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Abstract

This paper develops and empirically implements an arbitrage-free, dynamic term struc-
ture model with “priced” factor and regime-shift risks. The risk factors are assumed to follow
a discrete-time Gaussian process, and regime shifts are governed by a discrete-time Markov
process with state-dependent transition probabilities. This model gives closed-form solutions
for zero-coupon bond prices, an analytic representation of the likelihood function for bond
yields, and a natural decomposition of expected excess returns to components corresponding
to regime-shift and factor risks. Using monthly data on U.S. Treasury zero-coupon bond
yields, we show a critical role of priced, state-dependent regime-shift risks in capturing the
time variations in expected excess returns, and document notable differences in the behaviors
of the factor risk component of the expected returns across high and low volatility regimes.
Additionally, the state dependence of the regime-switching probabilities is shown to capture
an interesting asymmetry in the cyclical behavior of interest rates. The shapes of the term
structure of volatility of bond yield changes are also very different across regimes, with the
well-known hump being largely a low-volatility regime phenomenon.



1 Introduction

This paper develops and empirically implements an arbitrage-free, dynamic term structure
model (DTSM) with “priced” factor and regime-shift risks. The risk factors are assumed
to follow a discrete-time Gaussian process, and regime shifts are governed by a discrete-time
Markov process with state-dependent transition probabilities. Agents are assumed to know
both the current state of the economy and the regime they are currently in. This leads to
regime-dependent risk-neutral pricing and an equilibrium term structure that reflects the
risks of both changes in the state and shifts in regimes.

There is an extensive empirical literature on bond yields (particularly short-term rates)
that suggests that “switching-regime” models describe the historical interest rate data better
than single-regime models (see, for example, Cecchetti, Lam, and Mark [1993], Gray [1996],
Garcia and Perron [1996], and Ang and Bekaert [2002a]).1 In spite of this evidence, largely
for reasons of tractability, most of the empirical literature on DTSMs has continued to
focus on single-regime models (see Dai and Singleton [2003] for a survey). Recently Naik
and Lee [1997], Landen [2000], and Dai and Singleton [2003] have proposed continuous-time
regime-switching DTSMs that yield closed-form solutions for zero-coupon bond prices, but
multi-factor versions of their models have yet to be implemented empirically.

We develop a discrete-time multi-factor DTSM with the following features: (i) within
each regime the short-term interest rate follows a three-factor Gaussian model with state-
dependent market prices of factor risks;2 (ii) there are two regimes characterized by low
(L) and high (H) volatility, and the transitions between these regimes under the historical
measure P are governed by a Markov process with regime-shift probabilities πPij

t (i, j = H,L)
that depend on the risk factors underlying changes in the shape of the yield curve;3 and (iii)
regime-shift risks are priced. This model yields exact closed-form solutions for bond prices,
and an analytic representation of the likelihood function that we use in our empirical analysis
of U.S. Treasury zero-coupon bond yields. Expected excess returns are naturally decomposed
into two components, which are associated with regime-shift and factor risks, respectively.

Our findings suggest that the omission of regime-shift risk leads single-regime models
to understate the fluctuations in excess returns during the periods of transitions between
regimes, and to overstate the volatility of factor risk premiums and excess returns during

1Ang and Bekaert [2002b] suggest that the mixing of regime-dependent state processes inherent in our
DTSM can potentially replicate the nonlinear conditional means of short-term yields documented by Ait-
Sahalia [1996] and Stanton [1997]. While the non-parametric evidence for non-linearity in the short-rate
process is somewhat controversial (see, e.g., Chapman and Pearson [2000]), the findings of Ang and Bekaert
for a Gaussian autoregressive model of the short rate suggest that our regime-dependent state process
introduces the flexibility to match such nonlinearity if it is present.

2More precisely, within each regime, the short rate rt follows an A0(3) model (in the notation of Dai
and Singleton [2000]): rt is an affine function of a vector Yt of three risk factors, Y follows a Gaussian
vector-autoregression with constant conditional variances, and the market prices of factor risks depend on
Yt as in Duffee [2002] and Dai and Singleton [2002].

3The presence of regime switching implies that, under P, the conditional volatilities of both Yt and bond
yields may be state-dependent; that is, conditional volatilities are stochastic.
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less turbulent times.4 This is illustrated in Figure 1 which displays the one-month ahead
expected excess returns on two- and ten-year zero-coupon Treasury bonds implied by a
single-regime three-factor Gaussian model (model A0(3)) and our two-regime counterpart
(model ARS

0 (3)). Excess returns in model ARS
0 (3) exhibit large spikes (up and down) during

the mid-1970’s, the period of the “Fed experiment” in the early 1980’s, and again during
the mid-1980’s. These large moves in excess returns are largely missed by the single-regime
A0(3) model. Central to capturing these swings within model ARS

0 (3) is priced regime-shift
risk with state-dependent market prices of this risk.

From Figure 1 it is also evident that the excess returns implied by model A0(3) fluctuate
much more than their counterparts in model ARS

0 (3) during the less turbulent 1990’s. We
document subsequently that the relative calmness of the excess returns in model ARS

0 (3) is
due to its accommodation of very different behaviors of factor risk premiums (and the under-
lying market prices of factor risks) in regimes H and L, a difference that (by construction)
is absent from single-regime models. Together these observations suggest that single-regime
models fail to capture key dimensions of expected excess returns in U.S. Treasury markets.5
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Figure 1: One-month ahead expected excess returns on two- and ten-year zero-coupon Trea-
sury bonds in models A0(3) and ARS

0 (3).

4The analyses by Pan [2002] and Liu, Longstaff, and Pan [2002] are, in different contexts, premised on a
similar point.

5Recall that Duffee [2002] and Dai and Singleton [2002] show that sufficiently persistent and variable factor
risk premiums in single-regime affine DTSMs resolve the expectations puzzles summarized in Campbell and
Shiller [1991]. The role for regime shifts in pricing documented here suggests that the tests of the expectations
theory may yield different results within the H or L regimes.

2



Where the state dependence of the market price of regime-shift risk (equivalently, state
dependence of πP) appears to matter is in modeling the persistence of regimes. A standard
result in the empirical literature on regime-switching models of interest rates with constant
πP (e.g., Ang and Bekaert [2002b] and Bansal and Zhou [2002]) is that πPHH ≫ πPHL and
πPLL ≫ πPLH ; i.e., both regimes are highly persistent. With state-dependent πP

t , we replicate
the finding that E[πPLL

t ] ≫ E[πPLH
t ]. On the other hand, though we still find that E[πPHH

t ]
is larger than E[πPHL

t ], the difference is not nearly as large as in models with constant πP.
In other words, in the presence of priced, state-dependent regime-shift risk, high volatility
regimes are less persistent than low volatility regimes. Importantly, this asymmetry is equally
present in a descriptive model of Treasury yields, suggesting that models (descriptive or
pricing) that impose a constant πP are missing an empirically important asymmetry in the
cyclical behavior of interest rates.

In developing our model we build upon a growing literature on discrete-time DTSMs by
extending the Gaussian, discrete-time DTSMs in Bekaert and Grenadier [2001], Ang and
Piazzesi [2003], and Gourieroux, Monfort, and Polimenis [2002] to allow for multiple regimes
and priced regime-shift risk.6 This is accomplished by overlaying a switching regime process
on the conditional distribution of the risk factors. However, rather than adopting Hamilton
[1989]’s convention of specifying the distribution of the state conditional on the future regime,
we condition on the current regime. Under our convention, all of the conditioning variables
at date t reside in agents’ date t information set, which includes knowledge of the current
regime. This leads to an intuitive interpretation of the components of agents’ pricing kernel
that parallels standard formulations in the continuous-time literature.

Our analysis of a Gaussian DTSM is complementary to Bansal and Zhou [2002]’s study
of an (approximate) discrete-time “CIR-style” DTSM with regime shifts. Model ARS

0 (3)
extends their framework by allowing for state-dependent πP

t (Bansal and Zhou assumed
that πP

t = constant), and priced regime-shift risk (they assumed that the market price of
regime-shift risk is zero).7 Furthermore, the added flexibility in the correlation structure of
the risk factors in model ARS

0 (3) allows us to replicate the well known hump in the term
structure of volatility, and to explore the regime dependence of the shape of this hump. The
assumption of mutually independent, mean-reverting factors in CIR-style models essentially
forces downward sloping term structures of volatility in all regimes.

