate prob-

lem instances with the minimum bandwidth alloca-
tion (i.e., α � αmin). From the algorithmic point of view,
as our numerical results will attest, problem instances
with the limited arc capacities are harder to solve,
and those hard problem instances are required for a
comprehensive performance test of algorithmic effi-
ciency. On the other hand, from the managerial per-
spective, αmin constitutes an upper bound on the spec-
trum efficiency in a network. Thus, it is interesting to
solve problem instances with the minimum α values to
see the trade-off between the number of regenerators
and bandwidth utilization efficiency. Indeed, finding
the αmin value for each problem setting is an optimiza-
tion problem in its own right. Thus, we solve the fol-
lowingMIP for finding theminimum α value forwhich
the problem stays feasible when deploying regenera-
tors at each node of the network.

min αmin (15)

s.t.
∑̄
e∈A:

s(ē)�i

xd
ē −

∑̄
e∈A:

t(ē)�i

xd
ē �


1, if i�S(d)
−1, if i�T (d)
0, otherwise,

∀ i∈N,d∈D , (16)∑
d∈D

v(d ,m∗ē)(xd
ē +xd

¯
e )6c(e)×αmin , ∀e∈E, (17)

xd
ē ∈{0,1}, ∀d∈D , ē∈A. (18)

The above formulation assumes that each node in the
network has the regeneration capacity. The objective
is to minimize the αmin value for the given problem
instance.Constraints (16) are theflowbalanceequations
that force each demand to be carried from its source to
itsdestination.Thedecisionvariable xd

ē attains thevalue
one if the route for the demand d ∈ D includes the arc
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Figure 4. Network Topologies; Link Lengths in km
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ē ∈ A andzerootherwise.Constraints (17) are the capac-
ity constraints which ensure that the total number of
slots occupied is not more than the maximum allowed.
For each arc ē ∈ A, the best modulation m∗ē is defined
as the highest modulation level which has an optical
reach larger than or equal to the length of the arc. We
have m∗ē � m∗

¯
e since l(ē)� l(

¯
e)� l(e). Also note that m∗ē is

indeed themost spectrum-efficient feasiblemodulation

since higher modulation levels can transmit more data
with less number of bandwidth slots. Constraints (18)
are the variable restrictions.

4.3. Implementation Details
Before presenting the results of the numerical exper-
iments, we briefly state the implementation details of
the proposed algorithm.
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Table 4. Results for COST-266 Network with Uniform Demand Distribution

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

75 1 0.23 3.00 8 37 8 7 3,600 410 21,765 53.3 5 6 9 14 15 20 23 24
0.40 1.50 2 14 2 2 19 0 9,819 21.3 4 14
0.60 1.50 2 4 2 2 7 0 4,102 24.0 5 17
0.80 1.50 2 3 2 2 6 0 4,242 26.7 5 17
1.00 1.50 5 4 2 2 12 6 5,253 21.3 4 27

2 0.27 2.52 5 38 5 5 223 29 18,845 49.3 5 6 20 23 25
0.40 1.50 2 35 2 2 43 0 14,167 33.3 5 23
0.60 1.50 2 6 2 2 9 0 4,674 40.0 4 5
0.80 1.50 2 4 2 2 7 0 4,385 52.0 4 5
1.00 1.50 2 3 2 2 6 0 4,070 21.3 5 17

3 0.13 2.62 6 33 6 6 353 73 18,049 49.3 3 5 14 15 20 24
0.20 1.50 3 21 2 2 168 75 15,224 21.3 3 24
0.40 1.50 2 3 2 2 6 0 3,846 21.3 10 20
0.60 1.50 4 4 2 2 12 7 6,028 10.7 3 13
0.80 1.50 4 4 2 2 12 7 5,983 32.0 4 5
1.00 1.50 2 1 2 2 5 0 5,334 4.0 9 16

4 0.16 6.04 12 52 12 11 3,600 3,777 9,754 57.3 3 4 5 6 10 13 14 15 16 20 24 27
0.20 2.70 6 48 6 6 868 113 22,633 52.0 5 14 16 22 24 26
0.40 1.50 2 5 2 2 8 0 5,265 41.3 4 5
0.60 1.50 2 3 2 2 6 0 4,617 8.0 4 13
0.80 1.50 2 2 2 2 5 0 4,027 37.3 5 14
1.00 1.50 2 2 2 2 4 0 4,363 1.3 9 14

5 0.29 1.50 2 23 2 2 34 0 14,597 20.0 23 24
0.40 1.50 2 10 2 2 13 0 6,153 9.3 14 26
0.60 1.50 2 3 2 2 6 0 4,857 6.7 9 20
0.80 1.50 4 4 2 2 13 6 6,258 37.3 23 28
1.00 1.50 2 4 2 2 7 0 4,341 30.7 5 17

100 1 0.26 5.73 11 204 10 10 414 75 14,752 53.0 3 4 5 6 9 14 15 20 23 24
0.40 1.50 3 55 3 2 168 10 22,279 32.0 5 22 24
0.60 1.50 2 4 2 2 10 0 6,127 16.0 13 23
0.80 1.50 3 6 2 2 30 14 7,591 15.0 10 14
1.00 1.50 2 9 2 2 14 0 6,410 26.0 5 19

2 0.33 3.66 6 66 6 6 363 26 22,108 40.0 5 6 9 20 23 24
0.40 1.63 3 134 3 3 224 4 22,460 34.0 5 23 25
0.60 1.50 7 14 2 2 99 75 13,323 23.0 5 20
0.80 1.50 7 11 2 2 28 5 8,586 24.0 4 25
1.00 1.50 8 9 2 2 29 9 8,213 20.0 11 20

