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1 Introduction

Since it was conjectured that the QCD Pomeron is dual to the graviton Regge trajectory [1],
holographic techniques have been successfully applied to the description of QCD processes
where Pomeron exchange dominates [2–42]. Once the external scattering states and the
dynamics of the higher spin J fields of the graviton trajectory are modelled, comparisons
can be made with experiment, provided we are in a kinematical window where QCD is
dominated by a gluon rich medium. In this regime the Bjorken variable x is small, or the
Mandelstam variable s is large, corresponding to high center of mass energies.

In order to describe the total cross-section data of hadronic processes in QCD, one
also includes, besides the Pomeron trajectory, a meson trajectory (see, for e.g, [43]). This
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trajectory can be obtained by a linear fit of the meson spins against the meson squared
masses. With the resulting straight line, one extrapolates from t > 0 to t ≤ 0 in order
to make predictions in the scattering region. In particular, for the total cross-section we
are interested in the value of the trajectory for t = 0, also known as the meson intercept,
and the above linear fit yields an intercept of 0.55. There is no theoretical justification
to assume that the meson trajectory is linear aside from the fact that it has described
successfully scattering data, provided t is not too negative. In this work we use holography
to study this issue by first fitting the meson spectrum for J = 0, 1, 2, 3, 4 and check if
the resulting holographic intercept is able to describe the experimental data of the total
cross-sections of γγ, γp and pp scattering. In previous works [34, 38, 42] we have studied
the dynamics of the higher spin J fields in the graviton Regge trajectory by generalising
the bulk graviton equation of motion. This was done using effective field theory inspired by
Regge theory of a 5D string theory. In this work we will not only follow the same procedure
for the Pomeron trajectory, but also apply it to the meson trajectory by generalising to
higher spin the equation of motion of the bulk field dual to the vector mesons.

Before we start such procedure, we need to guarantee that our model is describing
with accuracy the spectrum of the vector mesons. This will be done by considering the
extension of the Improved Holographic QCD model of [44, 45], with a backreacted quark
sector [46, 47], as presented in [48]. This model (V-QCD) consists of five-dimensional
dilaton gravity dilaton coupled to a tachyon described in terms of a generalised Sen-like
tachyonic Dirac-Born-Infeld (DBI) action [49]. Our numerical solution includes the full
backreaction of the tachyon in the dilaton and metric. The asymptotic behavior of the
model at weak and strong coupling is chosen such that various generic features of QCD,
such as asymptotic freedom and confinement, are reproduced [45, 48]. The remaining
free parameters of the model will be determined through an extensive comparison of the
spectrum of the quadratic fluctuations against the experimental meson masses.

This paper is organized as follows. In section 2 we discuss in detail the holographic
model, as well as how to compute the spectrum of the quadratic fluctuations. This section
ends with a fit to the meson spectrum, fixing our background fields for the remaining
of the paper. In section 3 we derive holographic expressions for the total cross-sections
that will be used later to fit data from the Particle Data Group [50]. In section 4 we
focus on the holographic duals of the pomeron and meson trajectories, and in particular in
constructing the analytic continuation of the spin J equations that govern the dynamics of
fields in these trajectories. These equations contain two parameters that will be fixed by
the soft-pomeron intercept and the spin J = 2, 3, 4 meson masses in section 5. This fixes
the pomeron and meson kernels that are used in the total cross-section fits. We discuss
our results and suggest further work in section 6.

2 Holographic model for QCD in the Veneziano limit

We consider a slight generalisation of Quantum Chromodynamics which consist of a gauge
field in the adjoint representation of SU(Nc) coupled to Nf fermions (quarks) in the fun-
damental representation of SU(Nc). This generalisation has been studied in great depth in
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the ’t Hooft large-Nc limit, where Nc → ∞ and λ = g2
YMNc and Nf are kept fixed. This

limit is also known as the quenched limit since nontrivial quark contributions to observables
are suppressed in powers of Nf

Nc
→ 0. Another interesting large-Nc limit is the Veneziano

limit [51] where

Nc →∞ , Nf →∞ ,
Nf

Nc
= x , λ = g2

YMNc , (2.1)

with x and λ fixed. In this limit the quark contributions are not suppressed, and their
backreaction to the gluon dynamics must be taken into account.

A holographic dual (V-QCD) that reproduces several expected features of QCD in the
Veneziano limit was presented in [48]. It consists of a system of a dilaton and tachyon
coupled to five-dimensional gravity. Let us first discuss the field content and the action of
the model, and then present the precise structure of the various potentials appearing in
the action.

2.1 The model

The action in the gravitation sector is the same as in the Improved Holographic QCD
(IHQCD) model [44, 45]. We work at zero temperature so that Poincaré invariance is
intact. The metric Ansatz is therefore

ds2 = gabdx
adxb = e2A(z)

(
ηµνdx

µdxν + dz2
)
, (2.2)

where the warp factor A is identified with the logarithm of the energy scale in the field
theory at the boundary. The exponential of the dilaton field λ = eΦ is dual to the TrF 2

operator with its background value equal to the ’t Hooft coupling (near the boundary where
the coupling can be unambigously defined). The action for the metric and dilaton fields is
given by five-dimensional Einstein gravity coupled to a scalar field,

Sg = M3
pN

2
c

∫
d5x

√
− det g

[
R− 4

3
(∂λ)2

λ2 + Vg(λ)
]
, (2.3)

whereMp is the five-dimensional Planck scale. The dilaton potential Vg(λ) will be specified
below. We choose the potential to be qualitatively similar to that studied in [52, 53] —
see [54, 55] for an alternative approach focused on the fit to QCD thermodynamics.

To add matter we insert space-filling D4 − D̄4 branes that give rise to a tachyon field
T and the gauge fields AL, AR living on the branes [46, 47]. A similar approach has
been considered in the probe limit in [56, 57], and also in the Witten-Sakai-Sugimoto
model [58–61]. In the boundary theory the operators with lowest dimension involving
fermions are ψ̄iRψ

j
L with spin 0 and the two spin 1 conserved currents ψ̄iLγµψ

j
L and ψ̄iRγµψ

j
R,

where i, j are the flavour indices. The spin 0 and spin 1 operators are dual to bulk complex
scalars Tij and two bulk gauge fields AµL, ij and A

µ
R, ij , respectively. The tachyon transforms

as (Nf , N̄f ) of the flavour symmetry U (Nf )R × U (Nf )L, while the fields AµL,ij and AµR,ij
transform in the adjoint representations of U (Nf )L and U (Nf )R, respectively. In string
theory the three bulk fields can be modelled by considering Nf flavour branes (R) and Nf
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flavour antibranes (L). In this configuration the complex scalar fields Tij are the lowest
modes of open strings with one end in a D-brane and another in the anti-D-brane, while
the bulk gauge fields are the lowest open string modes with both ends on a D-brane or on
an anti-D-brane. The system obeys a tachyonic Dirac-Born-Infeld (DBI) action [47, 48, 62]

SDBI = −
M3
pNc

2

∫
d5xStr

[
Vf
(
λ, T †T

)√
− det

(
gab + κ(λ)D(aT †Db)T + w(λ)FLab

)
+Vf

(
λ, TT †

)√
− det

(
gab + κ(λ)D(aTDb)T † + w(λ)FRab

) ]
, (2.4)

where Str is the symmetric trace over the (hidden) flavour indices and the determinant
is taken with respect to the five dimensional space-time indices a, b (since we are going
to work up to quadratic order we can actually replace the symmetric trace by the usual
trace of matrices for the purposes of this article). The functions Vf , κ, and w will be
given explicitly below. The normalisation convention for the symmetrisation of indices is
F(aGb) = 1

2(FaGb + FbGa). The covariant derivative terms are given by

DaT = ∂aT − iTALa + iARa T , DaT
† = ∂aT

† − iALaT † + iT †ARa , (2.5)

and the field strengths by

FL,R = dAL,R − iAL,R ∧AL,R . (2.6)

In this work we are assuming that the light quark masses are equal and under this as-
sumption the tachyon is just T = τ INf . Furthermore, for the QCD vacuum we have
ARa = 0 = ALa . Using these conditions in the action (2.4) we obtain the flavour action

Sf = −xM3
pN

2
c

∫
d5xVf (λ, τ)

√
− det

(
gab + κ(λ)∂aτ∂bτ

)
. (2.7)

The brane action also contains a Wess-Zumino term [47] which we will not need as it does
not contribute to the background solutions or mass spectra considered here.

There is also an additional pseudo-scalar axion field a, which is dual to the op-
erator TrF ∧ F and therefore sources the θ angle in QCD [47]. Its action takes the
form [44, 45, 62, 63]

Sa = −
M3
pN

2
c

2

∫
d5x

√
− det g Z(λ)

[
∂ba− x

(
V (a)(λ, τ)(ÂLb −ÂRb )− ρ ∂bV (a)(λ, τ)

)]2
,

(2.8)
where ÂL,Rb are the singlet fields, ÂL,Rb = TrAL,Rb /Nf , the potential V (a)(λ, τ) will be speci-
fied below, and we allowed the tachyon to have an overall phase ρ, i.e. we took T = τeiρINf .

2.2 Choice of potentials

Let us now discuss the choices for the various potentials (Vg, Vf , κ, w, V (a) and Z). The
generic picture is that the leading IR asymptotics of the various functions is chosen to agree
with known features of QCD (which will be soon specified). The UV asymptotics is set by
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rough agreement with perturbative QCD, in particular by the perturbative UV dimensions
of the QCD operators. For intermediate scales the functions need to be determined by and
extensive comparison to experimental and lattice QCD data; in this article the functions
will be fitted to the meson spectrum in QCD. In this section we will present the Ansätze
for these functions which will obey the asymptotics at small and large λ determined by
qualitative comparison to QCD, and the fit to data will be carried out in section 2.4.

We start with the action for the gluon sector, i.e. the action of improved holographic
QCD. In IHQCD the dynamics of the dilaton is set by its potential Vg(λ), which is
constrained [44, 45] in the UV to reproduce the YM β-function and in the IR to yield
confinement and a “good” singularity in the classification of [64]. In this work we will
take [65, 66]

Vg(λ) = 12 + V1 λ+ V2
λ2

1 + αλ λ
λ0

+ 3VIR e
− λ0
αλ λ

λ4/3

4π8/3

√
log

(
1 + αλ λ

λ0

)
, (2.9)

where
V1 = 44

9π2 , V2 = 4619
3888π4 , λ0 = 8π2 . (2.10)

The values of V1 and V2 are fixed by the gluon sector contribution to the QCD β-function,
while the parameters αλ and VIR will be fitted by the spectrum, in particular by comput-
ing meson mass ratios and comparing them to experimental results, following [67]. The
spectrum of the theory can be found by analysing the action of the quadratic fluctuations
around the background solution followed by the reduction to the four-dimensional dynam-
ics. For example, in the case of pure Yang-Mills (i.e. x = 0), the quadratic fluctuations are
dual to glueballs with quantum numbers JPC = 0++, 2++ and with JPC = 0−+ by consid-
ering an axion term. For pure Yang-Mills we have found that αλ ≈ 2.504 and VIR ≈ 3.478
reproduce1 the lattice ratios of 1.46 and 1.87 of m2++/m0++ and m0∗++/m0++ respectively.
In the IR, Vg ∼ λ

4
3 (log λ)

1
2 , which gives linear asymptotic trajectories for glueballs.

The DBI action that we described above is analogous to the flat space Sen action for
the D− D̄ system [49]. Since we are in the presence of a curved space-time and other non-
trivial background fields which fully backreact to the metric, we correct it by including the
general potentials Vf (λ, τ), κ(λ) and w(λ). However these potentials must satisfy some
properties. The tachyon potential Vf is expected to have a regular series expansion in λ

and τ near the boundary (i.e. λ→ 0, τ → 0) [48]

Vf (λ, τ) = V0(λ) + V1(λ)τ2 +O(τ4) , (2.11)

and to vanish exponentially in the IR when τ → ∞ [63]. In particular in the flat space
string theory Vs ∼ 1

λe
−µτ2 . Our Ansatz for Vf is

Vf (λ, τ) = Vf0(λ)Vτ (τ) , (2.12)

1We will instead determine these parameters by a global fit to the meson spectrum as we will explain in
section 2.4.
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where

Vτ (τ) =
(
1 + a1τ

2
)
e−a2τ2

, (2.13)

Vf0(λ) = W0 +W1λ+W2
λ2

1 + αλ λ
λ0

+ 3WIR

16π4 (αλ λ)2e
− λ0
αλ λ

(
1 + λ0W1

αλ λ

)

with

W1 = 24 + (11− 2x)W0
27π2 , W2 = 24(857− 46x) +W0(4619− 1714x+ 92x2)

46656π4 . (2.14)

This Ansatz is identical to that considered in [66] except for the introduction of the coeffi-
cients ai in Vτ (τ). These are motivated by the observation that the correct mass gap of the
mesons at large quark mass can only be reproduced if the coefficient of τ2 in the exponent
determining the large-τ asymptotics of Vτ (i.e. a2 above) differs from the second order
series coefficient of Vτ at small τ (here a2 − a1) [68]. Notice that one of these coefficients
can be eliminated by adjusting the normalisation of the τ field.