In a concurrent study, with a different objective, Ang and Bekaert [2005] also examine a
regime-switching Gaussian DTSM.8 They assume that the regime-shift risk is not priced, πP

t

is constant, and the historical rates of mean reversion of the risk factors are the same across

6To the extent that changes in regimes are related to business-cycle developments, multiple switches within
a monthly, or even a quarterly, time frame seem unlikely. Therefore, we see little cost to a discrete-time
framework, with the obvious benefit of being able to link our results directly with the descriptive literature
on regime shifts in the distributions of interest rates.

7As we explain more formally below, neither of our models is nested within the other with regard to the
specifications of the market price of factor risks.

8In other related studies, Wu and Zeng [2003] derive a general equilibrium, regime-switching model,
building upon the one-factor CIR-style model of Naik and Lee [1997], with constant πP. Veronesi and Yared
[2000] develop an equilibrium model of the term structure with regime shifts and constant πQ = πP.
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regimes. Model ARS
0 (3) relaxes all of these assumptions thereby facilitating an exploration

of the state dependence of πP
t and of the contributions of the market prices of regime-shift

and factor risks to expected excess returns.
The remainder of this paper is organized as follows. Section 2 develops our model and

derives the arbitrage-free bond pricing relations in the presence of regime shifts. We also
compare the nature of the various market prices of risk in our setup to those in previous
studies. The likelihood function that is used in estimation is derived in Section 3. Section 4
describes the data, presents the estimates of our models, and interprets the results. The
contributions of the regime-shift and factor risks to expected excess returns are explored in
more depth in Section 5. Finally, concluding remarks are presented in Section 6.

2 A Regime-Switching, Gaussian DTSM

In formulating a DTSM for econometric analysis, there is an inherent trade-off between the
richness of one’s model and the computational complexity that arises in both pricing and
estimation. These trade-offs are compounded in our setting by the introduction of multiple
regimes for the state vector Y . Just as in the literature on single-regime affine DTSMs,
we proceed by parameterizing the risk-neutral distribution of Y so as to assure closed-form
solutions for bond prices, and then overlay flexible specifications of the market prices of risk
to describe the historical distribution of bond yields. This construction also highlights the
sources of the added flexibility in our formulation of a regime-switching DTSM relative to
recent alternative formulations in the literature.

We assume that there are S + 1 “regimes” that govern the dynamic properties of the
N -dimensional state (factor) vector Y . Formally, the joint process (Y, s) is modelled as a
marked point process. Heuristically, the regime variable st may be thought of as a (S + 1)-
state Markov process, with the risk-neutral (hereafter denoted by Q) probability of switching
from regime st = j to regime st+1 = k given by πQjk

t , 0 ≤ j, k ≤ S, with
∑S

k=0 πQjk
t = 1, for

all j. Agents are presumed to know the current and past histories of both the state vector and
the regime the economy is in. Thus expectations EQ

t [·] are conditioned on the information
set It generated by {Yt−ℓ, st−ℓ : ℓ ≥ 0}. We use the notation EQ

t [·|st = j] in cases where we
wish to highlight the current value of st ∈ It, and use the notation EQ(j)[·] to denote the
unconditional mean of a random variable under the assumption of a single-regime economy
governed by the parameters of regime j.9

The Markov process governing regime changes is assumed to be conditionally independent
of the Y process. In addition, fQ(Yt+1|Yt−ℓ : ℓ ≥ 0; st = j, st+1 = k) = fQ(Yt+1|Yt−ℓ : ℓ ≥
0; st = j). This differs from (our pricing counterpart to) Hamilton [1989]’s formulation where
fQ(Yt+1|Yt−ℓ : ℓ ≥ 0; st = j, st+1 = k) = fQ(Yt+1|Yt−ℓ : ℓ ≥ 0; st+1 = k). As the length of a
unit of time shrinks toward zero (in the continuous time limit), these two formulations are

9In adopting this notation we are presuming that the unconditional means in each regime are finite under
Q. For our empirical implementation, one of the roots of the mean reversion matrix indicates that Y is
borderline non-stationary under Q. This finding is of limited practical relevance for our analysis, since we
focus on conditional moments under P and Q and unconditional moments under P (which are all finite).
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equivalent. We adopt our discrete-time formulation for comparability with the development
of continuous-time models, and for the natural interpretation of the market prices of risk
that it yields (see below).10

Given st = j, under Q, Y is assumed to follow the process

Yt+1 = µQj
t + Σjǫt+1, (1)

where µQj
t ≡ EQ

t [Yt+1|st = j], Σj ≡ Σ(st = j) is a volatility matrix that is regime-dependent
but not dependent on time, and ǫt+1 ∼ N(0, I) is standard normal. It follows that

fQ(Yt+1|Yt−ℓ : ℓ ≥ 0; st = j) ∼ N(µQj
t , ΣjΣj′). (2)

Equivalently, the conditional moment generating function (MGF) of Yt+1 is, given st = j,

φQj
t (u) ≡ EQ

t

[

eu′Yt+1

∣

∣

∣
st = j

]

= eu′µ
Qj
t +u′

Σ
j
Σ

j′u
2 , u ∈ RN . (3)

In order to obtain closed-form solutions for zero-coupon bond prices, we parallel Dai and
Singleton [2003]’s construction in continuous time and assume

Assumption AQ: Restrictions on the Q distribution of (Y, s):

AµQ: µQj(Yt) = Yt + κQ(θQj − Yt), for constant θQj ∈ RN , j = 0, . . . , S and N ×N constant
matrix κQ with κQ

ij ∈ R.

AπQ: the πQjk are constants, for all j and k.

An implication of assumption AµQ is that the unconditional mean EQ(j)[Yt] differs across
regimes. On the other hand, to facilitate pricing, the state-dependent component of µQj

t ,
κQYt, is assumed to be common across regimes. Assumption AπQ restricts the regime-
switching probabilities to be state-independent under Q. Bansal and Zhou [2002] impose
assumption AπQ, but not AµQ in that they allow κQj to be regime-dependent. This takes
them outside of a framework with analytic bond prices and, as such, they study approxi-
mate prices using a linearization of their model. Like us, Ang and Bekaert [2005] impose
assumption AQ in its entirety.

The continuously compounded yield on a one-period zero-coupon bond in regime j, rj
t ≡

r(Yt, st = j), is assumed to be related to Yt according the affine function

Assumption Ar: rj
t = δj

0 + δ′Y Yt.

Under assumption Ar, EQ(j)[rt] differs across regimes, as a result of the regime dependence
of both δj

0 and EQ(j)[Yt]. Bansal and Zhou [2002] constrain δj
0 = 0 in both regimes in their

10A similar timing convention was adopted by Cecchetti, Lam, and Mark [1993] in their descriptive study
of equity returns. In the context of descriptive regime-switching models (i.e., observable variables and no
pricing), our and Hamilton’s specifications lead to identical likelihood functions, except for the interpretation
of the initial values of certain conditional regime probabilities. Once latent factors and pricing are introduced,
the interpretations are not the same for reasons discussed subsequently.
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CIR-style formulation. Allowing for non-zero δj
0 seems important in light of the evidence in

Pearson and Sun [1994] (for treasury bonds) and Duffie and Singleton [1997] (for interest rate
swaps) that, for their single-regime multi-factor CIR models, a non-zero δ0 was essential to
fitting the term structure. With regard to the state-dependent component of rj

t we constrain
the “loadings” δY on Yt to be the same across regimes to facilitate bond pricing. Bansal and
Zhou’s model is more flexible on this dimension in that δj

Y is regime-dependent owing to the
volatility coefficient in their approximate CIR process changing across regimes.11

These assumptions give rise to closed-form solutions for zero-coupon bond prices.12 Specif-
ically, letting Dt,n ≡ Dn(Yt, st) denote the time-t price for a zero-coupon bond with maturity
of n periods, and Dj

t,n denote the price when the current regime is st = j, we have:

Proposition 1 (Zero-Coupon Bond Prices) Assuming that Yt+1 follows the process (1)
and assumptions AµQ, AπQ, and Ar hold, zero-coupon bond prices are given by

Dj
t,n = e−A

j
n−B′

nYt , (4)

where,

Aj
n+1 = δj

0 + (κQθQj)′Bn − 1

2
B′

nΣjΣj′Bn − log

(

S
∑

k=0

πQjke−Ak
n

)

, (5)

Bn+1 = δY + Bn − κQ′Bn, (6)

with initial conditions: Aj
0 = 0 and B0 = 0.