3 0.19 4.20 8 54 8 7 3,600 1,590 21,501 55.0 4 5 6 14 15 20 23 24
0.20 3.01 7 44 6 6 482 75 25,693 46.0 4 5 6 20 23 25
0.40 1.50 2 17 2 2 27 0 13,523 15.0 10 23
0.60 1.50 4 8 2 2 25 6 8,278 14.0 3 9
0.80 1.50 7 7 2 2 22 5 9,245 24.0 14 24
1.00 1.50 4 7 2 2 20 5 8,211 18.0 3 14

4 0.21 6.76 12 69 12 11 3,600 1,701 20,007 56.0 4 5 6 9 13 14 15 16 20 22 24 25
0.40 1.50 2 29 2 2 44 0 17,230 14.0 4 15
0.60 1.50 2 7 2 2 12 0 6,200 22.0 14 24
0.80 1.50 3 5 2 2 22 6 7,544 14.0 6 15
1.00 1.50 3 8 2 2 21 4 7,423 33.0 23 24

5 0.32 2.07 5 58 4 4 956 75 32,616 48.0 5 20 23 24
0.40 1.50 3 60 2 2 356 75 23,494 26.0 23 24
0.60 1.50 2 5 2 2 11 0 6,182 13.0 9 23
0.80 1.50 2 5 2 2 10 0 6,455 11.0 1 24
1.00 1.50 5 7 2 2 29 11 8,414 25.0 10 23

For each problem instance, we run H-Root to find
an initial feasible solution and repeat this procedure at
every 75 branch-and-bound nodes to improve the cur-
rent solution at hand. As we present in the following
section, our numerical experiments show that H-Root
can produce very high-quality solutions and boosts
the performance of the branch-and-price algorithm
drastically.

For the exact solution of the pricing problem, we
employed the state-of-the art algorithm proposed by
Santos et al. (2007) (Alg 3 by their notation). As a sub-
routine, Alg 3 requires the solution of several k-shortest
path problems, and the authors use the algorithm
presented in de Azevedo et al. (1994) for this task.
Although very efficient, this algorithm can produce
nonsimple paths and performs rather poorly in our
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Table 4. (Continued)

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

125 1 0.32 4.63 9 66 9 9 191 26 18,262 57.6 4 5 6 9 14 15 20 22 24
0.40 1.78 4 87 4 4 687 28 37,169 44.0 5 15 23 24
0.60 1.50 3 36 2 2 193 75 22,814 16.0 3 24
0.80 1.50 4 11 2 2 88 75 12,872 18.4 23 24
1.00 1.50 6 11 2 2 49 15 13,058 34.4 5 20

2 0.40 2.98 6 216 6 5 3,600 551 35,617 48.0 3 5 6 15 23 24
0.60 1.50 3 151 2 2 435 75 29,420 28.0 3 5
0.80 1.50 8 22 2 2 146 75 16,685 9.6 11 14
1.00 1.50 2 7 2 2 15 0 8,626 26.4 5 15

3 0.23 4.25 9 44 8 8 589 75 32,706 54.4 4 5 6 7 14 20 23 25
0.40 1.50 2 43 2 2 65 0 21,391 17.6 14 24
0.60 1.50 3 15 2 2 54 19 11,774 16.8 4 14
0.80 1.50 7 10 2 2 36 7 11,457 23.2 23 24
1.00 1.50 8 11 2 2 27 4 9,321 17.6 4 27

4 0.29 5.68 11 58 10 10 352 75 20,767 55.2 4 5 6 13 14 15 16 22 24 26
0.40 1.79 4 107 4 4 814 33 35,450 44.0 3 5 14 24
0.60 1.50 2 34 2 2 45 0 15,497 19.2 14 23
0.80 1.50 5 23 2 2 60 19 10,327 18.4 24 28
1.00 1.50 5 8 2 2 29 9 9,626 26.4 5 28

5 0.37 2.65 6 86 6 6 1,809 146 43,467 52.0 5 14 19 20 23 25
0.40 2.13 4 80 4 4 362 11 30,128 47.2 5 20 23 24
0.60 1.50 3 63 2 2 329 75 26,272 28.8 23 24
0.80 1.50 2 5 2 2 13 0 7,728 24.0 5 23
1.00 1.50 4 15 2 2 45 7 10,982 44.0 4 5

150 1 0.36 4.50 8 62 8 8 205 21 16,932 54.0 4 5 6 14 15 20 23 24
0.40 2.35 5 69 5 5 254 18 30,980 45.3 3 5 14 15 24
0.60 1.50 2 63 2 2 90 0 24,709 32.7 4 5
0.80 1.50 3 42 2 2 185 75 17,660 12.0 6 14
1.00 1.50 4 11 2 2 136 75 14,450 6.0 17 24

2 0.49 2.92 6 156 5 5 1,800 75 48,989 32.7 5 6 9 23 24
0.60 1.61 3 163 3 3 361 5 40,331 22.7 4 6 24
0.80 1.50 2 40 2 2 58 0 16,952 22.7 3 5
1.00 1.50 2 10 2 2 23 0 10,800 6.7 4 27

3 0.31 3.58 6 257 6 6 572 33 32,811 34.7 3 5 6 9 15 24
0.40 1.54 3 95 2 2 542 75 34,671 28.0 5 23
0.60 1.50 2 49 2 2 66 0 20,486 19.3 20 24
0.80 1.50 8 20 2 2 156 75 16,714 6.0 3 13
1.00 1.50 6 24 2 2 105 36 16,419 20.0 3 10