As both κ(λ) and w(λ) are coupling functions under the square root of the DBI action
we expect them to have similar qualitative behaviour. On the other hand, in order to have
the correct UV dimension of the q̄q operator we need to impose

κ(0) = 8 a2 − a1
12− xW0

. (2.15)

The IR asymptotics of the potentials κ and w directly affect the meson spectrum. We are
interested in the case where the mesons have an asymptotic linear spectrum and the meson
towers have the same asymptotics. This can be achieved with the following IR asymptotics
κ(λ) ∼ λ−4/3(log λ)1/2 and w(λ) ∼ λ−4/3 log λ [62, 69] (see also [70]). Taking into account
these considerations, we adopt the following Ansätze for κ and w,

κ(λ) = 8 a2 − a1
12− xW0

1 + αλ κ1λ

λ0
+ κ̄0

e−
λ0
ακλ

(
1 + λ0κ̄1

ακλ

) (
ακλ
λ0

)4/3√
log

(
1 + ακλ

λ0

)

−1

, (2.16)

w(λ) = w0

1 + αλw1λ

λ0
(
1 + αλλ

λ0

) + w̄0
e−

λ0
αwλ

(
1 + λ0w̄1

αwλ

) (
αwλ
λ0

)4/3

log
(
1 + αwλ

λ0

)

−1

. (2.17)

In order to compute the profiles of the background fields we need to specify the values
of the parameters that appear in the definition of the potentials presented above. These
parameters will be fitted to the ratios between the low-spin meson masses and the ρ0 meson
mass as predicted by the model.

Finally, we need to specify the potentials in the CP-odd action Sa (2.8). In flat-space
tachyon condensation V (a)(λ, τ) is independent of λ and is the same as the tachyon potential
that appears in the DBI action. However in principle it may be different, so we will take
V (a) to be Vf defined above without the V0f term. This form guarantees that it becomes
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a field-independent constant at τ = 0 and that it vanishes exponentially at τ = ∞. The
Z(λ) function is defined by

Z(λ) = Za + ca

(
λ

λ0

)4
. (2.18)

The definition is constrained by Yang-Mills theory [45, 63, 71]. In this work the parameters
Za and ca will be determined by fitting the spectrum of singlet axial vector mesons.

2.3 Evaluation of the meson spectrum

The quadratic fluctuations around the background fields can be mapped to the spectrum
of mesons and glueballs. The normalisable fluctuations of dilaton Φ, QCD axion a, and the
(traceless part of the) metric gab, correspond to glueballs with JPC = 0++, 0−+, and 2++,
respectively.2 Here J is the spin, P refers to parity, and C refers to charge conjugation.
The meson sector comes from the normalisable fluctuations of the tachyon T and of the
gauge fields AL/Ra . They correspond to mesons with JPC = 0++, 0−+, 1++, and 1−−.

The fluctuations can be further classified according to how they transform under the
vectorial SU(Nf ). They can be grouped in flavour singlet and flavour non-singlet modes,
i.e. mesons transforming in the adjoint of SU(Nf ). The fluctuations that come from Sf and
Sa are only flavour singlet, while the ones coming from Sg include singlet and non-singlet
terms. The singlet terms from Sf will mix with the singlet terms coming from Sg and Sa.

The masses of the different glueballs and mesons can be obtained after expanding the
action S = Sg+Sf +Sa to quadratic order of the fluctuations of the background fields. Due
to flavour and rotational covariance the fluctuations decouple in separate sectors [62], apart
from the mixing of the flavor singlet sectors mentioned above. In summary, there are flavour
singlet rank-two tensor fluctuations (JPC = 2++), flavour singlet and non-singlet vector
mesons (JPC = 1−−), flavour singlet and non-singlet axial vector mesons (JPC = 1++),
flavour singlet and non-singlet scalars (JPC = 0++) and flavour singlet and non-singlet
pseudoscalars (JPC = 0−+). These fluctuations generate towers of 2++ glueballs, singlet
and non-singlet vector mesons, singlet and non-singlet axial vector mesons, non-singlet
scalar mesons and mixtures between 0++ glueballs and σ mesons, and non-singlet pseu-
doscalar mesons and mixtures between 0−+ glueballs and η′ mesons, respectively. These
towers of mesons and glueballs come as solutions of a Schrödinger problem associated with
the equation of motion of the associated fluctuation. The eigenvalues correspond to the
square of the mass of the glueball or meson and their holographic wave functions are the
associated eigenfunctions. In this work we will not consider the flavour singlet states of
JPC = 0++, 0−+, as they involve mixing of the 0++ glueball with the flavour singlet σ
meson and mixing between the 0−+ glueball with the η′ meson, respectively. Therefore
their analysis is considerably more challenging than that of the flavor nonsinglet states
(see [62, 63, 72]) and would slow down the computer code for the spectrum significantly.
Notice that these states are not central for the Regge analysis which is the main application
of this work.

2To be precise, it is the diffeomorphism invariant combination of the fluctuations of the dilaton and the
trace of the metric which is dual to the 0++ glueballs.
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A detailed derivation of the equations of motion and Schrödinger problems associ-
ated with each fluctuation has been done in [62] and hence we will just summarise the
main results relevant for the present work (see appendix B for the analysis of the spin 1
fluctuations). The singlet and non-singlet vector mesons have the same equation of motion

1
Vf (λ, τ)w(λ)2eAG

∂z
(
Vf (λ, τ)w(λ)2eAG−1∂zψV

)
+m2

V ψV = 0 , (2.19)

where ψV = ψV (z) is their wavefunction. By performing the change of variable defined by
du

dz
= G(z) ≡

√
1 + e−2Aκ(λ)(∂zτ)2 , (2.20)

and rescaling
ψV (z) = α(z)/ΞV , ΞV = w(λ)

√
Vf (λ, τ) eA , (2.21)

one can rewrite the equation of motion in the Schrödinger form

− d2α

du2 + VV (u)α = m2
n α , (2.22)

with potential

VV (u) = 1
ΞV (u)

d2ΞV (u)
du2 . (2.23)

The singlet and non-singlet axial vector mesons have Schrödinger potentials differing
by a term coming from the action Sa. The potentials of the non-singlet axial vector mesons
and of the singlet axial vector mesons are, respectively,

VNSA(u) = VV (u) + 4 τ
2e2A

w(λ)2 κ(λ) , (2.24)

VSA(u) = VNSA(u) + 4x e
2AZ(λ)V (a)(λ, τ)2

Vf (λ, τ)Gw(λ)2 . (2.25)

The non-singlet scalar mesons have the potential

VS(u) = 1
ΞS(u)

d2ΞS(u)
du2 +HS(u) , (2.26)

with

ΞS(u) = 1
G

√
Vf (λ, τ)κ(λ)e3A , HS(u) = − e2A

κ(λ)

(
(∂τVτ )2

V 2
τ

− ∂2
τVτ
Vτ

)
, (2.27)

where the expression for HS differs from that of [62] because our Ansatz for Vτ is different.
Finally the equation of motion of the non-singlet pseudoscalar fluctuations is given by3

Vf (λ, τ) τ2e3AG−1κ(λ) ∂z

[
1

Vf (λ, τ)τ2κ(λ)e3AG
∂zψP

]
− 4τ2e2A κ(λ)

w(λ)2 ψP +m2ψP = 0 ,

(2.28)
3Notice that the UV boundary condition for the pseudoscalar fluctuations is nontrivial and also depends

on whether the quark mass is finite or not [62]. A consistent way which leads to UV finiteness of the
fluctuated action in all cases is to require that the factor in square brackets (rather than the wave function
ψP ) in (2.28) vanishes in the UV. For the pseudoscalars we actually solved the differential equation by
using a different method than in the other sectors (i.e. by shooting) because of the complication with the
boundary condition.
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with associated Schrödinger potential

VP (u) = 1
ΞP (u)

d2ΞP (u)
du2 +HP (u) , (2.29)

where
ΞP (u) = 1

τ
√
Vf (λ, τ)κ(λ)e3A

, HP (u) = 4τ2e2Aκ(λ)
w(λ)2 . (2.30)

The numerical determination of the spectrum proceeds by first finding the background
solution (the metric and the scalar fields λ and τ) of the equations of motion defined by
the action S = Sg + Sf . Details of the numerical procedure can be found in appendix A.
We then solve the fluctuation equations on top of the numerical background. For the cases
of singlet and non-singlet vector and axial vector fluctuations, and for non-singlet scalar
fluctuations, we compute the Schrödinger potential and use a pseudospectral method based
on Chebyschev polynomials to compute the predicted masses of this model. The number
of Chebyschev points used was 1000 and we checked the results were stable by computing
the masses with a higher number of points. The reliability of the results was also studied
by considering different IR and UV cutoffs on the background fields used to solve the
Schrödinger problems. The masses of the pseudoscalars were computed using the shooting
method. These methods were implemented in C++ and all results were also cross-checked
against the (significantly slower) Mathematica code used in [62].

2.4 Fitting the spectrum

We now proceed to fix the parameters that appear in the potentials by comparing the
predictions of our model with the experimental values of the meson masses quoted by the
Particle Data Group [50].

The overall energy units in the model is also a free parameter. Its effect on the
background and spectrum is trivial due to a scaling symmetry of the holographic model [48]
which reflects the scale independence of the QCD Lagrangian. The scaling symmetry
implies, in particular, that the equations of motion are unchanged under the transformation

A→ A− log Λ , z → Λz . (2.31)

By applying this transformation to the spectrum we see that all masses are scaled by the
factor Λ. We will in effect choose Λ such that the numerical mass of the ρ meson matches
the experimental result in GeV units. This is equivalent to fitting the parameters of the
to the numerical values of ratios of masses (with respect to the ρ meson mass) instead of
numerical values of masses.

We will only consider mesons made of light up and down quarks. This sets the x
parameter coming from the flavour sector to be 2/3. In table 1 we show all the mesons
listed in [50] under light unflavoured mesons with the values of JPC mentioned before.
The exceptions are the flavour singlet scalars and pseudoscalars and the a0(980). Whether
the latter is a quark-antiquark state or a four-quark state is still debatable, although the
literature favours more the four-quark state hypothesis. For this reason we did not include
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JPC I Meson Mass Measured (GeV)
1−− 1 ρ 0.7755
1−− 1 ρ(1450) 1.465
1−− 1 ρ(1700) 1.720
1−− 0 ω(782) 0.78265
1−− 0 ω(1420) 1.420
1−− 0 ω(1650) 1.670
1++ 1 a1(1260) 1.230
1++ 0 f1(1285) 1.2819
1++ 0 f1(1420) 1.4264
0++ 1 a0(1450) 1.474
0−+ 1 π0 0.134977
0−+ 1 π0(1300) 1.300
0−+ 1 π0(1800) 1.812

Table 1. Light unflavoured mesons from [50] used in the spectrum fit. The quantum number
I = 1 means the meson is a flavour non-singlet state while I = 0 means the meson is a flavour
singlet state.

it in this work. In table 2 we have the mesons listed in [50] under other light unflavoured
mesons, which are still not well established. We also included theses masses in our fit,
therefore in case some of these states are not confirmed this work should be updated.

As our goal is to include the Regge behavior of vector and axial vector mesons, the most
important criterion for the fit will be the deviation of the vector meson masses of the model
from the experimental results. We have explored different fitting strategies. We tested fits
where the parameters αλ and VIR are fitted either independently to Yang-Mills data or
together with the other parameters to “final” meson mass data. We also tried including
lattice data for glueball masses. The result of these tests was that the optimal method,
which lead to a physically sound solution for the metric and a good fit of the spin 1 states,
was to do a global simulatenous fit of all parameters, excluding the glueball masses, and
also imposing specific constraints to the fit parameters. We will explain the details below.

The profile of the background fields and the mesons masses (excluding axial vector
singlet states which will be discussed below) are determined by 17 parameters. 16 of these
parameters (αλ, ακ, αw, W0, w0, κ1, w1, VIR, WIR, κ̄0, w̄0, W1, κ̄1, w̄1, a1, and a2) are
parameters of the potentials appearing in the action and τ0 is a parameter that characterises
the IR asymptotics of the tachyon field. In our fits a1 and a2 are fixed by imposing the
following constraints: we choose a2 − a1 = 1 by rescaling the τ field, and set a2 = 2κ(0) in
order for the mass gap of the mesons to be correct at large quark mass [68]. This reduces
the number of free parameters to 15.