Proof: Substituting (4) into the risk-neutral pricing equation

Dj
t,n+1 = EQ

t

[

e−r
j
t Dt+1,n

∣

∣

∣
st = j

]

yields

e−A
j
n+1

−B′

n+1
Yt = EQ

t

[

e−r
j
t Dt+1,n|st = j

]

= e−r
j
t

S
∑

k=0

πQjkEQ
t

[

Dk
t+1,n|st = j

]

= e−r
j
t

S
∑

k=0

πQjke−Ak
nEQ

t

[

e−B′

nYt+1 |st = j
]

= e−r
j
t

[

S
∑

k=0

πQjke−Ak
n

]

e−B′

nµ
Qj
t + 1

2
B′

nΣjΣj′Bn .

11This is a second contributing factor (besides the regime dependence of κQj) to their use of approximations
in pricing bonds.

12More precisely, the dependence of bond yields on Y is known analytically, up to a set of coefficients that
solve the recursion equations. These equations can be solved essentially instantaneously.
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Equations (5) and (6) are necessary and sufficient for the above equation to hold for any
Yt and st = j. It is easy to check that Aj

0 = 0, B0 = 0, Aj
1 = δj

0, and B1 = δY satisfy
the recursion. Thus, the recursion can start either at n = 0 or at n = 1. When n denotes
maturities in months, the annualized yields are given by

Rj
t,n = aj

n + b′nYt =
Aj

n

n/12
+

B′
n

n/12
Yt. (7)

To complete the specification of our model it remains to specify the distribution of
(Yt+1, st+1) conditional on It under the historical measure, P. The conditional distributions
of (Yt+1, st+1) under P and Q are linked by the Radon-Nikodym derivative (dP/dQ)t,t+1.

13

Equivalently, under the assumption of no arbitrage opportunities, they are linked by the
pricing kernel Mt,t+1 = M(Yt, st; Yt+1, st+1) underlying the time-t valuation of payoffs at
date t + 1, as (dP/dQ)t,t+1 = 1/[ertMt,t+1]. To accommodate both regime-shift and factor
risks we assume that (dP/dQ)t,t+1 is given by

(

dP

dQ

)

t,t+1

= eΓt,t+1−
1

2
Λ′

tΛt+Λ′

tΣ
−1
t (Yt+1−µ

Q
t ) = eΓt,t+1 × eΛ′

tΣ
−1
t Yt+1

φQ
t ((Σ′

t)
−1Λt)

, (8)

where Γt,t+1 = Γ(Yt, st; st+1) is the market price of regime-shift (MPRS) risk from st to st+1,
Λt = Λ(Yt, st) is the market price of factor (MPF ) risk, and φQ

t ((Σ′
t)

−1Λt) is the MGF of
Yt+1 under Q evaluated at (Σ′

t)
−1Λt. The Radon-Nikodym derivative depends implicitly on

the regimes (st, st+1), because agents know both the regime st+1 and the regime from which
they have transitioned, st. As will be discussed in more detail, dependence on st+1 enters
solely through the MPRS risk Γt,t+1. The MPF risk, on the other hand, takes a form that
parallels its counterpart in a continuous-time Gaussian DTSM . For later development, we
define Γjk

t ≡ Γ(Yt, st = j; st+1 = k) and Λj
t ≡ Λ(Yt, st = j).

For P to be a well-defined probability measure we require that

1 = EQ
t [(dP/dQ)t,t+1]

= EQ
t [eΓt,t+1|st = j] =

S
∑

k=0

πQjkeΓjk
t , 0 ≤ ∀j ≤ S.

(9)

Since the regime switching probabilities under P are given by

πPjk
t ≡ Et

[

1{st+1=k}|st = j
]

= πQjkeΓjk
t , (10)

the condition in (9) is equivalent to
∑S

k=0 πPjk
t = 1.

The conditional distribution of Yt+1 under P is fully characterized by its MGF :

φPj
t (u) ≡ Et

[

eu′Yt+1 |st = j
]

= EQ
t

[

eu′Yt+1(dP/dQ)t,t+1|st = j
]

=
φQj

t ((Σj′)−1Λj
t + u)

φQj
t ((Σj′)−1Λj

t)
= eu′(µ

Qj
t +ΣjΛj

t)+u′
Σ

j
Σ

j′u
2 , u ∈ RN .

(11)

13The P and Q distributions are related according to P(dYt+1, st+1|It) = (dP/dQ)t,t+1Q(dYt+1, st+1|It).
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Thus, this distribution is also Gaussian with conditional mean

µP
t = µQ

t + ΣtΛt, (12)

and variance ΣtΣ
′
t. Moreover, the P distribution of (Y, s) inherits the property from the Q

distribution that Y and s are conditionally independent processes.
The pricing kernel implied by our choice of Radon-Nikodym derivative in (8) is:

Mt,t+1 = e−rt−Γt,t+1−
1

2
Λ′

tΛt−Λ′

tΣ
−1
t (Yt+1−µP

t ). (13)

No arbitrage requires that

e−r
j
t = Et[Mt,t+1|st = j] = e−r

j
t Et[(dQ/dP)t,t+1|st = j], (14)

which is guaranteed by the requirement that
∑S

k=0 πQjk = 1.
To motivate our labelling of the component Λt of the pricing kernel M as the market

prices of factor risks, consider the security with payoff e−b′Yt+1 , which has exposure only to
factor risks at date t + 1. Its price is

P j
t = e−r

j
t EQ

t [e−b′Yt+1 |st = j] = e−r
j
t e−b′µ

Qj
t + 1

2
b′ΣjΣj′b, (15)

and its P-expected payoff is Et[e
−b′Yt+1 ] = e−b′µ

Pj
t + 1

2
b′ΣjΣj′b in regime st = j. Therefore, the

log expected return for this security, in excess of the one period zero-coupon bond yield, is14

log
Et[e

−b′Yt+1 |st = j]

P j
t

− rj
t = −b′ΣjΛj

t . (16)

Since b′Σj is the “risk exposure” or volatility of the security associated with the factor risk,
the MPF risk in regime st = j, Λj

t , gives the excess log expected return per unit of factor
risk exposure.

Turning to the component Γt,t+1, consider a security with payoff 1{st+1=k}, which has
exposure only to the risk of shifting to regime k at date t + 1. Conditional on the current

regime st = j, its risk-neutral expected payoff is πQjk, and its current price is P j
t = e−r

j
t πQjk.

Thus, its excess log expected return is given by

log
Et[1{st+1=k}|st = j]

P j
t

− rj
t = Γjk

t . (17)

That is, Γjk
t,t+1 is naturally defined as the MPRS risk from regime j to regime k.

14For intuitive interpretation of the market prices of risks, log expected returns in excess of the one period
short rate provide a more convenient platform than the conventionally defined, expected excess log returns.
The latter, which are related to the market prices of risks in qualitatively very similar manners, will be
examined in Section 5.
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Importantly, assumption AµQ does not constrain the state or regime dependence of µP.
Given our parametrization of µQj

t and the regime dependence of Σj, we can match any desired
state and regime dependence of µPj

t under P,

µPj
t = µQj

t + ΣjΛj
t , 0 ≤ j ≤ S, (18)

by appropriate choice of the market prices of factor risks, Λj
t . In our parametric DTSM, we

extend Duffee [2002]’s essentially affine, Gaussian model to the case of multiple regimes by
assuming that

Λj
t =

(

Σj
)−1 (

λj
0 + λj

Y Yt

)

. (19)

Duffee [2002] and Dai and Singleton [2002] found that A0(3) models with MPF risks given
by (19) (without the regime index) were able to match many features of historical expected
excess returns on bonds. The regime independence of κQ (assumption AµQ) requires that

κQ = κPL + λL
Y = κPH + λH

Y . (20)

To take advantage of the maximal flexibility allowed by this restriction, we set κPL, λL
Y , and

λH
Y as free parameters in our model. Consequently, κPH as well as κQ are derived parameters.

Similarly assumption AπQ does not restrict the state dependence of πPjk
t . Given the πQjk,

by appropriate choice of the Γjk
t , we can match any desired state dependence of the πPjk

t ,
subject to the constraint that

∑S

k=0 πPjk
t = 1. Following Gray [1996], Boudoukh, Richardson,

Smith, and Whitelaw [1999], and many subsequent studies, we assume that (for the two-
regime case)

πPjk
t =

1

1 + eη
jk
0

+η
jk
Y

Yt

, πPjj
t = 1 − πPjk

t , j 6= k. (21)

Consequently, the MPRS risks are

Γjk
t = log

(

πPjk
t

πQjk

)

, ∀ j, k. (22)

The unknown parameters to be estimated are the (constant) risk-neutral regime-shift prob-
abilities πQjk, ηjk

0 , and ηjk
Y . Unlike in descriptive regime-switching models for interest rates,

the elements of πP in our DTSM depend directly on the latent risk factors Y (rather than
on the yields themselves).