4 0.36 5.41 9 199 9 9 283 13 15,145 48.0 3 4 5 6 13 14 15 20 24
0.40 2.94 6 303 6 6 706 46 36,044 50.7 4 5 13 15 20 24
0.60 1.50 3 112 2 2 338 75 32,311 26.7 5 23
0.80 1.50 3 23 2 2 115 62 17,032 35.3 5 23
1.00 1.50 2 24 2 2 35 0 12,711 26.7 3 5

5 0.38 3.47 7 56 7 7 601 64 42,469 54.0 4 5 13 14 16 20 23
0.40 2.99 6 80 6 6 849 62 44,329 42.0 5 14 16 20 23 24
0.60 1.50 3 157 2 2 564 75 37,924 25.3 24 28
0.80 1.50 5 28 2 2 167 75 18,406 16.0 3 28
1.00 1.50 6 25 2 2 162 75 16,697 25.3 23 28

pricing graph instances that can include arcs with zero
length. Therefore, different than Santos et al. (2007), we
implemented Yen’s loopless k-shortest path algorithm
(Yen 1971) as a subroutine in Alg 3.
Our preliminary results have shown that for all of

the problem instances we have studied, employing
heuristic Hk has been very useful to reduce solution
times. For some problem instances (mostly for those
with αmin in COST-266 network), we were not able
to find the optimal solution within the time limit
of one hour unless we apply Hk . Since the 4th and

15th shortest loopless paths between any two nodes
of the NSF and COST-266 networks, respectively, have
lengths more than the optical reach of the BPSKmodu-
lation (2,880 km), the pricing problem is solved exactly
by the heuristics H4 and H15. Hence, as the solution of
the pricing problem, we use H4 and H15 for NSF and
COST-266 networks, respectively.

We conduct a best bound search to explore the
branch-and-bound tree. Although this strategy can-
not explore as many nodes as the depth first search
strategy, our computational studies showed that it can
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Table 5. Results for COST-266 Network with Traffic Density Demand Distribution

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

75 1 0.18 5.17 10 33 10 10 218 42 14,669 50.7 1 3 5 6 7 14 15 20 21 22 24
0.20 3.26 6 41 6 6 189 18 17,946 52.0 3 5 6 20 23 24
0.40 1.50 2 10 2 2 16 0 11,138 16.0 9 28
0.60 1.50 2 3 2 2 7 0 6,072 28.0 23 26
0.80 1.50 3 4 2 2 18 8 6,596 20.0 16 24
1.00 1.50 3 2 2 2 12 5 6,711 18.7 4 14

2 0.14 5.64 12 21 11 10 3,600 4,528 9,385 49.3 3 4 5 14 15 16 20 21 23 24 26
0.20 1.76 4 47 4 3 3,600 1,088 22,945 42.7 3 5 22 24
0.40 1.50 2 3 2 2 6 0 4,202 16.0 17 24
0.60 1.50 2 2 2 2 6 0 4,725 0.0 9 21
0.80 1.50 2 2 2 2 5 0 4,087 21.3 24 28
1.00 1.50 2 2 2 2 6 0 4,192 17.3 4 14

3 0.15 3.57 9 40 8 8 262 75 14,120 53.3 3 4 5 14 15 20 22 24
0.20 1.70 4 33 4 4 237 33 20,547 38.7 3 5 22 24
0.40 1.00 1 2 1 1 6 0 5,976 12.0 3
0.60 1.00 1 2 1 1 5 0 4,601 22.7 3
0.80 1.00 1 2 1 1 5 0 4,811 20.0 3
1.00 1.00 1 2 1 1 5 0 4,023 21.3 3

4 0.28 3.07 6 36 6 6 143 20 13,670 38.7 3 5 14 16 20 23
0.40 1.54 3 45 2 2 184 75 17,244 30.7 22 24
0.60 1.50 3 8 2 2 69 75 6,583 9.3 10 14
0.80 1.50 2 3 2 2 6 0 3,628 16.0 1 24
1.00 1.50 3 4 2 2 11 5 5,574 20.0 4 25

5 0.16 8.49 15 23 14 13 3,600 3,490 7,400 58.7 3 4 5 6 13 14 15 20 21 22 23 24 26 27
0.20 3.33 7 35 6 6 450 75 15,863 38.7 3 5 9 20 23 24
0.40 1.50 2 7 2 2 11 0 8,213 16.0 3 9
0.60 1.50 2 2 2 2 5 0 3,331 21.3 3 13
0.80 1.50 2 2 2 2 5 0 3,437 21.3 19 24
1.00 1.50 2 2 2 2 5 0 3,895 13.3 19 26

100 1 0.21 6.11 12 39 12 12 105 20 9,965 57.0 3 4 5 6 7 14 15 16 20 21 22 24
0.40 1.50 2 33 2 2 52 0 19,702 16.0 22 24
0.60 1.50 4 10 2 2 34 10 10,007 42.0 5 23
0.80 1.50 3 4 2 2 23 8 10,600 44.0 4 5
1.00 1.50 3 7 2 2 24 6 9,637 29.0 5 15

2 0.22 5.16 10 25 10 10 174 40 13,698 44.0 3 4 5 14 15 16 17 20 23 24
0.40 1.50 3 31 2 2 236 75 19,887 23.0 23 24
0.60 1.50 5 8 2 2 67 75 8,456 21.0 23 24
0.80 1.50 2 3 2 2 8 0 4,645 11.0 9 14
1.00 1.50 3 4 2 2 17 6 6,538 21.0 14 23

3 0.20 4.39 9 31 9 8 3,600 1,483 23,023 53.0 3 4 14 15 16 20 22 24 27
0.40 1.50 2 15 2 2 23 0 12,525 23.0 23 24
0.60 1.50 3 9 2 2 24 7 7,847 23.0 14 24
0.80 1.50 2 3 2 2 7 0 4,612 25.0 3 13
1.00 1.50 3 6 2 2 15 3 7,442 42.0 23 24