It turns out that it is useful to set extra constraints for the behavior of the tachyon
which guarantee that the fit parameters remain in the domain of physically reasonable
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JPC I Meson Mass Measured (GeV)
1−− 1 ρ(2000) 2.000
1−− 1 ρ(2270) 2.265
1−− 0 ω(1960) 1.960
1−− 0 ω(2205) 2.205
1−− 0 ω(2290) 2.290
1−− 0 ω(2330) 2.330
1++ 1 a1(1930) 1.930
1++ 1 a1(2095) 2.095
1++ 1 a1(2270) 2.270
1++ 0 f1(1970) 1.971
1++ 0 f1(2310 2.310
0++ 1 a0(2020) 2.025
0−+ 1 π0(2070) 2.070
0−+ 1 π0(2360) 2.360

Table 2. Other light mesons from [50] used in the spectrum fit. The quantum number I = 1 means
the meson is a flavour non-singlet state while I = 0 means the meson is a flavour singlet state.

solutions. The first is related to chiral symmetry breaking. The chirally symmetric vacuum
solution of the model flows to an IR fixed point [48]. We require that there is an instability
towards forming a tachyon condensate in the IR around this fixed point, which will imply
chiral symmetry breaking on the field theory side. The presence of the instability, and
therefore chiral symmetry breaking, is guaranteed if the Breitenlohner-Freedman (BF)
bound [73] of the tachyon is violated at the fixed point. This means that −m2

τ `
2
∗ > 4,

where
−m2

τ `
2
∗ = 24(a2 − a1)

κ(λ∗)Veff(λ∗)
, Veff(λ) = Vg(λ)− Vf (λ, τ = 0) . (2.32)

Here the location of the fixed point is the maximum of the effective potential, V ′eff(λ∗) = 0,
and `∗ is the IR AdS radius. Actually, while violation of the BF bound guarantees
tachyon condensation and chiral symmetry breaking, it turns out that, in practice, values
close to the bound are enough to trigger condensation. Therefore we will in fact require
−m2

τ `
2
∗ & 3.5.

The other condition is to require that the tachyon diverges fast enough in the IR to set
all potential IR boundary terms arising from the flavour action to zero. This is required,
among other things, for the correct implementation of the flavour anomalies [47, 63]. For
our choice of potentials the asymptotics of the tachyon in the IR is

τ ∼ τ0 z
τc , τc = 1

8
(12− xW0) κ̄0a2
VIR(a2 − a1) , (2.33)

and the flavor action vanishes fast enough in the IR if τc > 1, which is roughly what we
require below.
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Parameter value Parameter value Parameter value
αλ 2.8328 ακ 3.1670 αw 1.6926
W0 2.4289 w0 0.9400 κ1 1.3254
w1 −0.2898 VIR 1.8042 WIR 1.1345
κ̄0 1.7647 w̄0 2.9291 W1 0.2342
κ̄1 −0.3076 w̄1 3.0358 a1 0.5413
a2 1.5413 τ0 0.9232 Za −0.0377
ca 23.307

Table 3. Best fit parameters of the background potentials to the mass ratios between the mesons
listed on tables 1 and 2 and the ρ meson.

We then fit these parameters to ratios between the meson masses in tables 1 and 2
and the ρ mass, by minimising the function

J =
∑
i

|Rpred. i −Robs. i|
Robs. i

+Wτ e
−(4τc/3−1) +Wτ e

−(−m2
τ `

2
∗−3.5), (2.34)

excluding the singlet axial vector mesons. This gives a total of 22 data points. The sum
term is the absolute relative difference between the predictions of our model and the ones
obtained by using experimental data, while the other two terms are the constraints we want
our background to satisfy. We repeated the fit with different values of the Wτ parameter
in order to balance the ability of the model to reproduce the observed ratios and still be
consistent and stable. We have found that Wτ = 0.1 is a good choice and the results
that we present below were obtained with such value. Having fixed the background, we
fit the parameters Za and ca of equation (2.18) against the four mass ratios between the
singlet axial vector mesons and the ρ meson. With this procedure we have obtained the
parameter values presented in table 3 and the corresponding mass ratios of table 4. This
fit has −m2

τ `
2
∗ ≈ 6.200 and τc ≈ 1.956 which ensure presence of chiral symmetry breaking

and IR decoupling of the tachyon.
Several remarks are in order. Firstly, the fit is stiff: while the number of parameters is

large, the dependence of the results on their values is relatively mild. This is because the
fit parameters appear through only a few functions of λ, the asymptotics at large and small
coupling of which have already been determined by qualitative arguments and comparison
to perturbation theory. Therefore the fit parameters essentially only affect the functions in
the middle, at λ ∼ 1. Also there is limited parameter space where the functions are simple,
monotonic functions, and one can check from the fit result that it indeed lies within this
regime of the parameter space.

Given the stiffness of the fit, the results for the spin-one mesons are really good. There
are a few isolated states for which the deviation is & 10%, but in general the deviations
are in the ballpark of 1% or even less than that. The masses of the pseudoscalar mesons
are also reproduced at a very good precision. There are, however, significant deviations
in the scalar sector. While the scalar sector is challenging to explain in any model among
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Ratio Rpred. Robs. |Rpred. − Robs.|/Robs.

mρ(1450)/mρ 1.662 1.890 0.121
mρ(1700)/mρ 2.141 2.219 0.035
mρ(2000)/mρ 2.559 2.580 0.008
mρ(2270)/mρ 2.940 2.922 0.006
mω(782)/mρ 1 1.010 0.010
mω(1420)/mρ 1.662 1.832 0.093
mω(1650)/mρ 2.141 2.154 0.006
mω(1960)/mρ 2.559 2.528 0.012
mω(2205)/mρ 2.940 2.844 0.034
mω(2290)/mρ 3.289 2.954 0.127
mω(2330)/mρ 3.610 3.005 0.201
ma1(1260)/mρ 1.591 1.587 0.003
ma1(1930)/mρ 2.095 2.489 0.158
ma1(2095)/mρ 2.523 2.702 0.066
ma1(2270)/mρ 2.916 2.928 0.004
mf1(1285)/mρ 1.653 1.654 0.001
mf1(1420)/mρ 2.128 1.840 0.157
mf1(1970)/mρ 2.543 2.542 0.0004
mf1(2310)/mρ 2.930 2.980 0.017
mπ/mρ 0.1740 0.1741 0.0006

mπ(1300)/mρ 1.731 1.677 0.032
mπ(1800/mρ 2.337 2.337 5× 10−5

mπ(2070)/mρ 2.785 2.670 0.043
mπ(2360)/mρ 3.173 3.044 0.042
ma0(1450)/mρ 0.685 1.901 0.640
ma0(2020)/mρ 1.492 2.612 0.429

Table 4. Mass ratios obtained with the parameter values of table 3.

other things due to the presence of significant four-quark contribution [50], the predicted
nonsinglet scalar masses are still clearly too low, unlike in the probe limit study of [56, 57]
which used similar flavor action as the current article with the fixed background of [74].
While exploring different fit procedures, we noticed that there are parameter values for
which the scalar masses are reproduced to a much better precision, but such parameter
values are not favored by the overall fit which stresses the masses of the spin 1 mesons.
Understanding this shortcoming requires further study. Notice that the scalar states are
not needed for the analysis of the Regge trajectories which is the topic of discussion in the
remainder of this paper.
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The fitted value of Za = Z(0) in table 3 is negative. Due to the positive value of
ca, however, the function Z(λ) is mostly positive so that Z(λ) has a node at small λ.
This behavior is unexpected and does not agree with phenomenology, i.e. the physics of
the θ-angle in QCD and in particular the value of the topological susceptiblity [45, 63].
Apparently this issue arises because the singlet axial meson masses are relatively unsensitive
to the shape of the function Z(λ), and would be cured if additional observables (e.g. the
topological susceptiblity) would be included in the fit. The precise functional form of Z(λ)
is again irrelevant for the Regge analysis of the following sections.

It is also interesting to compare the fit results to those obtained in the same holographic
model [66] by fitting the potentials independently to lattice data for QCD thermodynamics.
Namely, most of the values are very close to those obtained in that study, deviations are
typically in the ballbark of 10%. In particular, the scale parameters αλ and ακ are close
to the value 1 used in this reference, whereas αw is a bit higher than what was obtained
through the fit to thermodynamics (αw equals to 3ws of [66]) but still smaller than the
other scale parameters, in agreement with the earlier fit. We also note that there is rough
agreement with [75, 76] where the model was compared to lattice results at finite magnetic
field and temperature by using a sligthly different Ansatz for the potentials of the model.
The parameter c of these references, which controls the scale in the λ dependence of the
w(λ) function, maps roughly to the ratios αw/αλ or αw/ακ in this article. For the ratios
we obtain numbers close to 0.5 whereas c ≈ 0.25 was preferred by the thermodynamics
at finite magnetic field. That is, the numerical values are different, but clearly smaller
than one in both cases. Moreover the value of W0 (which was a free parameter in [66])
is determined by the spectrum fit to be near 2.5. This results is therefore an important
constraint with respect to the earlier fit. The most significant difference between the fits
is the value of w̄0, which here is smaller by a factor of about 5 to 10 with respect to the
various fits of [66]. This is apparently connected to the change in the value of αw.

3 γγ, γp and pp total cross-sections in holographic QCD

In this section we present the necessary ingredients to compute the total cross-sections
of γγ, γp and pp scattering in holographic models of QCD in the Veneziano limit. First
we will discuss the kinematics of each process. Then we will present generic holographic
expressions of the forward scattering amplitude, in the Regge limit, via the exchange of
higher spin J fields. We conclude by deriving the holographic expression of the total cross-
sections by taking the imaginary part of the amplitudes and using the optical theorem.

3.1 Kinematics

For all processes we will use light-cone coordinates (+,−,⊥), with flat space metric ds2 =
−dx+dx− + dx2

⊥, where x⊥ ∈ R2. For the γ∗p → γ∗p process the incoming and outgoing
off-shell photons are the following

k1 =
(
√
s,−Q

2
1√
s
, 0
)
, −k3 =

(
√
s,
q2
⊥ −Q2

3√
s

, q⊥

)
, (3.1)
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while the incoming and outgoing protons with mass M have momenta

k2 =
(
M2
√
s
,
√
s, 0
)
, −k4 =

(
q2
⊥ +M2
√
s

,
√
s,−q⊥

)
. (3.2)

The momentum transfer q⊥ is a R2 vector and is related to the Mandelstam variable t
through t = −q2

⊥. We work in the Regge limit of large Mandelstam variable s. For the
forward scattering amplitude the momentum transfer q⊥ = 0 and the photon virtualities
satisfy Q3 = Q1 = Q, since the outgoing off-shell photon has k3 = −k1 and the outgoing
proton k4 = −k2. The incoming and outgoing photon polarizations are the same. The
possible polarization vectors are

n(λ) =


(
0, 0, ελ

)
, λ = 1, 2(√

s/Q,Q/
√
s, 0
)
, λ = 3

, (3.3)

where ελ is just the usual transverse polarization vector.
For the γ∗γ∗ → γ∗γ∗ process the incoming photons have the four momenta

k1 =
(
√
s,−Q

2
1√
s
, 0
)
, k2 =

(
−Q

2
2√
s
,
√
s, 0
)
, (3.4)

while the outgoing photons have

k3 = −
(
√
s,
q2
⊥ −Q2

3√
s

, q⊥

)
k4 = −

(
q2
⊥ −Q2

4√
s

,
√
s,−q⊥

)
, (3.5)

where Q2
i = k2

i > 0 (i = 1, . . . , 4) are the corresponding virtualities. As in the case of
γ∗p scattering, for the forward scattering amplitude the momentum transfer is null. The
possible polarization vectors are, respectively,

n1,3 =


(0, 0, 1, 0) , λ = 1
(0, 0, 0, 1) , λ = 2
1
Q

(√
s, Q

2
√
s
, 0, 0

)
, λ = 3

, (3.6)

n2,4 =


(0, 0, 1, 0) , λ = 1
(0, 0, 0, 1) , λ = 2
1
Q

(
Q2
√
s
,
√
s, 0, 0

)
, λ = 3

, (3.7)

since in the forward amplitude the incoming and outgoing off-shell photons have the same
polarizations. Notice that the transverse photons (λ = 1, 2) are normalized such that n2 =
1, while for the longitudinal photons (λ = 3) n2 = −1.

Finally, the large s kinematics of pp scattering is given by

k1 =
(
√
s,
M2
√
s
, 0
)
, k3 = −

(
√
s,
q2
⊥ +M2
√
s

, q⊥

)
, (3.8)

k2 =
(
M2
√
s
,
√
s, 0
)
, k4 = −

(
M2 + q2

⊥√
s

,
√
s,−q⊥

)
,
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(a) (b) (c)

Figure 1. Tree level Witten diagram representing spin J exchange in (a) γ∗p→ γ∗p, (b) γγ → γγ

and (c) pp→ pp scattering. The n1 and n2 labels denote the incoming photon polarizations while
n3 and n4 label the outgoing photon polarizations. For forward scattering n1 = n3 and n2 = n4.
Aa represents the non-normalizable mode of a U(1) gauge field dual to the source of the conserved
current ψ̄γµψ and Υ is a normalizable mode of a bulk scalar field that represents an unpolarised
proton. x and x̄ represent the bulk points where the external scattering states couple with the spin
J fields.

where k1 and k2 are the incoming proton momenta and k3 and k4 are the outgoing proton
momenta. As in the other processes we will only compute the forward scattering amplitude
for which q⊥ = 0.

3.2 Holographic scattering amplitudes

Before we start the computation of the forward scattering amplitudes we need to define
the external states as well as the interaction between them and the spin J fields that are
exchanged in the Witten diagrams of figure 1. While for the case of bulk gauge fields
the DBI action allows a direct quartic interaction in the bulk, we will not consider such
diagrams since we will be working in the Regge limit. In the holographic context, the
dominant diagrams correspond to the exchange of spin J fields of the graviton’s Regge
trajectory in the t-channel. The exchange of these fields in the bulk is dual to pomeron
exchange in the field theory [1].