Our specification (13) of the pricing kernel M, and the associated market prices of risk,
extends the literature on regime-switching models for interest rates along several important
dimensions. As in Naik and Lee [1997] and Bansal and Zhou [2002], we assume that the πQjk

are constants (assumption AπQ). However, these studies also assume that regime-shift risk
is not priced (Γjk

t = 0). Regime-shift risk is also not priced (and the πQjk are constants) in
the regime-switching Gaussian model used by Ang and Bekaert [2005] in their study of real
returns. The state dependence of the Γjk

t implied by (21) and (22) is key to achieving our
objective of an improved understanding of the nature of market prices of risk, and regime-
shift risk in particular. The assumption that Γjk

t = 0 means that the state and regime
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dependence of Λj
t and Σj (the volatility matrix of Y ) must explain the time-series properties

of expected excess returns. By allowing for priced regime-shift risk, we have an additional
regime-dependent channel through which risk preferences can affect expected excess returns.

Our formulation of the market prices of factor risks shares with Bansal and Zhou [2002]
the features that Λt is both state- and regime-dependent. Where we differ is in our focus
on different members of the affine family of term structure models. They focus on an ap-
proximate CIR style model, and assume that the market prices of risk are proportional to
factor volatilities (a “completely affine” model). Though our within-regime volatilities are
constant (due to the Gaussian framework), our market prices of risk depend directly on
the state variables according to (19). Within single-regime models, the latter “essentially
affine” models have been found to fit the dynamic properties of yield curves much better
than completely affine CIR-style models (e.g., Duffee [2002], Dai and Singleton [2002]).

The specification (19) of Λt allows both the constant term (λj
0) and the coefficients in the

state-dependent term (λj
Y ) to change across regimes. Ang and Bekaert [2005] also allow their

counterpart to λj
0 to change across regimes for one of their two latent factors. However, for

this factor, they assume that λj
Y = 0. Further, they assume that the market price of inflation

risk is zero at all dates and in all regimes. It follows that, for both of these factors, the MPFs
have no effect on the time series properties of excess returns within regimes.15 For their third
factor (also latent), the market prices of risk are state-, but not regime-dependent. As such,
they constrain the degree of persistence of all three of their risk factors (the state-dependent
components of the conditional mean of Yt+1) to be the same across regimes. Given our focus
on the relations between the time series properties of excess returns and the market prices
of factor and regime-shift risks, we allow the components of λj

Y to be non-zero and regime-
dependent for all three factors, in order to give maximal flexibility to the market prices of
factor risks in our analysis.

A potential weakness of our Gaussian DTSM, relative to say multiple-regime versions of
AM(N) DTSMs, with M > 0, is that the within-regime conditional variances of the Y ’s are
constants. However, our experience with single-regime affine DTSMs is that the conditional
volatility in bond yields induced by conditional volatility in the Y ’s is, in fact, very small
relative to the volatility of excess returns. Furthermore, by overlaying regime shifts on top of
a Gaussian state vector we introduce stochastic volatility into our DTSM, perhaps at least to
the same degree as in square-root processes. Even in the case of constant πP, the conditional
variances of bond yields will be time varying due to the possibility of regime shifts. This
is the only source of time-varying volatility in Gaussian models that assume that πP is a
constant matrix (e.g., Ang and Bekaert [2005]). With the introduction of state-dependent
πP (equivalently, state-dependent Γjk), we allow for an important additional source of time-
varying volatility that is absent from extant single- and multiple-regime Gaussian models.

Additionally, assumptions AπQ and (22) imply that our model cannot accommodate
state-dependent regime-shift risk that is not priced. This is a consequence of the fact that,
since the πQjk are not state-dependent, any state dependence in the πPjk

t is inherited from

15The factor risk component of the expected excess returns, as shown in (37), implies that within regimes,
time varying expected excess returns result from state-dependent MPF risks.
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state-dependence of the market prices of regime-shift risks, Γjk
t , in our model. We nest the

special cases of πQ and πP being constants, with Γjk being either a non-zero constant (priced
regime-shift risk) or zero (non-priced regime-shift risk). However, our formulation does not
nest the case of state-dependent πP

t with Γjk
t = 0. Nevertheless, we view the accommodation

of state-dependent πP and rich regime dependence of Λj
t as potentially important extensions

of the literature on A0(3) models that are worthwhile exploring empirically.
Finally, a notable difference between our formulation and that in Bansal and Zhou [2002]

and Ang and Bekaert [2005] is that we have assumed that (Λj
t , Γ

jk
t ) ∈ It, consistent with the

continuous-time regime-switching model developed in Dai and Singleton [2003]. In contrast,
using our notation for the one-factor case, these authors adopted the pricing kernel

Mt,t+1 = exp

[

−rf,t − (λst+1)2Yt

2
− λst+1ǫt+1

]

, (23)

in which λst+1 depends on st+1. In our formulation, the components Λj
t and Γjk

t can be
directly interpreted as market prices of risk. On the other hand, under the formulation (23),
λst+1 is not the MPF risk, since it is not in It. The MPF risk depends on both λst+1 and the
regime-switching probabilities πPjk.16

3 Maximum Likelihood Estimation

Given the Gaussian structure of the risk factors, we proceed with maximum likelihood (ML)
estimation of the regime-switching DTSMs. Following common practice (e.g., Chen and
Scott [1995], Duffie and Singleton [1997]), we assume that the yields on a collection of N
zero-coupon bonds are priced without error, and the yields on a collection of M zero-coupon
bonds are priced with error.

Let R̂t be the vector of yields for the bonds priced exactly by the model. In regime
st = j, R̂t = âj + b̂Y j

t , where âj is the N × 1 regime-dependent vector, b̂ is the N × N
regime-independent matrix of factor loadings, and Y j

t is the N × 1 vector of state variables
implied by the model. Inverting for fitted yields we obtain

Y j
t = b̂−1(R̂t − âj). (24)

Conditional on st = j and st+1 = k, we have

R̂t+1 = âk + b̂Y k
t+1 = âk + b̂µPj

t + b̂Σjǫt+1

= R̂t + (âk − âj) + κ̂Pj(θ̂Pj − R̂t) + Σ̂jǫt+1, (25)

16More precisely, in their setting, the excess log expected return for a security with regime-independent,
time-(t + 1) payoff of e−bYt+1 is given by

log

∑S
k=0

πPjke−bµPk

t
+

Yt

2
bΣk

Σ
kb

∑S
k=0

πPjke−bµPk

t
+

Yt

2
bΣkΣkb+bλkYt

.
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where µPj
t = Yt + κPj(θPj − Yt), κ̂Pj = b̂κPj b̂−1, θ̂Pj = âj + b̂θPj, and Σ̂j = b̂Σj. It follows that

f(R̂t+1|R̂t, st = j, st+1 = k)

=
e−

1

2
(R̂t+1−R̂t−(âk−âj)−κ̂j(θ̂j−R̂t))′[Σ̂jΣ̂j′]−1(R̂t+1−R̂t−(âk−âj)−κ̂j(θ̂j−R̂t))

√

(2π)N

∣

∣

∣
Σ̂jΣ̂j′

∣

∣

∣

. (26)

Notice that f(R̂t+1|R̂t, st = j) is obtained by integrating out the dependence of (26) on st+1,
so conditioning only on st = j (and R̂t) gives a mixture-of-normals distribution.

The remaining M yields used in estimation are denoted by R̃t, with corresponding load-
ings ãj and b̃ when st = j:

R̃t = ãj + b̃Y j
t + uj

t = (ãj − b̃b̂−1âj) + b̃b̂−1R̂t + uj
t , (27)

where ut is i.i.d. with zero mean and volatility Ωj. Thus, the conditional density for R̃t+1,
conditional on R̂t+1, st = j and st+1 = k, is given by

f(R̃t+1|R̂t+1, st = j, st+1 = k)

=
e−

1

2
(R̃t+1−(ãk−b̃b̂−1âk)−b̃b̂−1R̂t+1)′[ΩkΩk′]−1(R̃t+1−(ãk−b̃b̂−1âk)−b̃b̂−1R̂t+1)

√

2π |ΩkΩk′|
.