4 0.33 3.37 7 45 6 6 390 75 27,118 41.0 3 5 14 16 20 23
0.40 2.13 4 50 4 4 328 21 28,533 39.0 3 5 20 23
0.60 1.50 2 19 2 2 25 0 10,958 24.0 14 24
0.80 1.50 2 5 2 2 11 0 5,317 20.0 3 13
1.00 1.50 2 2 2 2 7 0 5,044 25.0 3 9

5 0.22 6.86 12 31 12 11 3,600 1,125 16,181 61.0 3 4 5 6 13 14 15 20 21 22 24 27
0.40 1.50 2 34 2 2 48 0 15,599 20.0 3 24
0.60 1.50 2 8 2 2 14 0 9,783 11.0 16 24
0.80 1.50 6 5 2 2 16 5 6,097 11.0 4 27
1.00 1.50 2 2 2 2 7 0 4,747 26.0 23 28

converge much faster by exploiting the high-quality
heuristic solution of Hk that can prune a significant
part of the search tree.

4.4. Performance of the Branch-and-Price
Algorithm

In this subsection, we investigate the performance of
the proposed solution methodology and discuss the

effects of the various problem parameters on the diffi-
culty of the resulting instances.

Our experimental design has 480 problem instances
in total (two networks, four demand sizes, two demand
distributions, six α choices, and five random seeds).
However, for some instances, α � 0.2, 0.4, and even
α � 0.6 are larger than αmin and hence there is no fea-
sible solution. Tables 4–7 report the solutions of the
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Table 5. (Continued)

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

125 1 0.26 6.26 13 55 12 12 187 75 13,689 55.2 1 3 4 5 6 7 14 15 20 21 22 24
0.40 1.74 3 70 3 3 115 1 25,145 37.6 3 22 24
0.60 1.50 2 37 2 2 48 0 15,076 6.4 9 16
0.80 1.50 2 9 2 2 18 0 8,843 20.0 3 9
1.00 1.50 4 7 2 2 49 23 12,239 12.8 9 23

2 0.26 5.28 9 33 9 9 334 54 18,718 43.2 3 5 14 15 16 19 20 23 24
0.40 1.76 4 107 3 3 1,056 75 37,491 27.2 3 5 16
0.60 1.50 3 17 2 2 138 75 13,172 21.6 14 24
0.80 1.50 2 10 2 2 19 0 6,969 30.4 14 24
1.00 1.50 5 8 2 2 26 6 8,032 20.8 5 23

3 0.26 4.10 8 51 8 8 913 110 32,527 44.0 3 4 15 16 20 21 22 24
0.40 1.50 3 87 2 2 502 75 27,471 21.6 3 5
0.60 1.50 2 12 2 2 18 0 7,837 25.6 3 24
0.80 1.50 4 8 2 2 32 8 11,077 35.2 3 5
1.00 1.50 4 7 2 2 30 8 10,870 22.4 5 23

4 0.41 3.05 6 59 6 6 253 26 29,247 38.4 3 5 14 16 20 23
0.60 1.50 2 76 2 2 113 0 20,730 24.8 22 24
0.80 1.50 2 25 2 2 36 0 16,851 22.4 3 15
1.00 1.50 2 9 2 2 18 0 7,270 21.6 20 24

5 0.28 6.98 13 41 12 11 3,600 75 18,344 54.4 3 4 5 13 14 15 20 21 24 26 27 28
0.40 1.61 3 72 3 3 155 3 22,477 32.0 3 5 24
0.60 1.50 2 15 2 2 34 0 20,330 4.8 9 14
0.80 1.50 6 9 2 2 117 75 15,128 13.6 3 13
1.00 1.50 2 6 2 2 12 0 6,320 17.6 23 24

150 1 0.31 4.95 9 70 9 9 284 27 25,216 52.0 1 3 5 6 15 20 21 22 24
0.40 2.21 4 332 4 3 3,600 779 44,496 44.7 3 5 20 24
0.60 1.50 3 53 2 2 284 75 30,497 26.7 24 28
0.80 1.50 2 12 2 2 26 0 9,671 3.3 9 14
1.00 1.50 3 12 2 2 46 9 15,357 10.0 4 11

2 0.33 5.27 10 53 10 10 378 53 26,104 46.7 3 5 14 15 16 17 19 20 21 23
0.40 3.20 6 92 6 6 804 35 45,207 36.7 3 15 16 17 20 24
0.60 1.50 3 110 2 2 323 75 26,560 24.7 3 15
0.80 1.50 3 22 2 2 113 75 15,019 14.0 4 15
1.00 1.50 5 17 2 2 79 35 12,884 40.0 4 5

3 0.33 4.66 9 198 9 9 1,233 139 40,488 32.0 3 4 14 16 17 20 21 23 24
0.40 2.83 5 121 4 4 934 75 44,488 32.7 3 20 24 28
0.60 1.50 3 44 2 2 190 75 25,936 8.7 10 15
0.80 1.50 3 18 2 2 140 75 15,966 5.3 11 28
1.00 1.50 3 13 2 2 80 31 15,993 30.7 3 28

4 0.49 3.23 7 106 7 7 480 50 35,523 46.0 3 4 5 14 16 20 23
0.60 1.88 4 128 4 4 859 24 45,629 32.7 15 20 23 24
0.80 1.50 3 95 2 2 444 75 35,013 28.0 22 24
1.00 1.50 2 33 2 2 47 0 21,249 14.7 24 28