An external photon is a source of the conserved current ψ̄γµψ, where the quark field ψ
comes from the open string sector. According to the gauge/gravity duality this field is dual
to the nonnormalizable mode of a vector field in the bulk. In the context of this model the
natural candidate is the linear combination of the AL and AR gauge fields

Va = ALa +ARa
2 . (3.9)

In the string frame the action of this field is

S = −1
4M

3NcNf

∫
d5x
√
−gse−

10
3 ΦVf w

2
s GFabg̃

acg̃bdFcd , (3.10)

where gs is the determinant of the metric in the string frame, g̃ab is the inverse of g̃ab =
gsab + κs(λ)∂aτ∂bτ , κs(λ) = λ4/3κ(λ) and ws(λ) = λ4/3w(λ). Working in the gauge Vz = 0
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and ∂µV µ = 0, the vector field components describing a boundary plane wave solution with
polarization nµ take the form

Vµ (x, z) = nµfQ (z) eik·x , k2 = Q2 , (3.11)

where fQ satisfies the differential equation

1
Vf (λ, τ)w(λ)2eAG

∂z
(
Vf (λ, τ)w(λ)2eAG−1∂zfQ

)
−Q2fQ = 0 , (3.12)

subject to the boundary conditions fQ (0) = 1 and ∂zfQ (z →∞) = 0. For the computation
of the Witten diagrams that have photons as external states, in particular to compute the
bulk interaction vertex, it is convenient to know the field strength of a given mode

Fµν = 2ik[µnν]fQ(z)eik·x , Fzµ = nµ ˙fQ(z)eik·x , (3.13)

where we use the notation ˙fQ = ∂zfQ.
For the proton external state we consider that it is dual to the normalizable mode

of a bulk scalar field Υ (x, z) = eiP ·xυ (z) that represents an unpolarised proton. We will
see that the contribution of the proton wavefunction to the scattering amplitudes is inside
an integral that will be absorbed in the coupling constants and hence the precise details
will not be important. In this work this is sufficient since, as we will see, our fits will be
sensitive only to the product of an integral with coupling constants. This would not be
the case if we were considering processes that depend on the Mandelstam variable t, since
the proton state would be in an integrand multiplying wavefunctions of the Pomeron and
meson kernels that depend on t. In the future we would like to include differential cross-
section data of pp scattering and this will demand a better assumption than modeling the
proton as a bulk scalar.

The last ingredient of our model are the higher spin fields ha1···aJ that will mediate the
interaction between the external states in the considered scattering states. In this work
we will consider bulk spin J fields that are dual to the spin J twist two operators made of
the gluon field, as well as bulk spin J fields dual to the spin J twist two operators made
of the quark bilinears. This extends the previous works [32, 34, 38], where only bulk fields
dual to the gluon operators were considered. As discussed in appendix B, we will consider
a coupling between the U(1) gauge field and these spin J fields given by

kJ

∫
d5x
√
−gsGe−

10
3 ΦVf (λ, τ)ws(λ)2g̃abF Vac∇a1 . . .∇aJ−2F

V
bd h

cda1...aJ−2 , (3.14)

while for the scalar field Υ dual to the proton state the coupling is

k̄J

∫
d5x
√
−gs e−Φ (Υ∇b1 . . .∇bJΥ)hb1...bJ . (3.15)

In equations (3.14) and (3.15) ∇a is the covariant derivative, while kJ and k̄J are the
couplings constants between the U(1) gauge field and the bulk scalar with the spin J field,
respectively.
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The higher spin J field ha1···aJ is totally symmetric, traceless and satisfies the transver-
sality property ∇a1ha1···aJ = 0. This implies that, in the Regge limit, it is not important in
which external fields the covariant derivatives in (3.14) and (3.15) act. Below we assume
that the spin J field has a propagator, without specifying its form. In the next section we
focus on the dynamics of this field in detail for the case of pomeron and meson trajectories.

Now we will show how to compute the forward scattering amplitude for the case of γp
scattering. The calculations for γγ and pp follow the same pattern and bring no additional
dificulty. For those cases we will simply present the results. In the Regge limit, the
amplitude describing the spin J exchange between the incoming gauge field V (1)

a ∼ eik1·x

and scalar field Υ(2) ∼ eik2·x, and outgoing gauge field V
(3)
a ∼ eik3·x and scalar field

Υ(4) ∼ eik4·x, can be written as

AJ = kJ k̄J

∫
d5x

∫
d5x̄
√
−gs

√
−ḡsGe−

10
3 ΦVf w

2
s e
−Φ̄×

× g̃abF (1)
a− (x)∂J−2

− F
(3)
b− (x) Π−···−,+···+(x, x̄)Υ(2)(x̄)∂J+Υ(4)(x̄) , (3.16)

where bars denote quantities evaluated at x̄ in the Witten diagrams. The tensor
Πa1···aJ ,b1···bJ (x, x̄) is the propagator of the spin J field. Using the kinematics of equa-
tions (3.1), (3.2) and (3.3), the expressions (3.13) and summing over the photon polarisa-
tions, the amplitude takes the form

AJ = kJ k̄Js
J
∫
d5xd5x̄

√
−gs

√
−ḡsGe−

10
3 ΦVf w

2
s e
−Φ̄e−2J(A+Ā)e−2A×

×
(
fQ

2 +
ḟ 2
Q

Q2G2

)
ῡ2e−iq⊥·(x⊥−x̄⊥)Π+···+,−···− (x, x̄) . (3.17)

To make progress we make the change of variable x− x̄ = (w+, w−, l⊥) ≡ w and define the
transverse propagator in transverse space GJ(z, z̄, t) through

∫
d2l⊥e

−iq⊥l⊥
∫
dw+dw−

2 Π+···+,−···−
(
z, z̄, w+, w−, l⊥

)
= − i

2J
(
eA+Ā

)J−1
GJ(z, z̄, t) ,

(3.18)

that is valid both for spin J fields of the graviton Regge and meson trajectories. Defining
V = (2π)4δ4 (

∑
ki) we obtain

AJ = −iV kJ k̄J
2J sJ

∫
dzdz̄ e2Ae4ĀGe−

10
3 Φ Vf w

2
s e
−Φ̄e−J(A+Ā)×

×
(
fQ

2 +
ḟ 2
Q

Q2G2

)
ῡ2GJ(z, z̄, t) . (3.19)

In the next section we will propose phenomenological equations of motion for the higher spin
fields ha1···aJ of both trajectories. In particular, it will be shown that the function GJ(z, z̄, t)
for the pomeron and meson trajectories admits a spectral decomposition associated to a
Schrödinger potential that describes spin J glueballs or spin J mesons. This function can
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be written in terms of the eigenfunctions ψn(J, z) and eigenvalues tn(J) of this Schrödinger
potential in the following way

GJ(z, z̄, t) = eB+B̄∑
n

ψn(J, z)ψ∗n(J, z̄)
tn(J)− t . (3.20)

The function B(z) depends on the holographic QCD model as well on the trajectory that
the higher spin field belongs to. We will determine them in the next section.

Finally, in order to get the total amplitude we need to sum over the spin J fields with
J ≥ Jmin, where Jmin is the minimal spin in the corresponding Regge trajectory. Then we
can apply a Sommerfeld-Watson transform

1
2

∑
J≥Jmin

(
sJ + (−s)J

) AJ
sJ

= −π2

∫
dJ

2πi
sJ + (−s)J

sin πJ
AJ
sJ

, (3.21)

which requires analytic continuation of the amplitude for the spin J exchange to the com-
plex J-plane. The contour on the complex plane consists of circles around simple poles at
integer values of J . Then, we assume that the J-plane integral can be deformed from the
poles at physical values of J to the poles J = jn(t) defined by tn(J) = t. The scattering
domain of negative t contains these poles along the real axis for J < Jmin. The scattering
amplitude for t = 0 is then

A(s, 0) =
∑
n

gγpn s
jn(0)

∫
dz eA(2−jn(0))Ge−

10
3 Φ Vf w

2
s

(
fQ

2 +
ḟ 2
Q

Q2G2

)
eBψn(jn, z) , (3.22)

where

gγpn = π

2
kjn(0)k̄jn(0)

2jn(0)

(
i+ cot πjn (0)

2

)
djn
dt

∫
dz̄ eĀ(4−jn)e−Φ̄ῡ2eB̄ψ(jn, z̄)∗ . (3.23)

By analysing (the regular solution to) the equation (3.12) we see that

lim
Q→0

fQ = 1 , lim
Q→0

ḟQ
Q

= 0 . (3.24)

It therefore follows from the optical theorem that

σ(γp→ X) =
∑
n

Im
(
gγpn
)
sjn−1

∫
du e−(jn−2)Ae−

10
3 Φ Vf w

2
s e

Bψn(u) , (3.25)

where we have made the change of variable du = Gdz.
As mentioned before the procedure to compute the holographic total cross-sections

for the other processes is similar to the one just presented. These calculations are done
in appendices C and D. Hence, we finish this section by presenting the final results. For
γγ → X we have we have

σ(γγ → X) =
∑
n

Im
(
gγγn
)
sjn−1

∫
du e−(jn−2)Ae−

10
3 Φ Vf w

2
s e

Bψn(u) , (3.26)
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where

gγγn = π

2
k2
jn(0)

2jn(0)

(
i+ cot πjn (0)

2

)
djn
dt

∫
dū e−(jn−2)Āe−

10
3 Φ̄ V̄f w̄

2
s e

B̄ψn(u)∗ . (3.27)

For the pp→ X process the total cross-section is

σ(pp→ X) =
∑
n

Im
(
gppn
)
sjn−1 , (3.28)

where

gppn = π

2
k̄2
jn(0)

2jn(0)

(
i+ cot πjn (0)

2

)
djn
dt

∣∣∣∣∫ dz eA(4−jn)e−Φῡ2eBψ(jn, z)
∣∣∣∣2 . (3.29)

4 Spin J dynamics

The Witten diagrams of figure 1 allow to compute four-point functions dominated by ex-
change of twist 2 operators in the large s limit. We consider spin J operators OJ of the form

OJ ∼ tr
[
Fβα1Dα2 · · ·DαJ−1F

β
αJ

]
, OJ ∼ tr

[
ψ̄γα1Dα2 · · ·DαJψ

]
. (4.1)

The first set of operators are gluonic while the second set are quark operators. These twist
2 operators are dual to bulk spin J fields whose dynamics will be specified below. We shall
then follow an effective field theory approach, by proposing a general form of the equations
of motion with phenomenological parameters that can be fixed by data. We will propose
two different equations of motion, one that describes the gluon sector, which includes the
energy-momentum tensor Tαβ , and the other the quark sector, which includes the quark
bilinear current Jα. These equations will satisfy two requirements: i) compatibility with
the graviton’s equation of motion for the case J = 2 for gluonic operators, and compability
for J = 1 with the equation of motion of the U(1) current dual to the operator Jα; ii)
reduction to the conformal limit case (pure AdS space and constant dilation and tachyon).

In pure AdS the equation of motion of a spin J field is(
∇2 −M2

)
ha1···aJ = 0 , (LM)2 = ∆ (∆− 4)− J , (4.2)

where L is the AdS length scale and ∆ is the dimension of the dual operator OJ . These
fields are symmetric, traceless and transverse (TT). The independent components are
the ones along the boundary direction (i.e. hα1···αJ ) due to the transversality condition.
Decomposing these into irreducible representations of the Lorentz group SO(1, 3), the TT
components hTT

α1···αJ decouple from the others and they describe the operator OJ in the
dual theory. The UV asymptotics of these fields are

hα1···αJ ∼ z
4−∆−JJ + · · ·+ z∆−J〈OJ〉+ · · · , (4.3)

with the free theory value ∆ = J + 2, where J is the source of OJ and 〈OJ〉 its vacuum
expectation value.