(28)

To construct the likelihood function for the data, we introduce the econometrician’s
information set Jt = {R̂τ , R̃τ , τ ≤ t} ⊂ It, and let Qj

t = f(st = j|Jt) be the probability of
regime j given Jt. Define the following matrices:

Qt =
[

f(st = 0|Jt) f(st = 1|Jt)
]

,

fR
t,t+1 =

[

f(R̂t+1|R̂t, st = 0, st+1 = 0) f(R̂t+1|R̂t, st = 0, st+1 = 1)

f(R̂t+1|R̂t, st = 1, st+1 = 0) f(R̂t+1|R̂t, st = 1, st+1 = 1)

]

,

fu
t,t+1 =

[

f(R̃t+1|R̂t+1, st+1 = 0) f(R̃t+1|R̂t+1, st+1 = 1)

f(R̃t+1|R̂t+1, st+1 = 0) f(R̃t+1|R̂t+1, st+1 = 1)

]

.

Using this notation, the conditional density of observed yields is

f(R̂t+1, R̃t+1|Jt) =
∑

j

f(R̂t+1, R̃t+1|Jt, st = j)Qj
t

=
∑

j,k

f(R̂t+1, R̃t+1|Jt, st = j, st+1 = k)Qj
tπ

Pjk
t

=
∑

j,k

f(R̂t+1|R̂t, st = j, st+1 = k)Qj
tπ

Pjk
t f(R̃t+1|R̂t+1, st+1 = k).
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The regime probability Qj
t is updated using Bayes rule:

Qk
t+1 = f(st+1 = k|Jt+1)

=

∑

j f(st+1 = k, R̂t+1, R̃t+1|Jt, st = j)Qj
t

f(R̂t+1, R̃t+1|Jt)

=

∑

j Qj
tf(R̂t+1|R̂t, st = j, st+1 = k)πPjk

t f(R̃t+1|R̂t+1, st+1 = k)

f(R̂t+1, R̃t+1|Jt)
.

Thus, the log-likelihood is given by

log L =
1

T − 1

T−1
∑

t=0

log f(R̂t+1, R̃t+1|Jt), (29)

f(R̂t+1, R̃t+1|Jt) = Qt ×
(

fR
t,t+1 ⊙ fu

t,t+1 ⊙ πP
t

)

× 1, (30)

Qt+1 =
Qt ×

(

fR
t,t+1 ⊙ fu

t,t+1 ⊙ πP
t

)

f(R̂t+1, R̃t+1|Jt)
, (31)

where A ⊙ B denotes element by element multiplication of matrix A and B with the same
dimensions, and 1 is the 2 × 1 unit vector.

In interpreting our empirical results, we follow the standard practice of using the “smoothed
regime probabilities” qj

t ≡ f(st = j|JT ) to classify observations into regimes (recall that we
do not observe st, or which regime the economy is in at date t). For our case of two regimes,
we classify the yield observation at date t into regime j if qj

t > 0.5, where

qj
t =

gj
t Q

j
t

∑

k gk
t Q

k
t

, (32)

gj
T ≡ 1 and, for 1 ≤ t ≤ T − 1,

gj
t ≡ f(R̂ℓ, R̃ℓ : t + 1 ≤ ℓ ≤ T |st = j, Jt)

=
∑

k

πPjk
t f(R̂t+1, R̃t+1|Jt, st = j, st+1 = k)gk

t+1.

In matrix notation, we have

qt ≡
[

q0
t

q1
t

]

=
Q′

t ⊙ gt

Qtgt

, 1 ≤ t ≤ T,

gt ≡
[

g0
t

g1
t

]

=
(

πP
t ⊙ fR

t,t+1 ⊙ fu
t,t+1

)

× gt+1, 1 ≤ t ≤ T − 1; gT =

[

1
1

]

.

4 Empirical Results

In estimating the model, we use the zero-coupon bond yield data constructed from the
market prices of coupon bonds with the Fisher-Waggoner (FW ) curve fitting method. This
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method, together with Unsmoothed Fama-Bliss (UFB), McCulloch-Kwon (MK), Smoothed
Fama-Bliss (SFB), and Nelson-Siegel-Bliss (NSB), comprise the most popular zero-coupon
yield estimation methods in the empirical literature.17 One important difference across these
methods is the resulting degree of smoothness of the estimated term structure data. At one
extreme, the USB method iteratively extracts forward rates from coupon bond prices by
building a piece-wise linear discount rate function, and the implied discount rates exhibit
kinks at the maturities of the coupon bonds used. At the other extreme, the NSB and the
SFB methods approximate the discount rates with exponential functions of time to maturity
and the resulting forward rate function is differentiable to infinite order.

The FW method seems to occupy a desirable middle ground. It is based on a cubic
spline, similar to the MK method.18 A large number of knots (as many as 50 to 60 knots)
are used when minimizing the fitting errors, and then a penalty is imposed on the excess
variability of yields induced by the flexibility of the spline. In contrast to the kinky USB
yield curves, the FW method generates a smooth term structure with a continuous first
derivative. In contrast to the possibly over-smoothed NSB and SFB data, the flexibility
of the 50 to 60 knot points allows the FW data to better track the many small dips and
humps in the underlying coupon bond yields.

We estimate a two-regime, three-factor (N = 3) model, ARS
0 (3), using the FW monthly

data on U.S. Treasury zero-coupon bond yields for the period 1972 to 2003.19 The vector
R̂ includes the yields on bonds with maturities of 6, 24, and 120 months, and M = 1 with
R̃ chosen to be the yield on the 60-month bond. The two regimes are denoted L and H,
corresponding to “low” and “high” values of the diagonal entries of Σj (see below).

In parameterizing model ARS
0 (3), we impose several normalizations. Analogous to the

normalizations imposed in Dai and Singleton [2000] for single-regime affine DTSMs, in regime
L, we set the annualized volatility

√
12ΣL to an identity matrix, κPL to a lower triangular

matrix, and θPL to zero. The normalization of ΣL is needed, because we have allowed
δY to be free and the factors Y are latent. Second, in regime H, ΣH was set to a lower
diagonal matrix, because the Brownian motions in regime H can be rotated independently
of any rotations on the Brownian motions in regime L. Beyond these normalizations, the
restrictions κQH = κQL ≡ κQ and δH

Y = δL
Y = δY were imposed so that zero-coupon bonds

are priced in closed form. Consequently κPL + λL
Y = κPH + λH

Y .

17Bliss [1997] provides a more detailed description of these methods. The Unsmoothed Fama-Bliss method
is documented in Fama and Bliss [1987]. The McCulloch-Kwon method is a modified version of the McCulloch
method (McCulloch [1975]). The Fisher-Waggoner method (Waggoner [1997]) is a modified version of the
Fisher-Nychka-Zervos method (Fisher, Nychka, and Zervos [1995]). The Nelson-Siegel-Bliss method was
originally labeled the extended Nelson-Siegel method in Bliss [1997]. The original Nelson-Siegel method
(Nelson and Siegel [1987]) has only four free parameters. The Nelson-Siegel-Bliss method has five parameters
free so as to provide a better fit for longer maturities (Bliss [1997]).

18In the MK method a cubic spline is used to approximate the discount function, and the spline is
estimated with ordinary least squares. The FW method uses a cubic spline to approximate the forward rate
function itself.

19The FW data is generated using “The Bliss Term Structure Generating Programs” with the filtered
“long data set”, which filters out bonds with option features and liquidity problems, but otherwise contains
all eligible issues. See Bliss [1997].
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Even with these normalizations/constraints, the resulting maximally flexible ARS
0 (3)

model (with restrictions for analytical pricing) involves a high dimensional parameter space:
there are 56 parameters in

δL
0 , δH

0 , δY , κPL, θPH , ΣH , λL
0 , λL

Y , λH
0 , λH

Y , ΩL, ΩH , πQ, ηLH
0 , ηLH

Y , ηHL
0 , ηHL

Y .

To facilitate numerical identification of the free parameters, we imposed several additional
over-identifying restrictions. The model, together with the normalizations, imply that when
economy stays in a regime L or H forever, the long-run mean of the short rate is E(L)[rt] = δL

0

and E(H)[rt] = δH
0 + δ′Y θPH . Given the challenge of estimating these unconditional means,

we discipline our search procedure by fixing them a priori. Specifically, we use the regimes
identified from the descriptive regime-switching model and compute the sample means for
the one-month Treasury bill yield when the regimes are L (H) for the current month t
and months t − ℓ, where ℓ is at least 1. Using these estimates, we fix δL

0 = 5.30%/12 and
δH
0 + δ′Y θPH = 9.20%/12. Also, after a preliminary exploration of model ARS

0 (3) we set
the parameters κPL(2, 1), ΣH(2, 1), ΣH(3, 1), ΣH(3, 2), λL

Y (1, 1), λL
Y (2, 1), λL

Y (2, 2), λL
Y (3, 2),

λH
0 (1), λH

0 (2), λH
0 (3), λH

Y (1, 3), λH
Y (2, 3), λH

Y (3, 2), λH
Y (3, 3), ηLH

Y (2), and ηHL
Y (1) to 0, because

they were small relative to their estimated standard errors.
A likelihood ratio test of the null hypothesis that πP = constant – regime-shift risk

is priced, but the regime-shift probabilities, and hence the MPRS risks, are constants –
suggests strong rejection at conventional significance levels (Table 1, row 2).20 This, in turn,
implies a strong rejection of the constraint that πQ = πP (= constant) – regime-shift risk is
not priced and the historical regime switching probabilities are state-independent (Table 1,
row 3). Accordingly, we focus primarily on model ARS

0 (3), occasionally comparing the results
for this model with those from model ARS

0 (3)[πQ = πP].