5 0.34 6.60 11 244 11 10 3,600 75 11,607 52.0 3 4 5 6 14 15 16 20 21 22 24
0.40 3.22 5 222 5 5 295 6 20,825 38.7 3 5 20 23 24
0.60 1.50 2 77 2 2 98 0 23,414 18.7 24 28
0.80 1.50 2 19 2 2 31 0 15,521 6.7 9 28
1.00 1.50 4 23 2 2 147 75 13,260 11.3 1 24

branch-and-price algorithm for the total of 316 prob-
lem instances forwhich feasible solutions exist. In these
tables, |D | is the number of connection demands, seed
is the key used to generate random numbers for the
relevant problem instances, R.LP is the solution of the
linear relaxation, HS is the number regenerators found
by the heuristic solution H-Root, H.RT is the run time
(in seconds) for H-Root, NR is the solution found by
the branch-and-price algorithm, NR.LP is the proven
lower bound for the number of regenerators, RT is

the solution time (in seconds) for the branch-and-price
algorithm, #BB is the number of branch-and-bound
nodes explored by the branch-and-price algorithm,
#Col.G. is the total number of columns generated dur-
ing the branch-and-price algorithm, %SW. shows the
percentage of demands that have gone through at least
one modulation swap (at a regenerator node) on its
path, and finally Reg. Loc. reports the nodes that are
chosen to be a regenerator point by the branch-and-
price algorithm.
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Table 6. Results for NSF Network with Uniform Demand Distribution

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

75 1 0.48 2.11 3 1 3 3 3 0 901 5.3 3 4 6
0.60 2.00 3 1 3 3 3 1 718 8.0 3 4 6
0.80 2.00 2 1 2 2 2 0 673 2.7 4 6
1.00 2.00 2 0 2 2 1 0 619 18.7 4 11

2 0.44 2.19 4 1 4 4 10 9 1,635 13.3 3 4 6 7
0.60 2.00 3 1 3 3 3 2 675 14.7 3 4 6
0.80 2.00 3 1 3 3 4 3 998 21.3 3 4 11
1.00 2.00 2 0 2 2 1 0 487 21.3 4 11

3 0.42 2.29 4 2 4 4 6 3 1,323 12.0 3 4 6 11
0.60 2.00 3 1 3 3 3 1 844 5.3 3 4 6
0.80 2.00 2 1 2 2 2 0 724 2.7 4 6
1.00 2.00 2 0 2 2 2 0 614 22.7 4 11

4 0.41 2.17 3 1 3 3 3 0 824 10.7 3 4 6
0.60 2.00 2 1 2 2 2 0 601 2.7 4 6
0.80 2.00 2 0 2 2 1 0 536 18.7 4 11
1.00 2.00 2 0 2 2 2 0 574 20.0 4 11

5 0.51 2.19 4 1 4 4 5 3 1,054 9.3 3 4 6 11
0.60 2.01 4 1 3 3 7 22 948 14.7 3 6 7
0.80 2.00 3 1 3 3 2 1 813 2.7 3 4 6
1.00 2.00 2 1 2 2 2 0 631 1.3 4 6

100 1 0.68 2.20 4 4 4 4 10 2 1,541 12.0 3 4 6 11
0.80 2.02 3 2 3 3 5 0 1,310 9.0 3 4 6
1.00 2.00 3 2 3 3 5 1 1,066 15.0 4 6 11

2 0.62 2.17 3 2 3 3 5 0 1,340 10.0 3 4 6
0.80 2.00 4 2 3 3 9 12 1,235 17.0 3 4 6
1.00 2.00 3 1 3 3 4 2 917 16.0 3 4 6

3 0.67 2.15 3 2 3 3 5 0 1,313 7.0 3 4 6
0.80 2.00 3 1 3 3 4 1 1,057 5.0 3 4 6
1.00 2.00 3 1 3 3 4 1 1,041 4.0 4 6 11

4 0.44 2.37 4 3 4 4 9 3 1,603 17.0 3 4 6 11
0.60 2.00 3 1 3 3 6 2 1,213 9.0 4 6 11
0.80 2.00 2 1 2 2 3 0 845 3.0 4 6
1.00 2.00 2 1 2 2 2 0 801 20.0 4 11

5 0.62 2.17 3 2 3 3 4 0 1,243 8.0 3 4 6
0.80 2.00 4 1 3 3 11 10 1,326 7.0 3 4 6
1.00 2.00 3 1 3 3 3 1 922 6.0 3 4 6

125 1 0.84 2.22 4 4 4 4 14 4 2,106 11.2 3 4 6 11
1.00 2.04 3 2 3 3 7 0 1,804 5.6 3 4 6

2 0.86 2.11 3 2 3 3 6 0 1,544 11.2 3 4 6
1.00 2.00 3 2 3 3 7 1 1,195 10.4 3 4 6

3 0.77 2.12 3 3 3 3 8 0 1,843 8.8 3 4 6
0.80 2.08 3 2 3 3 6 0 1,737 11.2 3 4 6
1.00 2.00 3 2 3 3 5 1 1,340 10.4 3 4 6

4 0.65 2.41 4 6 4 4 14 2 1,933 12.8 3 4 6 11
0.80 2.13 3 3 3 3 8 0 1,855 9.6 3 4 6
1.00 2.00 3 1 3 3 6 2 1,176 10.4 3 4 6

5 0.76 2.18 4 4 4 4 10 3 1,877 18.4 3 4 6 11
0.80 2.13 3 2 3 3 6 0 1,318 8.0 3 4 6
1.00 2.00 3 2 3 3 6 1 1,183 5.6 3 4 6

150 1 0.96 2.25 4 6 4 4 14 4 2,262 12.7 3 4 6 11
1.00 2.20 4 11 4 4 16 2 1,954 14.0 3 4 6 11

2 1.04 2.12 4 4 4 4 12 4 2,140 14.7 3 4 6 11
3 0.94 2.14 3 3 3 3 8 0 1,980 6.7 3 4 6

1.00 2.07 3 2 3 3 7 0 1,656 11.3 3 4 6
4 0.79 2.45 4 5 4 4 14 2 2,056 14.7 3 4 6 11

0.80 2.42 4 5 4 4 13 2 1,914 12.7 3 4 6 11
1.00 2.13 3 4 3 3 9 0 2,209 9.3 3 4 6

5 0.93 2.15 3 4 3 3 8 0 1,888 6.7 3 4 6
1.00 2.07 3 3 3 3 7 0 1,524 8.0 3 4 6
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Table 7. Results for NSF Network with Traffic Density Demand Distribution

|D | Seed α R.LP HS H.RT NR NR.LB RT #BB #Col.G. % SW. Reg. loc.