We will now motivate two equations of motion for spin J , one for the fields in the
Pomeron trajectory and another for the fields in the meson trajectory.
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4.1 Pomeron in holographic QCD in the Veneziano limit

The Pomeron is dual to the graviton Regge trajectory [1]. To derive the equation of
motion of the spin J fields in the graviton’s Regge trajectory we follow the same approach
as in [32, 34], that is we derive first the equation of motion of the graviton and then
generalize it based on the two requirements mentioned above. Only the gluon part of the
action Sg, contributes to the fluctuations in the spin-2 sector. Therefore the equation of
motion of the TT components of the graviton in this class of models is, in the Einstein
frame, the same as in IHQCD [45]

∇2hTT
µν + 2Ȧ2e−2AhTT

µν = 0 , (4.4)

which also equals equation (A.108) of [62] for the 2++ glueballs. This equation reduces
to (4.2) for the AdS case since ∆ = 4 and J = 2 for the AdS graviton. The corresponding
equation of motion in the string frame can be obtained by noting that the warp factor in
the Einstein frame is related with the warp factor in the string frame AS through A =
AS − 2Φ/3, and that the expected relationship between the string frame TT perturbations
hTTS
αβ and Einstein frame TT perturbations hTT

αβ is hαβ = e−4Φ/3hSαβ . Then the equation
of motion in the string frame is (dropping the superscript S in hTTS

αβ )[
∇2 − 2e−2AsΦ̇∇z + 2Ȧ2

se
−2As

]
hTT
αβ = 0 . (4.5)

We propose that the equation of motion of the spin J fields in the graviton’s Regge
trajectory is[

∇2 − 2e−2AsΦ̇∇z −
∆(∆− 4)

L2 + JȦ2
se
−2As + eg (J − 2) e−2As τ̇2

]
hTT
α1...αJ = 0 , (4.6)

where eg is a constant that will be fixed later by setting the soft pomeron intercept to 1.08.
We note that: i) for J = 2 we get the graviton’s equation (4.5); ii) for the conformal case,
i.e. A = − log (z/L) and Φ and τ constant, the equation reduces to (4.2); iii) the second
term comes from the tree level coupling of a closed string, as appropriate for the graviton
Regge trajectory in a large N approximation; iv) following an effective field theory rational
we could have included other terms proportional to derivatives of As, Φ and τ , that is
terms proportional to

e−2As
(
Äs − Ȧ2

s

)
, e−2AsΦ̇2 , e−2AsΦ̈ , e−2AsȦsΦ̇ . (4.7)

All these terms, of dimension inverse squared length, are compatible with the constraint i)
and also with constraint ii) provided they multiply J − 2. Like the term proportional to
τ̇2, these terms are all subleading in the UV. However in the IR, where the wavefunctions
of the associated Schrödinger problem are localised, the term τ̇2 dominates and for this
reason we will only consider this term. We have also not included the terms τ̈ , τ̇ Ȧs and
τ̇ Φ̇ because the background is symmetric under τ → −τ .

The third term in (4.6) is a mass term obtained by the analytic continuation of the
dimension of the exchanged operators ∆ = ∆ (J). We shall set

∆(∆− 4)
L2 = J2 − 4

λ4/3 . (4.8)
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In the boundary theory the dimension of the operator OJ can be written as ∆ = 2+J+γJ ,
where γJ is the anomalous dimension. In free theory γJ = 0. Using the UV asymptotic lim-
its of the background fields A, Φ and τ [48], equation (4.6) near the boundary takes the form(

∂2
z + 2J − 3

z
∂z − 4J − 1

z2

)
hTTα1···αJ = 0 , (4.9)

whose general solution is hTTα1···αJ = c1z
2 + c2z

2−2J . This is expected from equation (4.3),
since in free theory ∆ = J + 2. The term we added in the right-hand side of (4.8) ensures
the correct UV asymptotic behaviour of (4.6). Beyond perturbation theory, the curve must
pass through the point J = 2 and ∆ = 4 as it represents the energy-momentum tensor
which is protected. Equation (4.8) guarantees such properties.

The propagator for the spin J fields in the graviton’s Regge trajectory is the solution of

(DΠ)a1···aJ ,b1···bJ (x, x̄) = ie2Φga1(b1 · · · g|aJ |bJ )δ5(x, x̄)− traces , (4.10)

where the notation ga1(b1 · · · g|aJ |bJ ) means that symmetrisation is applied only among the
indices bi , i = 1, · · · J . As we have seen in the previous section, in the Regge limit we are
only interested in the component Π+···+,−···−. By using the identity (3.18) one can show that[

∆3 − e−2As
(
2Φ̇∂z + 2Ȧs

2 + Äs − 2Ȧ2Φ̇
)
−m2

J(z)
]
GJ (z, z̄, l⊥) = −e2Φδ3(y, ȳ) , (4.11)

where l⊥ = x⊥− x̄⊥ and y = (z, x⊥) and ȳ = (z̄, x̄⊥) are points in the scattering transverse
space with metric ds2

3 = e2As [dz2 + dx2
⊥
]
. ∆3 is the corresponding Laplacian and m2(z)

is given by

m2
J(z) = (J − 2)

[
J + 2
λ

4
3

+ eg e
−2As τ̇2

]
. (4.12)

The homogeneous version of equation (4.11) can be transformed in a Schrödinger problem
through the Ansatz

GJ(z, z̄, t) = eΦ−As2 ψ(z) , (4.13)

where ψ satisfies the Schrödinger equation[
−∂2

z − t+ VJ(z)
]
ψ(z) = 0 , (4.14)

with t = −q2
⊥ and

VJ(z) = 3
2

(
Äs −

2
3Φ̈
)

+ 9
4

(
Ȧs −

2
3Φ̇
)2

+ e2Asm2
J(z) . (4.15)

The spectrum for each integer J discretises t = tn(J) and the corresponding eigenfunctions
satisfy the identity

∑
n ψn(z)ψ∗n(z̄) = δ(z − z̄). Hence, the solution to equation (4.11) is

given by
GJ(z, z̄, t) = eΦ+Φ̄−As2 −

Ās
2
∑
n

ψn(J, z)ψ∗n(J, z̄)
tn(J)− t , (4.16)

and the B function in equations (3.25), (3.26), (3.28) is Φ−As/2 when considering exchange
of reggeons in the Pomeron trajectory.
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Figure 2. Chew-Frautschi plot of four degenerate meson Regge trajectories. All the mesons shown
are well established experimentally, except ρ5, f6 and a6. The particle spins are plotted agains their
squared masses t. Figure adapted from [43].

4.2 Meson trajectory

Next we discuss how to describe the dynamics of spin J fields in the mesons trajectory.
The Chew-Frautschi plot of figure 2 shows two important properties of the mesons tra-
jectories. The first is linearity which is usually used to extrapolate from the t-channel
physical region to the s-channel scattering region where t < 0. That is, we find the
best line to the points and use it to find j(t) for t < m2

ρ. In particular, for total cross-
sections we are interested in the intercept value at t = 0. Another important property is the
near degeneracy of the four trajectories {f2(1270), f4(2050), · · · }, {a2(1320), a4(2040), · · · },
{ω(780), ω3(1670), · · · } and {ρ(770), ρ3(1690), · · · }.

Using the fact that the four trajectories are nearly degenerate and that we had a very
good description of the spectrum for non-singlet and singlet vector mesons (ρ and ω) we
will construct the holographic meson trajectory by generalizing the equation of motion of
vector mesons to any spin J field in the same trajectory. We will follow the same procedure
of last section. Later we will validade our approach by showing how, with just one single
parameter, one can simultaneously have a good description of scattering data, the spectrum
of the meson trajectory, and an approximately linear Regge trajectory for the mesons.

From the action (3.10) for the vector field in the string frame, one gets the equation
of motion

∇a
(
e−

10
3 Φ Vf w

2
s G g̃

acg̃bdFcd
)

= 0 . (4.17)

In order to simplify the notation, from now on we assume all the warp factors and effective
metrics are in the string frame. As a first step to generalize (4.17) we write it as

g̃ab∇a∇bAα +
(
∂zṼ

Ṽ G2 +
(

3Ȧ
( 1
G2 − 1

)
− Ġ

G3

))
e−2A(∇zAα −∇αAz)−

−
(

1− 1
G2

)
∇α∇λAλ +

(
Ä

G2 + 3Ȧ2
)
e−2AAα = 0 , (4.18)
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where Ṽ = e−
10
3 ΦVfw

2
s . In the conformal limit (pure AdS with constant dilaton and

tachyon) the above equation reduces to
(
∇2 −M2)Aα = 0 , (4.19)

with (LM)2 = −4, as expected for a bulk field dual to the current operator ψ̄γµψ with
spin J = 1 and protected dimension ∆ = 3.

We now propose an equation of motion for the symmetric, traceless and transverse spin
J field ha1···aJ in the meson Regge trajectory. As in the graviton case, we are interested in
the TT part hTT

α1···αJ which are the propagating degrees of freedom that decouple from the
other components after decomposing the field in SO(1, 3) irreducible representations. We
propose the equation[

g̃ab∇a∇b +
(
∂zṼ

Ṽ G2 + 3Ȧ
( 1
G2 − 1

)
− Ġ

G3

)
e−2A

(
∂z − (J − 1)Ȧ

)
− (4.20)

(
1− 1

G2

)
∇α1∇λ −

(
∆ (∆− 4) Ȧ2 − J Ä

G2

)
e−2A + em (J − 1) e−2Aτ̇2

]
hTT
α1···αJ = 0 .

We note that: i) this equation reduces to the vector meson equation of motion for J = 1;
ii) in the AdS case the second, third and fifth terms vanish, reducing this equation to the
equation of motion of the TT components of spin J fields in AdS; iii) Following the same
logic as for the fields in the Pomeron trajectory we only included the two-derivative term
in τ̇2 that is compatible with i) and ii). Also, as in the case of the Pomeron, the ∆(J)
curve follows from the analytic continuation of the dimension of the exchanged operators
and imposing the correct UV asymptotic behaviour of the spin J fields:

∆ (∆− 4) = −3 + e2A

Ȧ2
J2 − 1
λ

4
3

. (4.21)

The last term guarantees the correct UV behaviour of the spin J fields given in (4.3), while
the first one ensures that the curve passes through the protected point ∆ = 3, J = 1.

Equation (4.20) can be brought to Schrödinger form by first rewriting it in terms of
the u variable defined previously. After that we can write the spin J field as

hTT
α1···αJ = εα1···αJ e

iq·x e(J−1)A√
e−

10
3 Φ Vf w2

s e
A
ψ(u), (4.22)

where ψ satisfies the Schrödinger equation

− d2ψ

du2 + VJ(u)ψ = t ψ. (4.23)

The Schrödinger potential is given by

VJ(u) = VV (u) +
(
J2 − 1

)
e2A− 4

3 Φ + (J − 1)
[
G2Ȧ2 − ȦĠG+G2Ä

G2 − emG2τ̇2
]
, (4.24)
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where VV is the Schrödinger potential of the vector mesons given in (2.23). Here the dots
mean derivatives with respect to the u variable. We will denote the eigenvalues of this
Schrödinger potential as tn(J) and the corresponding eigenfunctions as ψn(J, u).

The propagator for this spin J field obeys an equation of the type

(DΠ)a1···aJ ,b1···bJ = iga1(b1 · · · g|aJ |bJ )δ5(x, x̄) G

e−
10
3 ΦVfw2

s

, (4.25)

where D is a differential operator defined by (4.20). In the Regge limit we will be interested
in the components Π+···+,−···− and for this particular case

DΠ+···+,−···− = i

(
−e

2A

2

)J
δ5(x, x̄) G

e−
10
3 ΦVfw2

s

. (4.26)

Consider now the integral∫
dw+dw−

2 Π+···+,−···− = −i
(
−1

2

)J
e(J−1)(A+Ā)GJ(u, ū, l⊥) , (4.27)

that defines the transverse propagator GJ . Applying the operator D on both sides of this
equation and noting that

D
[
e(J−1)(A+Ā)GJ(u, ū, l⊥)

]
= e(J−1)(A+Ā)D3GJ(u, ū, l⊥) , (4.28)

where D3 is the differential operator

D3 = e−2A∂2
u + e−2A

(
Ȧ− 10

3 Φ̇ + 2w
′
sΦ̇
ws

+ ∂uVf
Vf

)
∂u + e−2A∂2

l⊥
+ (4.29)

+ (J − 1) eme−2AG2τ̇2 − J2 − 1
λ4/3 − (J − 1) e−2A

[
G2Ȧ2 − ȦĠG+G2Ä

G2

]
,

we conclude that GJ satisfies

D3GJ(u, ū, l⊥) = −δ3(y, ȳ) G

e−
10
3 ΦVfw2

s

(4.30)

where y and ȳ are coordinates in transverse space, as defined after (4.11).
To solve (4.30) we consider its homogeneous version and the following Ansatz

GJ(u, l⊥) = eiq·l⊥√
e−

10
3 ΦVfw2

se
A
ψ(u) . (4.31)

It follows that ψ is a solution of the Schrödinger problem (4.23). Since the eigenfunctions
of the Schrödinger potential satisfy

∑
n ψn(u)ψn(ū)∗ = δ(u− ū) the solution to (4.30) is

GJ(u, ū, t) =
(
e−

10
3 ΦVfw

2
se
A
)−1/2

∣∣∣∣
u

(
e−

10
3 ΦVfw

2
se
A
)−1/2

∣∣∣∣
ū

∑
n

ψn(u)ψn(ū)
tn(J)− t . (4.32)

Thus, the implications of this result for (3.25), (3.26) and (3.28) is that

B = −1
2 log

(
e−

10
3 ΦVfw

2
se
A
)
, (4.33)

when considering exchange of reggeons in the meson trajectory.
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5 Fit of γγ, γp and pp total cross-sections in holographic model

In this section we will test the presented phenomenological model for γγ, γp and pp

total cross-sections against the hadronic cross-section data files from the Particle Data
Group [50]. These data sets are formed from experimental results obtained by different
groups over the last decades. The datasets of σ(γp → X) and σ(pp → X) have cross-
section values as a function of the laboratory momentum of an incoming on-shell photon
or proton, respectively. A calculation of the respective center of mass energy

√
s was per-

formed before starting the fits. We also considered only subsets of data with
√
s > 4 GeV

for σ(γγ → X), σ(γp→ X) and σ(pp→ X), yielding 39, 45 and 115 experimental points,
respectively.