Null log L −2(T − 1) log L

L[ARS
0

(3)]
d.f. p-value

ARS
0 (3) 19.54181

ARS
0 (3)[πP = const, πP 6= πQ] 19.52343 14.079 4 0.0070

ARS
0 (3)[πQ = πP] 19.52211 15.090 6 0.0196

Table 1: Likelihood ratio tests of constrained versions of model ARS
0 (3).

The ML estimates of the parameters of model ARS
0 (3) and their associated asymptotic

standard errors are reported in Table 2.21 The diagonal elements of ΣH are all larger than
their counterparts in ΣL, which motivates our labelling of the two regimes. The estimates
of the κPj show that the rates of mean reversion of the risk factors Y change across regimes.
Equivalently, there are statistically significant differences in the state dependence of the MPF
risks (in the estimated values of λj

Y ) across regimes.

20Since, as noted above, our framework maintains the assumption that πQ is constant, we cannot rule
out the possibility that this finding is evidence against this auxiliary assumption. Relaxing the constraint
πQ = constant is an interesting topic for future research.

21We report 12δ0, 12δY , and
√

12Σ, i.e., annualized values for ease of interpretation.
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log L = 19.54181
Regime L Regime H

12δ0 5.30% 6.28%

12δY
-0.000742 -0.00165 0.00851

(0.000856) (0.00053) (0.00030)

0.0348 0.1075 0.1886 0.0082
(0.0087)

κP
0.0206 0.1515 0.3888 -0.0086
(0.0050)

0.1289 0.1047 0.0407 0.1211 0.1047 0.0628
(0.0268) (0.0250) (0.0112)

0.0348 0.0361 0.0082
κQ 0.0206 -0.0086

0.1611 0.1047 0.0628

θP -3.027 1.118 3.386
(1.470) (0.966) (1.836)

diag(
√

12Σ)
1 1 1 1.505 2.027 4.558

(0.140) (0.174) (0.314)

λ0
-0.0635 -0.0206 -0.1540
(0.1389) (0.0573) (0.0958)

0.0361 0.0082 -0.0727 -0.1525
(0.0059) (0.0026) (0.0592) (0.0794)

λY -0.0086 -0.1515 -0.3682

(0.0010) (0.0728) (0.1075)
0.0322 0.0221 0.0400

(0.0199) (0.0099) (0.0417)

Ω
6.52 bp 18.19 bp
(0.30 bp) (1.53 bp)

πQ









92.20% 7.80%
(14.84%)
8.28% 91.72%

(12.86%)









L → H H → L

η0
5.40 4.98
(1.89) (9.09)

ηY
0.860 -0.442 -6.18 3.64

(0.616) (0.377) (8.11) (4.68)

Table 2: Maximum likelihood estimates and asymptotic standard errors (in parentheses)
for model ARS

0 (3). Parameters in bold face are significantly different from 0 at the 5%
significance level. Those without standard errors are non-free parameters fixed by normal-
izations/restrictions.
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Within both the H and L regimes, all three factors are stationary stochastic processes
under P. The relative magnitudes of the diagonal elements of κPL and κPH suggest that there
is less mean reversion in regime L. To examine the degree of persistence more formally, we
computed the eigenvalues of these matrices for each regime. Two out of the three eigenvalues
(sorted in descending order) of κPL are smaller than those of κPH , with the largest eigenvalue
in κPH being ten times larger than its counterpart for κPL:

eig(κPL) =





0.0407
0.0348
0.0207



 , eig(κPH) =





0.4663
0.0802
0.0127



 . (33)

The relatively faster rate of mean reversion in regime H, which we elaborate on subsequently,
is consistent with past studies of descriptive regime-switching models (e.g., Gray [1996] and
Ang and Bekaert [2002b]).

Interestingly, the eigenvalues of the mean reversion matrix under the risk-neutral measure,

eig(κQ) =





−0.00024
0.0593 + 0.0169i
0.0593 − 0.0169i



 , (34)

suggest that the factors have oscillatory dynamics under Q. More precisely, the first eigen-
value of I − κQ gives rise to a slightly explosive process (over 30 years or 360 months
1.00024360 = 1.09), while the other two eigenvalues are associated with decaying oscilla-
tory factors with a half-life of 14.6 years ( |1 − (0.0593 ± 0.0169i)| = 0.941e∓0.0180i ). The
regime-switching pricing model ARS

0 (3)[πQ = πP] also gives rise to similar complex eigenval-
ues for κQ.

That one of the factors exhibits near or slightly explosive behavior under Q is a quite
common finding in the estimation of dynamic term structure models. An illustrative example
is the nonlinear, single-regime model in Duarte [2004]. The empirical feature of the data
underlying this finding is the high degree of volatility of long-term bond yields. In order to
sustain this level of volatility at long maturities, at least one of the latent risk factors must
exhibit very slow mean reversion or, as we find, slightly explosive mean repulsion under Q.
Under P, as noted above, all three factors are mean reverting.

With regard to the oscillatory behavior under Q, we conjecture that it arises in part due
to our assumption AQ. As discussed more extensively below, our regime-switching model
captures notable cyclical fluctuations under P that are captured in part through the regime
dependence of several of the key parameters of the P distribution. Our requirement that κQ

in particular be fixed across regimes largely forces the eigenvalues of κQ to capture persistent,
oscillatory factor movements under Q. A half-period of 14.5 years aligns well with the time
frame for a complete transition from one regime to another (see Figure 3 below).

Within single-regime A0(N) models it is common practice, following Dai and Singleton
[2000], to normalize κQ to be lower or upper triangular. Assuming that the elements of
κQ are real, this normalization precludes complex eigenvalues. Viewed in the context of the
present discussion, this convention in the single-regime literature may lead, as an unintended
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consequence, to the inability of single-regime A0(N) models to capture the rich cyclical
patterns documented here within our ARS

0 (3) model.
The estimated values of the “intercepts” aj

n and factor loadings bn for yields are displayed
in Figure 2. The regime dependence of the aj

n contributes to different levels and slopes of
the mean yield curves across regimes. The inverse of the matrix of the factor loadings for
R6, R24, and R120 (or b̂−1 in (24)) indicates that





Y1

Y2

Y3



 = const +





67.03 −69.25 −75.61
86.80 −227.13 187.42
211.40 −139.61 47.98



 ×





R6

R24

R120



 . (35)

From the first row of the matrix pre-multiplying the yields we see that the first factor is
approximately the negative of the sum of the short-term slope R24 − R6 and the 10-year
yield. The second factor displays a “curvature” characteristic with a loading ratio of 2:-5:4,
and the third factor is approximately the six-month yield minus the short-term slope. This
“rotation” of the factors obtained from the pricing model is different from what is obtained in
standard principal component analyses, where the three factors are typically level, slope (e.g.,
R120

t −rt), and curvature. Of course, unlike in a principal component analysis, the components
of Y exhibit substantial correlation induced by the non-zero off-diagonal elements in κP.
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Figure 2: Estimates of the factor loadings, the aj and b in the affine expression for bond
yields.

4.1 Regime Probabilities

The filtered regime probabilities QH
t = f(st = H|Jt) for models ARS

0 (3) and ARS
0 (3)[πQ = πP]

are displayed in Figure 3. For comparison we also plot (dotted lines) the corresponding
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Figure 3: Filtered probabilities QH
t from models ARS

0 (3) (top panel) and ARS
0 (3)[πQ = πP]

(lower panel). In each panel we have overlayed the periods of recessions according to dating
by the NBER (shaded portions) and the implied QH

t from our descriptive model (dotted
lines).

filtered probabilities from a descriptive regime-switching (DRS) model. To estimate the
descriptive regime-switching model the vector PCt of the first three principal components
was computed using the covariance matrix of the 6-, 24-, and 120-month zero-coupon bond
yields. Then a descriptive model for PCt in which the state-dependent regime-switching
probabilities πPC

t were assumed to depend on PCt as in (21) was estimated. The shaded
periods in Figure 3 represent the periods of recessions according to NBER business-cycle
dating.