75 1 0.43 2.25 3 1 3 3 2 0 661 2.7 3 4 6
0.60 2.00 3 1 3 3 2 1 616 1.3 3 4 6
0.80 2.00 2 1 2 2 2 0 546 0.0 4 6
1.00 2.00 2 1 2 2 2 0 555 13.3 2 7

2 0.38 2.34 5 2 5 5 7 5 1,227 32.0 3 4 6 9 11
0.60 2.00 3 1 3 3 2 1 899 2.7 3 4 6
0.80 2.00 3 1 3 3 3 3 972 6.7 3 4 6
1.00 2.00 2 0 2 2 2 0 650 30.7 4 11

3 0.48 2.09 3 1 3 3 2 0 713 6.7 3 4 6
0.60 2.00 3 1 3 3 2 1 739 10.7 3 4 6
0.80 2.00 3 1 3 3 2 2 687 8.0 3 6 7
1.00 2.00 2 0 2 2 2 0 571 22.7 4 11

4 0.71 2.08 3 1 3 3 2 0 749 9.3 3 4 6
0.80 2.00 3 1 3 3 2 1 759 6.7 3 4 6
1.00 2.00 3 1 3 3 2 1 719 9.3 3 4 6

5 0.67 2.19 4 2 4 4 6 4 1,138 9.3 3 4 6 11
0.80 2.00 3 1 3 3 3 1 846 8.0 3 4 6
1.00 2.00 3 1 3 3 3 1 785 4.0 3 4 6

100 1 0.52 2.19 4 2 3 3 18 53 1,524 14.0 3 5 6
0.60 2.04 3 1 3 3 3 0 904 4.0 3 4 6
0.80 2.00 2 1 2 2 2 0 697 0.0 4 6
1.00 2.00 2 1 2 2 2 0 722 2.0 4 6

2 0.63 2.25 4 3 4 4 9 3 1,298 18.0 3 4 6 11
0.80 2.00 3 1 3 3 4 0 1,251 5.0 3 4 6
1.00 2.00 3 1 3 3 4 1 1,045 18.0 4 6 11

3 0.72 2.00 3 1 3 3 4 1 951 9.0 3 4 6
0.80 2.00 3 1 3 3 3 1 916 10.0 3 4 6
1.00 2.00 3 1 3 3 3 1 925 7.0 3 6 7

4 0.79 2.10 4 1 4 3 5 2 1,029 7.0 3 4 6 7
0.80 2.08 3 1 3 3 4 0 1,001 7.0 3 4 6
1.00 2.00 3 1 3 3 4 1 953 7.0 3 4 6

5 0.75 2.22 3 2 3 3 6 0 1,199 7.0 3 4 6
0.80 2.14 3 2 3 3 4 0 1,112 8.0 3 4 6
1.00 2.00 3 1 3 3 4 1 1,117 5.0 3 4 6

125 1 0.62 2.28 4 3 4 4 10 4 1,527 7.2 3 4 6 11
0.80 2.00 3 2 3 3 7 1 1,546 16.8 3 5 6
1.00 2.00 3 1 3 3 4 1 948 1.6 4 6 11

2 0.77 2.22 4 3 4 4 10 3 1,711 16.0 3 4 6 11
0.80 2.18 4 4 4 4 11 3 1,798 4.8 3 4 6 11
1.00 2.00 3 2 3 3 5 1 1,390 3.2 3 4 6

3 0.89 2.04 3 2 3 3 5 0 1,392 8.0 3 4 6
1.00 2.00 3 2 3 3 5 1 1,237 9.6 3 4 6

4 0.98 2.15 4 2 4 4 9 3 1,494 8.0 3 4 6 7
1.00 2.13 4 2 4 4 11 4 1,786 8.8 3 4 6 7

5 0.93 2.17 4 2 3 3 26 75 2,282 8.0 3 4 6
1.00 2.08 3 3 3 3 8 0 1,397 5.6 3 4 6

150 1 0.73 2.28 4 4 4 4 9 2 1,695 7.3 3 4 6 11
0.80 2.19 4 3 3 3 16 50 1,974 14.0 3 5 6
1.00 2.00 3 2 3 3 7 1 1,428 4.7 3 4 6

2 0.88 2.24 4 4 4 4 9 3 1,774 17.3 3 4 6 11
1.00 2.11 4 6 4 4 11 3 1,957 5.3 3 4 6 11

3 1.01 2.07 3 3 3 3 7 0 1,569 6.0 3 4 6
4 1.25 2.14 4 6 4 4 12 3 1,888 13.3 3 4 6 7
5 1.09 2.21 3 4 3 3 8 0 1,816 5.3 3 4 6
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As we can see from the results, 303 out of 316 prob-
lems were solved optimally, and for the remaining 13
the optimality gap was reduced to just one regenerator
within the given time limit of 3,600 seconds. For 12 out
of the 13 unsolved problem instances, the bandwidth
utilization level is equal to the minimum (i.e., α� αmin).
Table 8 depicts a summary of the results in