We find the best set of parameter values αi by minimising the χ2 quantity

χ2 =
N∑
n=1

(
Opred
k (αi)−Oexp

k

σk

)2

, (5.1)

that is, the sum of the weighted difference squared between experimental data and model
predicted values where the weight is the inverse of the experimental uncertainty. In our
fits the parameters αi are the couplings kg/mjn

and k̄g/mjn
defined in equations (3.23), (3.27)

and (3.29), where the superscript refers the coupling to the pomeron or meson trajectory.
Usually a fit is deemed of good quality if the quantity χ2

d.o.f. ≡ χ2/(N −Npar) ∼ 1, where
Npar is the number of parameters αi to be fitted. In (5.1) Ok represents a generic data
point of one or several observables mentioned previously and, usually, σk is the experimental
uncertainty associated with the measurement. Some data points have uncertainties in the
values of s (e.g. in γγ → X that is always the case because it is measured experimentally).
To account for this we calculate the total cross-section for s+ ∆s and s−∆s, and evaluate

σeff. = max
(
|σpred. (s+ ∆s)− σpred. (s) | , |σpred. (s−∆s)− σpred. (s) |

)
. (5.2)

For these cases σk =
√

(σexp.)2 + (σeff.)2 where σexp. is the experimental error.
By minimising (5.1) with all the data mentioned above we can find the best values for

the potentials parameters eg and em, as well as for the coupling values kjn and k̄jn with
n = 1, 2, · · · for each trajectory. We will follow another approach. As shown in [34], the
first two trajectories of the gluon kernel can be identified to the hard and soft pomeron
trajectories. Here we will fix eg by demanding that the intercept of the soft pomeron
trajectory is 1.08. We also identify the meson trajectory with the first trajectory of the
meson kernel and we will fix em such that we have agreement with the meson masses of
(f2, a2), (ρ3, ω3) and (f4, a4) for J = 2, 3, 4, respectively. The numerical values of these
parameters were found to be 0.246 and 1.712 for eg and em, respectively. The intercept
values obtained from these parameter values can be found in table 5 and the leading
trajectories are shown in figure 3. The corresponding masses of the mesons for J = 2, 3, 4
are present in table 6. The intercept of the hard pomeron is close to 1.17 which was
the one found in the IHQCD model [34, 38]. We also note that the intercept of the 4th
Pomeron trajectory and of the meson trajectory are very close to 0.55 found in the hadronic
cross-section fits of [43].
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)

gluon n = 1
gluon n = 2
gluon n = 3
meson n = 1

Figure 3. The first three Regge trajectories of the gluon kernel and the first meson trajectory of the
meson kernel used in the cross section fits. They result from solving the Schrödinger problems (4.15)
and (4.24) for several values of J . The black dots are the experimental values of the mesons f2, a2,
ρ3, ω3, f4 and a4.

Intercept Intercept value
jg
1 1.22
jg
2 1.08
jg
3 0.862
jg
4 0.574

jm
1 0.625
jm
2 0.246

Table 5. Values of the intercepts of the first four trajectories of the Pomeron kernel and of the first
two trajectories of the meson kernel. These values were obtained with eg = 0.246 and em = 1.712.

meson mass predicted mass
f2(1270) / a2(1320) 1.2755 / 1.3169 1.310
ρ3(1690) / ω3(1670) 1.6888 / 1.667 1.673
f4(2050) / a4(2040) 2.018 / 1.967 2.003

Table 6. Meson masses in GeV for J = 2, 3, 4 obtained for em = 1.712 and the corresponding
experimental values.
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γ coupling value proton coupling value
kgj1 0.0634496 k̄gj1 2.23798

kgj2 -0.119512 k̄gj2 -15.485

kgj3 0.0180875 k̄gj3 7.11293

kmj1 0.043448 k̄mj1 12.8753

Table 7. Values of the couplings for the joint fit of σ (γγ → X), σ (γp→ X) and σ (pp→ X) data.
There are 199 experimental points giving a χ2

d.o.f. = 0.74.

101 102

s (GeV)
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200

400
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800

1000
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1400
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b)

HVQCD
exp. data

Figure 4. Fit of σ(γγ → X) vs experimental points. The curve was obtained using the values
from table 7.

After fixing the kernel parameters eg and em, we fit the total cross-section data by
minimising (5.1) with respect to the couplings kg/mjn

and k̄g/mjn
. Considering only the first

three Pomeron trajectories and the first meson trajectory with the intercepts of table 5 we
obtain a χ2

d.o.f. of 0.74 for a total of 199 experimental points and 8 parameters. The best
fit parameters are present in table 7 and the comparison of the experimental data with
the predictions of the model for these parameters is present in figures 4, 5 and 6. These
results show that one does not need to assume a linear meson trajectory after fixing it at
t > 0 in order to describe total cross-section data, as it is often assumed in the literature,
leading to an the intercept value of 0.55. The Regge trajectory is convex line, which yields
a slightly higher intercept.

6 Conclusions

In this article, we studied Regge theory in a full-fledged holographic model (V-QCD),
which includes backreaction of quark degrees of freedom to the gluon dynamics in QCD.
The main new results can be divided into two categories: firstly, we made progress with
the comparison of the model with QCD data by carrying out a detailed fit of the model
paratemeters to the meson spectrum. Secondly, we developed a scheme to describe higher
spin mesons and Regge trajectories in this model, and applied it to analyse the total QCD
cross sections of scattering precosses having protons and photons in the inital state.
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Figure 5. Fit of σ(γp → X) vs experimental points. The curve was obtained using the values
from table 7.
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Figure 6. Fit of σ(pp → X) vs experimental points. The curve was obtained using the values
from table 7.

As explained in section 2, the holographic model is strongly constrained by the re-
quirement that it agrees with known features of QCD such as confinement, chiral symmetry
breaking, asymptotic linearity of meson trajectories, qualitatively correct dependence of the
spectrum on the quark mass, correct response to small chemical potential at small tempera-
tures, and asymptotic freedom with correct dimensions (and anomalous dimensions) of the
most important operators of QCD at weak coupling. Most of the remaining parameters,
which are not determined by such qualitative considerations, amount to tuning of the var-
ious potentials of the V-QCD action at intermediate values of the coupling. In this article
we have chosen to tune these parameters such that the meson spectrum of the model agrees
well with experimental QCD data. The number of fitted parameters is large, because we
want to make sure that our Ansatz for the potentials covers essentially all of the param-
eter space left free by the constraints listed above. However since the effect of all these
parameters on the potentials is relatively small, the dependence of the result for the meson
masses on the parameters is weak. In other words, one obtains a rather good description
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of the QCD spectrum for any reasonable values of the parameters, and the task carried out
in this article is to tune the masses to agree as well with experimental values as possible.

Because we were mostly interested in the Regge physics in this article, we chose a
strategy where we only fitted the meson masses with spins J = 0 and J = 1, but did not
consider other data such as decay constants or thermodynamic potentials. Notice also that
we included radial excitations with high masses and these state were fitted with the same
weight as the “important” low-lying states such as the pions and the ρ-meson. That is, the
fit was tailored for the purpose of studying the Regge physics where reproducing the correct
asymptotics of the trajectories is important. It is anyhow interesting that the results of the
fit are in good agreement with those obtained in [66] where essentially the same Ansatz was
compared to the lattice data for the thermodynamics of Yang-Mills theory and QCD at
finite temperature, and in rough agreement with the value of the parameter c of [75, 76] as
we explained in section 2.4. We also remark that the fit carried out here appears to be more
constraining than those carried out in the earlier references: our fit favorsW0 ≈ 2.5 whereas
this parameter was left unconstrained by the comparison to lattice thermodynamics. We
obtained a very good fit for the spin 1 and pseudoscalar meson masses. This fit was more
extensive than that carried out in the probe limit in the closely related model of [56, 57].
It also compares favorably to work in simpler holographic models and in models inspired
by gauge/gravity duality, such as the hard [77, 78] and soft wall models [79], light front
holography [80, 81], and the holography inspired stringy hardon model [82, 83].

There are several ways to further develop the holographic model and the fitting pro-
cedure in the future. A simple project would be to redo the fit to meson spectrum with
the aim of producing a model for all purposes, which would mean to weight more the
mesons having low masses and also consider other experimental data relevant for the zero
temperature vacuum such as decay constants, the flavor singlet scalar and pseudoscalar
states, topological susceptibility, the S-parameter and so on. The potentially challenging
issue, which we noticed while doing the fit of this article, is that the scalar meson masses
agree poorly with the experimental values. This issue would need to be solved. A more
ambitious project would be to carry out a simulatenous comparison of the zero tempera-
ture and finite temperature data, i.e. to also include the data for lattice thermodynamics
at finite temperature and potentially also at finite magnetic field. Good agreement of the
model parameters obtained by fitting the zero and finite temperature data independently
suggests that such a project is feasible. As a part of the project, it might make sense to
also generalise the model to include flavor dependent quark masses and flavor dependent
coupling of the magnetic field to the quarks.

Having fixed the action for the geometry and the actions for scalar and vector mesons
through the fit, we proposed the dynamics for the spin J fields dual to the gluon and
quark twist two operators. This dynamics is controlled by two parameters that were
fixed by making the second Pomeron trajectory intercept to be 1.08 (the known soft-
pomeron intercept) and by reproducing quite accurately the masses of the mesons with
J = 2, 3, 4. We have found that the hard pomeron intercept is close to 1.17 in IHQCD.
We also note that the fourth Pomeron trajectory and the leading meson trajectory that we
obtained have intercepts close to the meson intercept value of 0.55 commonly found in the
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literature. Using the first three pomeron trajectories and the first meson trajectory we had
a very good fit of the total cross-sections of γγ, γp and pp scattering. We note here that
although our meson intercept is close to 0.55, the corresponding trajectory is non-linear
in the t > 0 region (see figure 3), as it is often assumed. This suggests that the linearity
of the trajectory might be at best a very good approximation to obtain an intercept that
explains total cross-section data, and not its true shape in this region.

This work can now be extended to other processes like the proton structure functions
F p

2 and F p
L and the photon structure function F γ2 , as done in [42]. In this model their holo-

graphic expressions are given respectively by equations (E.3), (E.4) and (D.3) from the
appendix E. From these expressions one can see that: i) the Bjorken x behaviour depends
solely on the value of the intercept; and ii) the Q2 dependence comes from an integral
involving the non-normalizable mode of the U(1) gauge field fQ, functions of the back-
ground fields and the normalisable wave functions ψn of the pomeron and meson kernels.
Having the background fixed, the first two classes of functions are uniquely determined
while the ψn’s might be controlled by phenomenological parameters (similar to eg and ef )
of the equations of motion of the spin J fields. In this work, with the values of eg and ef
fixed by the spectrum of higher spin mesons, we may have obtained the correct Bjorken x
behaviour, but it is not guaranteed that the wave functions yield the observed dependence
of the structure functions on Q2. Hence, one needs to consider the neglected terms of
equation (4.7) in order to get good agreement between our model and data. Of course
this involves adding more parameters to these fits, making it harder to find a minimum
for the χ2 function that describes satisfactory all the data being considered. If successful,
this would also extend [42] by including also pp total cross-section data in a consistent
holographic Regge analysis.

Since this model reproduces well the masses of the towers of ρ and π mesons, one could
also test this approach against the Vector Meson Production (VMP) data from HERA with
a ρ meson in the final state and to include π0p total cross-section data. This will introduce
extra parameters in this holographic Regge model. In the π0p total cross-section we could
introduce couplings between the pions and the spin J fields of the different trajectories.
On the other hand, the VMP data would promote the coupling constants kJ to functions
of t since in differential cross-section data we work with more than one value of t. In
order to control the amount of parameters to be introduced in this model, it would be
interesting to fix the couplings, or the functional form of kjn(t), to other observables where
these couplings might be important. This could be done by first using a theoretical well
motivated ansatz for kjn(t) with some free parameters. These free parameters could then
be fixed by the experimental values of decay rates. As an example of this, km

j1(m2
f2

) and
Γ(f2 → γγ) are related through equation (3.14) for the J = 2 case.

To describe successfully VMP in this holographic setting we need a better approx-
imation to the proton state than assuming it to be a scalar field. In this work this is
sufficient, since the integrals that involve the proton wavefunction are absorbed in the fit-
ting parameters. However, in the VMP case the proton state is in an integrand multiplying
wavefunctions of the Pomeron and meson kernel that depend on t. Moreover, having a good
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model for the proton state could also allow to extend this work directly by including avail-
able data of pp differential cross-section data. In holography, baryons are dual to solitons in
the bulk and hence the problem is reduced to the calculations of these solutions [84]. Such
solitons have been studied in the literature in the Witten-Sakai-Sugimoto model [85, 86]
and in hard-wall models [87, 88]. In the V-QCD model, baryons have so far only been
considered by employing an approximation scheme [70], and the construction of the soliton
solutions is work in progress. Such a solution could be a good starting point to model the
proton state in holographic Regge theory.
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A Solving the equations of motion

In this appendix we give details on how the equations of motion are solved. It turns out to
be convenient to write the resulting equations in terms of A instead of the radial coordinate
z. This change of coordinates stretches distances close to the boundary which eases the
numerical UV analysis. To implement this one introduces the new variable

q(A) = dz

dA
eA , (A.1)

so that the metric reads
ds2 = q2dA2 + e2A ηµνdx

µdxν . (A.2)

From now on all the background fields will be functions of A and the differential equations
we present are all with respect to A being the independent variable.