These plots confirm the widely documented observation that regime H tends to be as-
sociated with recessions: both the pricing and descriptive models show that QH

t is larger
during recessions. The two pricing models display stronger signals in the sense that QH

t is
closer to one during recessions than that computed from model DRS. In particular, model
ARS

0 (3) appears to generate the most clear-cut predictions for both the H and L regimes.
This is most evident during the period from 1980 to 1985. Both pricing models predict
that regime H extended well beyond the end of 1982, when the NBER judged the reces-
sion to be over, and the Federal Reserve ended the monetary experiment. However, model
ARS

0 (3)[πQ = πP] signals a few brief instances of increased likelihood of being in regime L,
while ARS

0 (3) suggests an unambiguously persistent H regime throughout. On the other
hand, although model DRS suggests that the economy was in regime H in 1985, it indicates
an earlier return to the L regime in 1983. We will return to this point later.
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t , evaluated at the ML estimates, from
model ARS

0 (3). In each panel we have overlayed the periods of recessions according to dating
by the NBER (shaded portions) and the model DRS implied transition probabilities (dotted
lines).

The parameters governing πPij
t (Table 2) and the factor loadings in (35) imply that

πPLH =
[

1 + e13−122×R6−86×(R120−R6)+2×R24
]−1

,

πPHL =
[

1 + e3+234×R6−983×(R120−0.91×R24)
]−1

.

That is, the probability of switching from regime L to regime H increases as the short-term
yields or the slope of the yield curve increase. The relative magnitudes of the short rate and
the slope imply that πPLH is driven largely by R6 (the correlation between πPLH and R6 is
0.80). At the same time, the probability of switching from regime H to regime L increases
as the short-term yield declines and the long-term slope increases.

Figure 4 displays the probabilities πPLH
t and πPHL

t , evaluated at the ML estimates, from
models ARS

0 (3) and DRS. Both the ARS
0 (3)-based and DRS-based estimates of πPLH

t are
higher during the recessionary periods in our sample. Pursuing our interpretation of regimes
H and L as different stages of the business cycle, towards the end of an expansionary phase of
the economy, short-term rates are often rising faster than long-term rates as a central bank’s
concerns about inflation puts upward pressure on short-term yields. Consistent with these
observations, our econometric model shows πPLH increasing as the short rate increases. On
the other hand, if we are already in regime H (a recession), then short-term rates typically
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have to come down far enough to induce an expansion. This is consistent with πPHL rising
as short-term rates fall and the long-term slope increases.

During the recessionary periods in our sample, πPLH and πPHL tend to move in opposite
directions. That is, when the U.S. economy was in a recession, the conditional probability of
moving from regime H to regime L was lower. As noted above, πPHL was driven by the short-
term rate R6 and the long-term slope. During 1984 the Federal Reserve temporarily tightened
monetary policy. Then in late 1984 and throughout 1985 there was a monetary easing and
concurrent decline in short-term interest rates. Additionally, the striking decline in U.S.
inflation rates, instigated by Volker’s anti-inflation policy of the early 1980’s, continued.
These events show up in our model as an increase in πPHL from near zero in 1984 to near
unity by the end of 1985.22

During much of the period between 1983 and 1985, πPHL is larger in model DRS than
in model ARS

0 (3) . That is, the pricing model shows much more persistent risk of staying
in regime H during this period, suggesting that bond markets did not view the announced
shift in monetary policy in 1982 as fully credible. In addition, there were substantial swings
in πPHL from 1985 until early 1988. We find this interesting in the light of the fact that the
Federal Reserve only weakened its dedication to monetary growth targets in October 1982
(the ending date for the “monetary experiment”) and, in fact, maintained a target for M1
until 1987 (Friedman [2000]).23 Consistent with these observations, the filtered probability
QH

t from the pricing models indicates that a persistent H regime extended beyond 1983 until
1985, and was followed by another increase in QH

t in 1986.
For the period after 1990 the time-series of QH

t suggests that the economy has stayed
in the L regime. On the other hand, there were a few swings in πPHL during the period,
with increases occurring in early 1991 and in 2001. Both of these increases were associated
with increases in the short rate concurrent with the two most recent recessions dated by the
NBER.

The relative sensitivities of the πP to the level and slope of the yield curve may also be
relevant for recent findings on the predictability of GDP growth using yield curve variables.
Ang, Piazzesi, and Wei [2003] find that both level and slope have predictive content within
a single-regime DTSM, and in particular, the short rate contains more information about
the GDP growth than the slope. Our two-regime model suggests that the relative predictive
contents of these variables may vary with the stage of the business cycle, and reveals a strong
role of the short rate in driving the transition probabilities.

Table 3 displays the sample means of the time-varying πPij
t for the three models. Notably,

with πQ = πP = constant, πPHH is much larger than πPHL. This finding is similar to those
in previous studies of both regime-switching descriptive and pricing models (e.g., Ang and
Bekaert [2002b] and Bansal and Zhou [2002]) with constant transition probabilities. However,

22One concern we had was that our findings might have been affected by imposition of (rarely used) credit
controls from mid-March to June in 1980. We found that our estimates changed little after we removed the
abrupt dips in interest rates induced by these controls by a linear interpolation between February and July.

23Based on their statistical analyses, Friedman and Kuttner [1996] argue that deviations from the Federal
Reserve’s target for M1 remained a significant determinant of their monetary policy rule until mid-1984,
and deviations from M2 were significant until mid-1985.
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Model π̄P xP Q̄

ARS
0 (3)

[

87.58% 12.42%
31.96% 68.04%

] [

72.00%
28.00%

] [

71.91%
28.09%

]

DRS

[

91.38% 8.62%
46.88% 53.52%

] [

84.36%
15.64%

] [

83.30%
16.70%

]

ARS
0 (3)[πQ = πP]

[

97.72% 2.28%
5.52% 94.48%

] [

70.75%
29.25%

] [

71.92%
28.08%

]

Table 3: Sample means of the transition probabilities πP, the stable probability distribution
xP implied by the mean transition matrices, and the sample means of the fitted probabilities
(QL

t , QH
t ). For model ARS

0 (3) and the descriptive model DRS the transition probabilities are
time-varying (state-dependent), while for model ARS

0 (3)[πQ = πP], are constant.

our model with time-varying regime-switching probabilities (ARS
0 (3)) for U.S. treasury data

gives a smaller difference between πPHH
t and πPHL

t on average, and suggests that regime H
was notably less persistent on average than regime L. If we view regime H as capturing
periods of downturns and regime L as periods of expansions, consistent with our previous
discussion of NBER business cycles and the probability QH

t , then this finding can be viewed
as a manifestation of the well documented asymmetry in U.S. business cycles: recoveries
tend to take longer than contractions (see, e.g., Neftci [1984] and Hamilton [1989]). Model
ARS

0 (3) with priced, state-dependent regime shift risk captures this asymmetry, but model
ARS

0 (3)[πQ = πP] with constant regime-shift probabilities does not.24

Table 3 also reveals a close match between xP, the stable probabilities implied by the
mean transition matrix25 and Q̄, the sample means of the fitted probabilities (QL

t , QH
t ). In-

terestingly, both pricing models generate very similar xP and Q̄, although the mean transition
matrices are dramatically different. In particular, both πPLL and πPHH are higher in model
ARS

0 (3)[πQ = πP] than in model ARS
0 (3). Hence, models with constant transition probabilities

not only overstate the persistence of the H regime, but also exaggerate the persistence of
the L regime in order to match the historical distribution of “residence” in the two regimes.

The estimated risk-neutral transition probabilities from model ARS
0 (3) (shown in Table

2) imply an invariant distribution of xQ = [51.50% 48.50%]′. Comparing the stable prob-
abilities xQ and xP, it is seen that the economy spends much more time in regime H and
much less time in regime L under Q than under P. This is intuitive since, with risk-averse
bond investors, risk-neutral pricing will recover market prices for bonds only if we treat the

24We also confirm πPHH ≫ πPHL in the model with constant transition probabilities but priced regime
shifts (row 2 in Table 1).

25For a constant transition matrix Π, the stable (stationary, invariant) distribution x is defined by the
equation Π′x = x. Equivalently, x is the limit of Π

′nx, as n → ∞. Finite-state Markov chains for which all
of the elements of the transition matrix are positive are positive recurrent and irreducible, and have unique
invariant distributions.