Tables 4–7. Cells occupied with “—” are the cases
where the related problem has no feasible solution. It
is easy to read from Table 8 that the smaller α values
(limited link capacities) make the RLP-FON instances
harder to solve. This is due to the fact that the short
supply of bandwidth slots entails that a high percent-
age of the flowvariables assume fractional values in the
LP solution of the problem and the branch-and-bound
tree grows significantly.
The results also show that problem instances with

the NSF network are much easier to solve than those
of COST-266. This is in part due to the higher number
of nodes and edges in the latter. However, the substan-
tial difference in the solution times points to a more
significant effect being in play. In the NSF network, the
mean edge length is more than two times larger than
that of the COST-266 network, and consequently the
optical reach constraints are more binding. As a result,
for each demand, the number of alternative paths is
rather limited for the NSF network compared to the
COST-266 network. Moreover, the topology is quite dif-
ferent between the two networks. In the NSF network,
most of the nodes are along the periphery. On the
other hand, the COST-266 network has a much more
crowded core which contains more than half of the
nodes. Such a composition significantly increases the
number of alternative routings for each demand and
makes problem instances challenging.

Not surprisingly, problem instances with a higher
number of demands are harder to solve. What is inter-
esting is the higher solution times for the problem
instances with the traffic density demand distribution.
A possible explanation for this result could be the
higher concentration of connection demands on some
specific node pairs which exacerbates the problem of
bandwidth capacity limitations.
Our numerical experiments show that H-Root can

produce high-quality solutions. Among the 316 prob-
lem instances, H-Root could find the optimal solution
in 214 (67.72%). For the 65 instances out of the remain-
ing 102, H-Root could find a solution with an optimal-
ity gap of just one regenerator. Interestingly, for some
instances, H-Root would return a higher number of
regenerators when α increases (e.g., Table 4; |D | � 75,
Seed � 1). The reason for such a result is the lack of
some critical path-segments that are not generated in
the root node when α is larger and that LP relaxation
of the problem has to be solved with a more restricted
set of columns. Ta
bl
e
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Table 9. Number of Required Regenerators for COST-266
Network with Traffic Density Demand Distribution

Percentage of bandwidth allocated (α)

|D | 0.14 0.20 0.22 0.26 0.33 0.40 0.60 0.80 1.00

75 10 3 3 2 2 2 2 2 2
100 — — 10 6 3 2 2 2 2
125 — — — 9 5 3 2 2 2
150 — — — — 10 6 2 2 2

4.5. Managerial Insights
The relation between the number of regenerators and
the spectral efficiency is an interesting one for network
managers who want to deploy/operate a minimum
number of regenerators to lower capital investment
and operational costs (such as energy andmaintenance
costs), but who also want to achieve higher bandwidth
utilization efficiency to be able to satisfy more demand
and build resilience against failures in network com-
ponents. As detailed below, our results show that with
FON architecture, a smart deployment of a rather lim-
ited number of regenerators can achieve high levels of
bandwidth efficiency. These promising results indicate
that FON architecture can simultaneously provide sig-
nificant cost reductions and capacity enhancements.
Table 9 shows the lower bounds for the optimal solu-

tion values of the 27 problem instances with COST-266
network and traffic density distribution of 75, 100, 125,
and 150 connection demands generated by random
number seed 2. Cells depicted with “—” are the cases
where the problem has no feasible solution, and for
each row, the first cell with a numeric value is the case
where the percentage of allocated bandwidth is the
minimum (i.e., α � αmin). To leave no dents in Table 9,
we generate and solve additional problem instances,
using different α values than we have in Table 5.

A quick look at the table reveals that certain com-
binations of regenerator deployment and bandwidth
utilization (α) levels could be very attractive for the
network management. For example, the first row
(|D | � 75) of the table shows that with just three regen-
erators (deploying regenerators at 11% of nodes), it is
possible to satisfy all of the demand with only 20%
of the available bandwidth in each link. Note that for
this case, the lowest possible utilization level is 0.14,
which requires 10 regenerators. Moreover, Tables 4–7
together show that regardless of the network and
demand distribution differences, the same conclusion
stays valid. Our results also show that some nodes are
more likely to appear as regeneration nodes (in the
optimal solutions, regenerators are placed/activated
on those nodes). In Table 10, each row depicts the
results of five different RLP-FON instances with the
COST-266 network and traffic density demand distri-
bution. For each node, the percentage of solutions for

which that node appears in the set of regenerator nodes
is given in the table. For example, looking at the first
row, we can see that nodes 3, 5, 14, and 20 have been
chosen as the regenerator nodes at all of the five prob-
lem instances solved with the minimum bandwidth
allocation (α � αmin), whereas nodes 1, 13, and 26 were
selected just once. Looking at the table, one can see that
the optimal locations of the regenerators do not change
drastically with the fluctuations in the demand. From
Tables 6 and 7, we can see that the same conclusion
is also true for the NSF network for which the vari-
ous combinations of the nodes 3, 4, 6, and 11 constitute
approximately 89.3% of the optimal solutions. Thus,
the solutions obtained by the proposed algorithm can
be considered as somewhat robust solutions. This is a
desired property for network management, especially
when it is hard to accurately estimate the demand at
the time of planning.