Yang-Mills equations of motion. If we set x = 0 we obtain the action of the IHQCD
model and hence we are dealing with a pure Yang-Mills theory in the large Nc limit. The
equations of motion are then

dq

dA
= 1

3
(
12q − q3Vg(Φ)

)
, (A.3)

dΦ
dA

= −
√

3
2

√
12− q2Vg(Φ) . (A.4)

The solution of the pure Yang-Mills background is needed in our method for constructing
the full V-QCD solution, as we explain below. We will therefore solve this coupled set of
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differential equations by shooting from the IR to the UV. The coordinate A runs from −∞
to +∞, but naturally we will need to intriduce cutoffs for the numerical solution. We set
AIR = −150 and AUVYM = 50 as the lower and upper bound on A. In the IR the geometry
ends in an IR singularity of the “good” kind according to the classification of [64]. At the
singularity the warp factor A and the dilaton Φ have the asymptotic forms [48]

AIR (z) = −z2 + 1
4 log(6z2)− log(VIR)

2 + 23
24 −

173
3456z2 +O

( 1
z4

)
, (A.5)

ΦIR (z) = +3
2z

2 − 23
16 − log

(
αλ
λ0

)
− 151

2304z2 +O
( 1
z4

)
, (A.6)

as z → ∞. This allows us to determine zIRYM such that AIR (zIRYM) = −150 and use its
numerical value to compute Φ (AIR) = ΦIR (zIRYM) and q (AIR) = eAIR/dAIR

dz and hence
defining boundary conditions to solve equations (A.3) and (A.4). Note that αλ and VIR
determine uniquely both the initial conditions as well as the evolution of the background
fields in pure YM.

After we solve the YM equations we can determine z (A) by using equation (A.1). We
solve this numerically by taking z(AIRYM) = zIRYM as initial condition and at the end we
perform the shift z (A)→ z (A)− z (AUVYM) in order to have the UV singularity at z = 0.

We finish this section by specifying which algorithms we have used to find the numerical
YM background. To compute zIRYM we have used the root finding Van Wijngaarden-
Dekker-Brent method described in [89]. The differential equations (A.3) and (A.4) were
solved using integrate_const with a Runge-Kutta-Dormand-Prince stepper from the Boost
C++ library.

Solving the equations of motion in the holographic model. The solution of the
equations of motion in V-QCD at zero temperature is done in four stages. This is because,
as it turns out, the equations of motion are stiff in particular close to the IR singularity.
Therefore for the numerical code to be stable, it is better to divide the range of A into
region where different kind of approximations can be used that reduce the stiffness problem.
In the first two regions we are deep in the IR and the tachyon is decoupled from the other
background fields and q (A) so that Φ (A) obey equations (A.3) and (A.4). In these stages
we therefore use the YM background constructed as explained above for the metric and
for the dilaton. In the third stage the tachyon will couple to the other background fields
until it reaches the UV where it decouples again starting the fourth and last stage of the
solution of the EOMs.

As in the YM case we start by first specifying the IR boundary conditions. We first
define AIR = −150, AUVYM = 50, AUVc = 100 and AUVf = 1000. Again we compute zIRYM
as in the YM case and we use it to compute q (AIR) and Φ (AIR) as in YM and τ (AIR)
using the tachyon IR asymptotics

τ ∼ τ0 z
τc , τc = (12− xW0) κ̄0a2

8VIR(a2 − a1) , (A.7)

where τ0 is a parameter that is going to be fitted to the spectrum. The constants τcut = 1000
and Vf cut = 10−8 are defined and they mark the end of the first and second stages of the
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construction of the numerical background, respectively. The difference between the first
and the second stage is that in the first stage, the tachyon is so large that nonlinear
corrections ∼ 1/τ2 can be ignored in the tachyon equation of motion. In the second stage
we need to use the full tachyon equation of motion, while the tachyon remains decoupled
(as signaled by the smallness of the tachyon potential, Vf/Vg < Vf cut).

We start the construction of the background by computing the YM profile of q (A)
and Φ (A) from AIR to AUVYM as explained above. If τIR > τcut the tachyon profile will
be given by the solution of the differential equation (linearized at large τ)

dτ

dA
=

2q2Vf0
dVτ
dτ

Vτ
(
8Vf0κ+ 2κdVf0

dΦ
dΦ
dA + Vf0

dκ
dΦ

dΦ
dA

) , (A.8)

until τ < τcut, marking the end of the first stage. The value of A such that this condition
is met is called AUV1 The values of q and Φ used are the ones given by YM.

In the second stage we solve the (full) tachyon differential equation

d2τ

dA2 =
q2 Vτ

dτ

Vτ κ
− 4 dτ

dA
+ d log q

dA

dτ

dA
+

Vτ
dτ

Vτ

(
dτ

dA

)2
− 4κ

(
dτ
dA

)3

q2 − (A.9)

− d log Vf0
dΦ

dτ

dA

dΦ
dA
− d log κ

dΦ
dτ

dA

dΦ
dA
− κd log Vf0

dΦ

(
dτ

dA

)3 dΦ
dA

q2 −
dκ

dΦ
dΦ
dA

(
dτ
dA

)3

2q2 ,

from the value of AUV1 to AUVYM. Using the profiles of q, Φ and τ we compute AUV2 such
that AUV1 < AUV2 < AUVYM and Vf (Φ, τ) = Vf0 (Φ)Vτ (τ) = Vf cutVg (Φ) are satisfied.
This condition marks when the tachyon starts to couple with q and Φ from the IR to the UV.

In the stage where the tachyon is coupled the dynamics of the background fields obeys

dq

dA
= 4

9q
(
dΦ
dA

)2
+ x qVfκ

(
dτ
dA

)2

6
√

1 + κ

(
dτ
dA
q

)2
, (A.10)

d2Φ
d2A

= −3
8q

2dVg
dΦ + 9

dΦ
dA

+ 3
4
q2

dΦ
dA

 xVf√
1 + k

( dτdA)2

q2

− Vg

− (A.11)

− 5dΦ
dA

+ xVfk

(
dτ
dA

)2
dΦ
dA

6
√

1 + κ

(
dτ
dA
q

)2
+ 4

9

(
dΦ
dA

)3
+

+ 3
8xq

2
dVf
dΦ√

1 + κ

(
dτ
dA
q

)2
+ 3

8xκ
(
dτ

dA

)2 dVf
dΦ√

1 + κ

(
dτ
dA
q

)2
+

+ 3
16xVf

(
dτ

dA

)2 dκ
dΦ√

1 + κ

(
dτ
dA
q

)2
,
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d2τ

dA2 =
q2 dVτ

dτ

Vτ κ
− 4 dτ

dA
+

dVτ
dτ

Vτ

(
dτ

dA

)2
− 4 κ

q2

(
dτ

dA

)3
+ xκVf (Φ, τ)

(
dτ
dA

)3

6
√

1 + κ

(
dτ
dA
q

)2
−

− d log(Vf0)
dA

dΦ
dA

dτ

dA
− κd log Vf0

dA

dΦ
dA

(
dτ
dA

)3

q2 + 4
9

(
dΦ
dA

)2 dτ

dA
− d log(κ)

dΦ
dΦ
dA

dτ

dA
−

− 1
2
dκ

dΦ
dΦ
dA

(
dτ
dA

)3

q2 . (A.12)

This is a stiff system of differential equations and for this reason we had used the function
integrate_adaptive with the rosenbrock4 stepper from the Boost C++ library. This system
is solved from AUV2 to AUVc. The value AUVc = 50 was chosen such that at this point we
are in the UV and the tachyon decouples again from q and Φ: this is guaranteed as the
tachyon is suppressed exponentially in the UV (τ ∼ mqe

−A).
The UV equations of motion are

dq

dA
= 4

9q
(
dλ
dA

λ

)2

, (A.13)

d2λ

dA2 = −3
8(qλ)2dVg

dλ
+ 9 λ

2

dλ
dA

+ 3
4

(qλ)2

dλ
dA

(xVf0 − Vg)− 5 dλ
dA

+

+ d log q
dA

dλ

dA
+

(
dλ
dA

)2

λ
+ 3

8 x (qλ)2dVf0
dλ

, (A.14)

d2τn
dA2 = 3τn +

eAq2 Vτ
dτ

Vτκ
+ τn

d log Vf0
dλ

dλ

dA
+ τn

dλ

dA

d log κ
dλ

− d log q
dA

τn−

− 2dτn
dA
− d log Vf0

dλ

dλ

dA

dτn
dA
− dλ

dA

dτn
dA

d log κ
dλ

+ d log q
dA

dτn
dA

, (A.15)

where τn = eAτ . This system is solved from AUVc to AUVf . With the profile of τn and λ
in this region we can compute an estimate the quark mass mq through the UV asymptotic
formula

mq est(A) = 1
`UV

τn (A) e−τcorr(λ(A)) , (A.16)

τcorr(λ) =
(−88 + 16x+ 27αλ κ1) log

(
24π2

(11−2x)λ

)
12x− 66 , (A.17)

where `UV is the UV AdS radius. We then obtain the final estimate for the quark mass
by evaluating this estimate at two large values, i.e. at A = AUVf and at A = AUVf − 10
and linearly extrapolating the result to the UV (i.e. λ = 0) on the (λ,mq est) -plane. As
in the YM case we can determine z (A) by using equation (A.1) and perform the shift
z (A)→ z (A)− z (AUVYM) in order to have the UV singularity at z = 0.
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B EOM and couplings of the U(1) gauge field

In this appendix we start deriving the action of the vector meson sector since the non-
normalisable solution of the corresponding equations of motion is dual to the external
photon in the boundary. Then, by linearising the action we find the coupling of the U(1)
gauge field to the graviton of the bulk theory. All of this is made in the Einstein frame.
Since we will be dealing later with calculations on the string frame we will explain how
to translate these results to the string frame. Finally we generalise the coupling to the
graviton to any spin J field in the graviton’s Regge trajectory.

The action of the vector U(1) gauge field. As mentioned previously, for the QCD
vacuum we set ARa = 0 = ALa . When we turn on the gauge fields, the flavour action becomes

Sf = −M
3Nc

2

∫
d5xVf (λ, τ)Tr

[√
−det

(
(geff.)ab + TLab

)
+
√
−det

(
(geff.)ab + TRab

)]
,

(geff.)ab = gab + κ (λ) ∂aτ∂bτ ,
TLab = w (λ)FLab + κ (λ)D(aτDb)τ − κ (λ) ∂aτ∂bτ , (B.1)
TRab = w (λ)FRab + κ (λ)D(aτDb)τ − κ (λ) ∂aτ∂bτ .

Here we remember that Tr is a trace over the flavour indices while the determinant is
computed with respect to the space-time indices. Writing the determinants inside the
square roots as

det
(
geff. + TL/R

)
= det (geff.) det

(
1 + g−1

eff.T
L/R

)
, (B.2)

defining XL/R = g−1
eff.T

L/R and using the identity

ln det
(
1 +XL/R

)
= tr ln

(
1 +XL/R

)
= trXL/R − 1

2tr
(
XL/R

)2
+ · · · , (B.3)

it follows that √
det

(
1 +XL/R

)
= 1 + 1

2trX
L/R − 1

4tr
(
XL/R

)2
+ · · · , (B.4)

trXL/R =
∑
a,b

(
g−1

eff.

)
ab
T
L/R
ab , (B.5)

tr
(
XL/R

)2
=

∑
a,b,c,d

(
g−1

eff.

)
ac
T
L/R
cb

(
g−1

eff.

)
bd
T
L/R
da . (B.6)

The expressions for the matrix elements of g−1
eff. and TL/R are(

g−1
eff.

)
zz

= e−2A

G2 ,
(
g−1

eff.

)
µν

= ηµνe−2A , (B.7)(
g−1

eff.

)
zµ

=
(
g−1

eff.

)
µz

= 0 , (B.8)

TL/Rzz = 0 , (B.9)

TL/Rzµ = −TL/Rµz = w (λ) (±∂zAµ + ∂zVµ) , (B.10)

TL/Rµν = 4κ (λ) τ2AµAν + w (λ) (±Aµν + Vµν) , (B.11)
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where the vector and axial gauge fields Va and Aa are linear combinations of the left and
right gauge fields

Va = ALa +ARa
2 , Aa = ALa −ARa

2 , (B.12)

in the gauge Vz = 0 = Az, Vµν = ∂µVν − ∂νVµ and Aµν = ∂µAν − ∂νAµ.
From these identities and after some calculations one gets

Sf = −1
2M

3Nc

∫
d5xVf (λ, τ)

√
−geff. Tr

[
2 + 4e−2Aκ (λ) τ2AµA

µ+ (B.13)

+ w (λ)2e−4A

G2 (∂zAµ∂zAµ + ∂zVµ∂zV
µ) + 1

2e
−4Aw (λ)2 (VµνV µν +AµνA

µν)
]
.

The first term is the background term, while the two other terms can be packed into the
actions

SV = −1
2M

3NcTr
∫
d5xVf (λ, τ)w(λ)2G−1eA

(
∂zVµ∂zV

µ + 1
2G

2VµνV
µν
)
, (B.14)

SA = −1
2M

3NcTr
∫
d5xVf (λ, τ)w(λ)2G−1eA

×
(
∂zAµ∂zA

µ + 1
2G

2AµνA
µν + 4e2Aκ(λ)G2τ2

w(λ)2 AµA
µ

)
, (B.15)

which are the actions for the Non-singlet Vector and Axial-Vector mesons presented in [62].
The equation (B.14) can still be rewritten as

S = −1
4M

3NcNf

∫
d5x
√
−g Vf w2GFabF

ab, (B.16)

where here the notation FabF ab means

FabF
ab =

∑
a,b,c,d

Fab
(
g−1

eff.

)
ac

(
g−1

eff.

)
bd
Fcd . (B.17)

From Einstein frame to string frame. To compute the action of the U(1) gauge field
in the Einstein frame we approximated the square roots of the determinants present in Sf as√

− det
(
geff. + TL/R

)
=
√
−geff.

[
1 + 1

2trX −
1
4trX

2 + 1
8(trX)2 + . . .

]
, (B.18)

with X = g−1
eff.T

L/R for some tensor TL/R. The string frame warp factor As is related
to the Einstein frame warp factor A through As = A + 2

3Φ. From this it follows that√
−geff. = e−10Φ/3√−geff. s and the matrix X in the previous equation can be written as

X = g−1
s T

L/R
s with TL/Rs = e4Φ/3T

L/R
E . This implies that√

− det
(
geff. + TL/R

)
= e−10Φ/3

√
− det

(
geff. s + T

L/R
s

)
, (B.19)

i.e. Sf in the string frame is obtained by simply substituting the metric by the string frame
metric gs, substituting κ(λ) and w(λ) by κs(λ) = e4Φ/3κ(λ) and ws(λ) = e4Φ/3w(λ) and
multiplying Vf by the factor e−10Φ/3. The derivation of SV in the string frame will be
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formally the same and hence the results equal to the Einstein frame ones but with ws, κs
and e−10Φ/3Vf in place of w, κ and Vf respectively. The action (B.16) in the string frame
takes the form

S = −1
4M

3NcNf

∫
d5x
√
−gse−

10
3 Φ Vf w

2
sGFabF

ab . (B.20)

Couplings with the spin J fields. We will now determine the gravitational coupling
between the U(1) gauge field and the spin J fields in the graviton’s Regge trajectory. We
first compute the coupling with the graviton and generalise to any even spin J field. All of
this is done in the Einstein frame. To find the coupling in the string frame we just substitute
the functions w, κ and Vf by ws, κs and e−10Φ/3Vf respectively, as discussed previously.

Again, we start by writing the square roots of the determinants as

√
− det geff.

[
1 + 1

2tr
(
g−1

eff.T
L/R

)
− 1

4tr
(
g−1

eff.T
L/Rg−1

eff.T
L/R

)
+ . . .

]
. (B.21)

The coupling with the graviton is found by linearising equation (B.21) around the back-
ground metric, i.e. gab = ḡab + hab. To study the graviton Regge trajectory in our back-
ground we need to decompose the metric in SO(1, 3) irreducible representations. We will
be only interested in the graviton TT components hαβ , satisfying ∂αhαβ = 0 and hαα = 0,
and also set hzα = hαz = hzz = 0.

For our purposes we can ignore the perturbation of
√
− det geff. because it involves only

a term proportional to h = haa = 0. We will also neglect the terms involving the axial vector
mesons Aµ since we are only interested in the coupling of Vµ with the graviton for now. We
wish then to compute δtr

(
g−1

eff.T
L/R

)
and δtr

(
g−1

eff.T
L/Rg−1

eff.T
L/R

)
, where by δ we mean a

perturbation relative to the background metric. Using the identity δgabeff. = −gameff.g
bn
eff.hmn

one can show that

δtr
(
g−1

eff.T
L/R

)
= −gameff.g

bn
eff.hmnT

L/R
ab , (B.22)

δtr
(
g−1

eff.T
L/Rg−1

eff.T
L/R

)
= −2gameff.g

bn
eff.g

cd
eff.T

L/R
bc T

L/R
da hmn . (B.23)

Using the expressions for the matrix elements of g−1
eff. and TL/R we get

δtr
(
g−1

eff.T
L/R

)
= 0 , (B.24)

δtr
(
g−1

eff.T
L/Rg−1

eff.T
L/R

)
= 2e−6Aw (λ)2hµν

(
Vµση

σρVνρ + 1
G2∂zVµ∂zVν

)
. (B.25)

Hence the coupling between the vector U(1) gauge field and the graviton is given by

M3NcNf

2

∫
d5x

√
− det geff.Vf (λ, τ) e−6Aw(λ)2hµν

(
Vµση

σρVνρ + 1
G2∂zVµ∂zVν

)
, (B.26)

or simply

M3NcNf

2

∫
d5x
√
−g GVf (λ, τ)w (λ)2gcmgdngabeff.F

V
acF

V
bdhmn . (B.27)
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In the string frame this coupling takes the form

M3NcNf

2

∫
d5x
√
−gsGe−

10
3 ΦVf (λ, τ)ws(λ)2gcms gdns gabeff. sF

V
acF

V
bdh

s
mn . (B.28)

We now generalise this coupling to the case of an interaction between the gauge field and a
symmetric, transverse and traceless spin J field, ha1···aJ . The pomeron trajectory includes
such higher spin fields of even J . Again there are several possibilities, but we shall focus
on the simplest extension of the graviton coupling considered above. For a spin J field we
take the coupling

kJ

∫
d5x
√
−gsGe−

10
3 ΦVf (λ, τ)ws(λ)2gabeff. sF

V
ac∇a1 . . .∇aJ−2F

V
bdh

cda1...aJ−2 . (B.29)

We note that the transverse condition of the spin J field ha1···aJ guarantees that this term
is unique up to dilaton and tachyon derivatives.

We now consider the coupling between the external photon states with the bulk spin
J fields dual to the spin J twist two operators made of quark bilinears. To determine the
coupling to any spin J in this trajectory we could proceed analogously with the case of
the graviton’s Regge trajectory. In the case of the coupling with the meson trajectory, one
could first determine the coupling between the non-normalizable mode dual to the photon
with the ρ meson states and generalise the result to higher spin J fields. To do this we
attempted to expand the DBI action to cubic order in the fluctuations and keep only the
terms with three vector gauge fields VaVbVc. We start by writing√

det(geff. + TL/R) =
√

detgeff. exp
[1

2Tr log
(
1 +XL/R

)]
. (B.30)

If we use the power series expansion of the exponential and of the logarithmic function
we get

√
−detgeff.

[
1− 1

4Tr
(
XL/R

)2
+ 1

6Tr
(
XL/R

)3
]
, (B.31)

where we have dropped terms involving products of TrXL/R because they contribute only to
axial gauge fields Aa. The quadratic term leads to the action of the quadratic fluctuations
of the vector gauge field and hence the coupling VaVbVc if exists must be contained on
Tr
(
XL/R

)3
. That is, we evaluated the expression

Tr
(
XL/R

)3
=

∑
i,k,j,l,m,n

(
g−1

eff.

)
ik

(
g−1

eff.

)
ln

(
g−1

eff.

)
jm
T
L/R
kj T

L/R
ml T

L/R
ni , (B.32)

which contains no coupling of the form VaVbVc.
Another approach is to find the coupling between the vector gauge field with the bulk

field dual to the f2 meson and extrapolate to all the other spin J fields in the meson
trajectory. In [90] the tensor meson f2 state is the first Kaluza-Klein mode of a bulk spin-2
hab field that has the same equation of motion as the graviton in AdS5. The coupling of
f2 to the photon is also the same as the one between a graviton and a bulk gauge field
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in AdS5. The geometry is basically AdS5 with a wall whose position is fixed by the mass
of the ρ meson. After this they are able to predict not only the mass of f2 but also the
decay width Γ(f2 → γγ). f2 also has the same quantum numbers of the tensor glueballs
JPC = 2++ which are the normalisable modes associated with the graviton’s equation of
motion. For these reasons, in this work, we will assume that the coupling of the U(1)
gauge field with the f2 meson is the same as the coupling with the graviton and hence,
in general, the coupling of any bulk spin J field in the meson trajectory is also given by
equation (B.29).

C pp scattering

In this appendix we will present the computation for the total cross-section of pp scattering.
The steps of the computation are the same as in the case of γp show in the main text.

The scattering amplitude for spin J exchange between two incoming scalar fields
Υ(1) ∼ eik1·x and Υ(2) ∼ eik2·x is

AJ =
(
k̄J
)2 ∫

d5xd5x̄
√
−g
√
−ḡ e−Φ−Φ̄

(
Υ1∂

J
−Υ3

)
Π−···−,+···+ (x, x̄)

(
Ῡ2∂̄

J
+Ῡ4

)
, (C.1)

where it was taken into account that the kinematics (3.8) implies that in the Regge limit
the component Π−,···−,+···+ dominates. Lowering the indices of the spin J propagator,
making the change of variable w = x− x̄ and using the identity∫

d2l⊥e
−iq⊥·l⊥

∫
dw+dw−

2 Π+···+,−···− (x, x̄) = − i

(−2)J
e(J−1)(A+Ā)GJ (z, z̄, t) , (C.2)

after some algebra the scattering amplitude can be rewritten as

AJ = −iV k̄2
J

2J s
J
∫
dzdz̄ e4(A+Ā)e−J(A+Ā)e−Φ−Φ̄|υ1|2|υ2|2GJ(z, z̄, t) . (C.3)

As in the γ∗p case, in order to get the total amplitude we need to sum over the spin J
fields with J ≥ Jmin, where Jmin is the minimal spin in the corresponding Regge trajectory.
Then we can apply a Sommerfeld-Watson transform

1
2

∑
J≥Jmin

(
sJ + (−s)J

) AJ
sJ

= −π2

∫
dJ

2πi
sJ + (−s)J

sin πJ
AJ
sJ

, (C.4)

where we are assuming the analytic continuation of the scattering amplitude AJ to the
complex J-plane. Deforming the J-plane integral and catching all the poles J = jn(t)
defined by tn(J) = t we get

A = π

2
∑
n

k̄2
jn

2jn s
jn

[
i+ cot

(
πjn
2

)]
djn
dt

∣∣∣∣∫ dz e−(jn−4)A|υ1|2e−ΦeBψn(z)
∣∣∣∣2 . (C.5)

In the scattering domain of t < 0 these poles are in the real axis for J < Jmin. This
procedure yields equations (3.28) and (3.29).
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D γ∗γ processes

In this section we derive the holographic expressions for F γ2 and σ(γγ → X) in the context
of Holographic QCD in the Veneziano limit. We will consider the photon structure function
F γ2 and the total cross-section σ(γγ → X). Like in the case of the proton structure function
F p2 the photon strucutre function F γ2 is related to the transverse and longitudinal total
cross-sections of γ∗γ scattering by

F γ2 = Q2

4π2α

(
σγ
∗γ
T + σγ

∗γ
L

)
. (D.1)

The calculation of the forward scattering amplitude for γ∗γ is the same as in γ∗p

scattering except that the external state in the Witten diagram of figure 1 is an on-shell
photon. This means that the definition of Imγγ

n should be proportional to k2
jn instead of

kjn k̄jn and the integral appearing in it should be∫
dū e−(jn−2)Āe−

10
3 Φ̄ V̄f w̄

2
s e

B̄ψn(ū) . (D.2)

Then, the holographic expressions for F γ2 is

F γ2

(
x,Q2

)
=
∑
n

Imgγγn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3 Φ Vf w

2
s

(
f2
Q + ∂ufQ

2

Q2

)
eBψn(u) ,

(D.3)

while the holographic expression for σ (γγ → X) is (3.26) and the definition of gγγn is given
by (3.27).

E Holographic structure functions

The forward scattering amplitude for γ∗p scattering is given by equation (3.22). That equa-
tion was obtained summing the contributions of the transverse and longitudinal polarisa-
tions of the off-shell photon. In particular the term with f2

Q is the contribution from trans-
verse polarisations while the term ḟ2

Q is the contribution for the longitudinal polarisation.
The proton structure functions F p2 and F pL are related to the transverse and longitudinal

total cross-sections of the process γ∗p by

F2
(
x,Q2

)
= Q2

4π2α

(
σγ
∗p
T + σγ

∗p
L

)
, (E.1)

FL
(
x,Q2

)
= Q2

4π2α
σγ
∗p
L . (E.2)

Using the optical theorem and the last relations one finds the contribution of the holo-
graphic expressions to the structure functions are

F2
(
x,Q2

)
=
∑
n

Imgγpn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3 Φ Vf w

2
s

(
f2
Q + ∂ufQ

2

Q2

)
eBψn(u) ,

(E.3)

FL
(
x,Q2

)
=
∑
n

Imgγpn
4π2α

Q2jnx1−jn
∫
du e−(jn−2)Ae−

10
3 Φ Vf w

2
s∂ufQ

2Q2 eBψn(u) , (E.4)
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where the definition of gγpn is the one of equation (3.23). The function B will depend on
whether the spin J fields belong to the pomeron or meson trajectory.

The structure function F p2 is, as expected, related to the total cross-section σ(γp→ X)
through

σ(γp→ X) = 4π2α lim
Q2→0

F2
(
x,Q2)
Q2 . (E.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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