Another interesting data point in the given tables
is the percentage of modulation swaps. We call it a
modulation swap if a demand uses more than one
modulation level (by going through modulation con-
version in a regenerator node) on its light-path. Our
results show that, in general, more strict bandwidth
limitations necessitate more modulation swaps to sat-
isfy connection demand with less network resources.
For example, in the first line of Table 4, 53.3% of
the demands have gone through at least one modu-
lation swap on their determined light-paths when the
allowed bandwidth is at its minimum (α � αmin). This
number reduces to 21.3% when all of the bandwidth
is allowed to be used. A very similar trend is clearly
visible in other tables as well. Thus, we can see that, at
least according to the results of our numerical exper-
iments, FON architecture’s novel capability of multi-
modulation transmission appears to be very useful in
increasing resource utilization efficiency for the optical
networks.

5. Conclusions
This study revisits the regenerator location problem
from the flexible optical network architecture per-
spective and introduces RLP-FON to the operations
research (OR) literature. Since the concept of FON
architecture is quite new (due to the recent maturation
of the enabling hardware technologies), this practically
significant and theoretically interesting problem is not
well studied in the literature. One of the purposes of
this study is to draw the attention of OR researchers to
this gap in the literature and promote new studies in
this promising area of research.

For the considered problem, we developed a path-
segment–based formulation. Our solution method-
ology introduces a new perspective to general
path-based formulations. In particular, our novel
path-segment formulation makes it easy to consider
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Table 10. Percentage of Nodes Appearing as Regeneration Points in the Optimal Solutions for the Problem Instances with
COST-266 Network and Traffic Density Demand Distribution

Node number

|D | α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

75 αmin 20 0 100 60 100 40 20 0 0 0 0 0 20 100 80 40 0 0 0 100 60 60 60 60 0 20 0 0
0.20 0 0 100 0 100 25 0 0 25 0 0 0 0 0 0 0 0 0 0 50 0 50 50 100 0 0 0 0
0.40 0 0 40 0 0 0 0 0 40 0 0 0 0 0 0 0 20 0 0 0 0 20 0 40 0 0 0 20
0.60 0 0 40 0 0 0 0 0 20 20 0 0 20 20 0 0 0 0 0 0 20 0 20 0 0 20 0 0
0.80 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 20 0 0 0 0 80 0 0 0 20
1.00 0 0 20 60 0 0 0 0 0 0 0 0 0 40 0 0 0 0 20 0 0 0 0 0 20 20 0 0

100 αmin 0 0 100 80 80 40 20 0 0 0 0 0 20 100 80 80 20 0 0 100 40 60 40 60 0 0 20 0
0.40 0 0 40 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 20 60 80 0 0 0 0
0.60 0 0 0 0 20 0 0 0 0 0 0 0 0 40 0 20 0 0 0 0 0 0 40 80 0 0 0 0
0.80 0 0 40 40 20 0 0 0 20 0 0 0 40 20 0 0 0 0 0 0 0 0 0 0 0 0 20 0
1.00 0 0 20 0 20 0 0 0 20 0 0 0 0 20 20 0 0 0 0 0 0 0 60 20 0 0 0 20

125 αmin 20 0 100 60 80 20 20 0 0 0 0 0 20 80 80 60 0 0 20 100 60 40 40 60 0 20 20 0
0.40 0 0 100 0 75 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 25 0 50 0 0 0 0
0.60 0 0 20 0 0 0 0 0 40 0 0 0 0 40 0 20 0 0 0 0 0 20 0 60 0 0 0 0
0.80 0 0 80 0 20 0 0 0 20 0 0 0 20 20 20 0 0 0 0 0 0 0 0 20 0 0 0 0
1.00 0 0 0 0 40 0 0 0 20 0 0 0 0 0 0 0 0 0 0 20 0 0 80 40 0 0 0 0

150 αmin 20 0 100 60 80 40 0 0 0 0 0 0 0 80 60 80 40 0 20 100 80 40 60 60 0 0 0 0
0.40 0 0 100 0 50 0 0 0 0 0 0 0 0 0 25 25 25 0 0 100 0 0 25 100 0 0 0 25
0.60 0 0 20 0 0 0 0 0 0 20 0 0 0 0 60 0 0 0 0 20 0 0 20 60 0 0 0 40
0.80 0 0 0 20 0 0 0 0 40 0 20 0 0 20 20 0 0 0 0 0 0 20 0 20 0 0 0 40
1.00 20 0 20 40 20 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 40

nonsimple path solutions and include some special
constraints on the paths which are otherwise harder to
incorporate in a plain path-based formulation.
We propose an efficient branch-and-price algo-

rithm to solve the problem. We conducted extensive
numerical experiments to test the performance of the
proposed algorithm. As explained above, RLP-FON
requires the solution of regenerator location, rout-
ing, spectrum allocation, and modulation selection
problems jointly. The performance of the proposed
algorithm is comparable to the state-of-the-art heuris-
tic algorithms that solve these problems sequentially.
From the practical point of view, these numerical stud-
ies provide significant managerial insights about this
urgent problem. In particular, our findings show that
FON architecturemakes it possible to enhance network
capacity and reduce the capital and operational costs
of the optical network.

Although the practical motivation for RLP-FON
comes from the telecommunications applications, this
theoretically interesting problem and its simple exten-
sions can actually appear in various application set-
tings. In its current form, arc costs are not considered
in the RLP-FON formulation (they are simply assumed
to be zero). But this is only because of the practical
setting of the problem where arc costs are either negli-
gible or do not scale up to the regenerator deployment
costs. From the mathematical point of view, adding arc
costs does not disturb the main structure of the pro-
posed algorithm at all. Note that adding arc costs to
the objective function or considering new constraints

on some resource usage at arcs can be included in the
pricing problem by just adding a new term in the cal-
culation of arc lengths of the pricing graph. Thus, our
formulation and solution methodology can be easily
adapted to the rather general multicommodity, multi-
modal flow problems; as such, we leave it for a future
study to investigate the application of the proposed
solution methodology in different contexts than the
optical networks.
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