22



“bad” H regime as being more likely to occur than in actuality. The diagonal elements of
πQ are statistically different from the means of the corresponding elements in πP.

4.2 Model-Implied Means and Volatilities of Bond Yields

Figure 5 compares the sample and the model-implied means of the Treasury yields and
standard deviations (volatilities) of the monthly yield changes. To obtain the model-implied
means and volatilities, we treated the ML estimates as the true population parameters and
simulated 1000 time series of yields, each with the same length as that of our historical data
(384 months). Then, conditional on either the L or H regime, we computed the mean of the
yields and the volatility of the monthly yield changes for each simulated series, and plotted
the average and two standard deviation bands for these 1000 means and volatilities.

To construct a sample counterpart, we compute the smoothed probabilities qj
t given by

(32), and then classify a date as being in regime L if qL
t ≥ 0.5 or in regime H if qH

t > 0.5.
After sorting the dates, we compute the sample means and volatilities of the yields in each
regime. These are reported as Sample in the plots. Figure 5 suggests that the model does a
very good job at matching the first and second unconditional moments in the data, as the
sample curves fall well within the two standard deviation bands of the simulated curves. The
mean yield curves are upward sloping in both regimes, with the yields being notably higher
in regime H.

Of particular note are the shapes of the volatility curves in the two regimes. It is
well known that in many U.S. fixed-income markets (e.g., Treasury bond, swaps, etc.),
the term structures of unconditional yield volatilities are hump-shaped (see, e.g., Litterman,
Scheinkman, and Weiss [1991]), with the peak of the hump being approximately at two years
to maturity.26 Under our classification of dates into regimes, the hump in volatility is an
L-regime phenomenon. Fleming and Remolona [1999] present evidence linking the hump to
market reactions to macroeconomic announcements. Through the lens of our model, it ap-
pears that these, and possibly other, sources of yield volatility show up as a hump in volatility
primarily during relatively tranquil, expansionary phases of the business cycle. When the
economy is in regime H, volatility is high and the risk factors mean-revert to their long-run
means relatively quickly (κPH in Table 2). The fast mean reversion in regime H swamps a
humped reaction (if any) to macroeconomic news, and induces the steeply downward sloping
term structure of (unconditional) volatility.

Pursuing the latter point, it is the interaction between the factor correlations and their
rates of mean reversion that largely induce humped-shaped term structures of volatility in
dynamic term structure models (Dai and Singleton [2000]). Indeed, when we estimated
a restricted version of model ARS

0 (3) with diagonal κPj, Σj, and λj
Y matrices, simulations

confirmed that mean reversion induces downward sloping term structures of volatility in both
the H and L regimes. This is why we highlight the flexibility associated with correlated

26Figure 5 also shows the “snake” shaped pattern in historical yield volatilities for very short-term bonds.
This pattern is partially captured by our three-factor model. The findings in both Longstaff, Santa-Clara,
and Schwartz [2001] and Piazzesi [2005] suggest that the addition of a fourth factor would allow our model
to replicate this pattern even better.
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Figure 5: Term structures of unconditional means of Treasury bond yields and volatilities
of monthly yield changes implied by model ARS

0 (3). The solid lines show the sample results,
obtained by computing sample means and volatilities after allocating dates to regimes based
on the smoothed probabilities qj

t . The dotted lines and the crosses plot the averages and two
standard deviations for the means and volatilities computed from the time series of yields
simulated from the model. Both means and volatilities are annualized.

factors in Gaussian affine models relative to multi-factor CIR models with independent
factors. Ang and Bekaert [2005] also constrain the “level” and “slope” (latent) factors in
their regime-switching Gaussian models to be mutually independent within all regimes.

In unreported results, we also confirm that the simulated curves from model ARS
0 (3)[πQ =

πP], in which regime-shift risk is not priced and regime-switching probabilities are state-
independent, perform similarly well in matching the sample mean and volatility curves.
By and large, there is not a large difference between the model-implied first and second
unconditional moments across these two models.

We examine the model-implied conditional volatilities in Section 6 as part of our assess-
ment of the robustness of the properties of model ARS

0 (3) to the presence of within-regime
time-varying volatility.

5 Excess Returns and Market Prices of Risk

In this section we return to one of the primary motivations for our analysis, namely, an
investigation of the contributions of factor and regime-shift risk premiums to the temporal
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variation in expected excess returns.
We start by presenting the decomposition of expected excess returns into components

associated with regime-shift and factor risks. Let pj
t,n ≡ log Dj

t,n denote the log price of a
n-period bond at time t and in regime st = j. The one-period expected excess return on the
n-period bond is (see appendix A for more details)

Et[pt+1,n−1|st = j] − pj
t,n + pj

t,1 = ρRSj
t,n + ρFj

t,n, (36)

where

ρRSj
t,n = log

e
∑S

k=0
π

Pjk
t (−Ak

n−1
)

∑S

k=0 πQjke−Ak
n−1

, (37)

ρFj
t,n = −1

2
B′

n−1Σ
jΣj′Bn−1 − B′

n−1Σ
jΛj

t . (38)

Since econometricians do not observe the regimes, we evaluate the expected excess returns
conditional on Jt:

Et[pt+1,n−1 − pt,n + pt,1|Jt] =
∑

j

Et[pt+1,n−1 − pt,n + pt,1|st = j, Jt]Q
j
t

=
∑

j

ρRSj
t,n Qj

t +
∑

j

ρFj
t,nQ

j
t ≡ ρRS

t,n + ρF
t,n,

where the regime-specific components ρRSj
t,n and ρFj

t,n are weighted by regime probabilities Qj
t .

The regime-shift component ρRSj
t,n is determined largely by the difference between the

historical and risk neutral transition probabilities and the regime dependence of Ak
n−1. This

can be seen more clearly from its linear expansion,

ρRSj
t,n ≈

S
∑

k=0

(πQjk − πPjk
t )Ak

n−1 (39)

=

{

(πQLH − πPLH
t )(AH

n−1 − AL
n−1), if st = L,

(πQHL − πPHL
t )(AL

n−1 − AH
n−1), if st = H.

(40)

Though ρRSj
t,n is nonzero even if πQjk = πPjk, due to the convexity effect associated with

continuously compounded returns, the quantitative importance of this convexity effect is
negligible (see below). Thus, the within-regime variation in ρRSj

t,n is determined largely by

time variation in πPjk
t and, hence, the historical probabilities of a change in regime potentially

play a central role in the temporal variation in expected excess returns.
The convexity effect also produces the first term in ρFj

t,n. The second term, on the other

hand, is proportional to the market price of factor risk, Λj
t , and the amount of exposure to

the factor risk, B′
n−1Σ

j. Substituting ΣjΛj
t = λj

0 + λj
Y Yt into (38), we see that a constant

MPF risk (λj
0 6= 0, λj

Y = 0) would only induce regime specific, constant expected returns.
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Consequently, with λj
Y = 0, the only source of temporal variation in the component ρF

t,n of

expected excess returns is the variation in the Qj
t . By allowing for λj

Y 6= 0 we introduce
within-regime variation in ρFj

t and, thereby, allow for much richer historical patterns in the
variation of the component ρF

t,n.
Figure 6 plots ρRS

t,n and ρF
t,n for n = 24 and 120 months. During extended L (H) regimes

we observe persistent positive (negative) levels of the regime shift component of the expected
excess returns. Intuitively, during the L regime the physical probability of switching to the
H regime is extremely low (almost zero), lower than the πQLH . The bonds are priced in
the markets as if the probabilities of going into recessions are higher under the risk-neutral
measure. This pushes down the current bond prices, yielding a positive expected return
component. Similarly, during the H regime, the relatively higher risk neutral probability of
switching to the L regime pushes up the current bond prices and yields a negative expected
return. The magnitudes of these persistent levels of the regime-shift components are about
0.2 to 0.3% (monthly) on a ten-year bond, in comparison to a 0.6% standard deviation of
the factor risk component.

The large spikes around the mid-1970’s and mid-1980’s in the regime-shift risk component
are attributable to ρRS H

t,n , the H regime component, and thus are associated with the swings
in the πPHL during these two periods. We have noted earlier that the mid-1980’s episode
suggests investors doubted the credibility of the Federal Reserve’s announced change in
monetary policy. These spikes are completely missed in the model-implied expected returns
for the single-regime A0(3) model (see Figure 1).

The bottom panel of Figure 6 decomposes the factor risk component into values during
the L and H regimes based on model ARS

0 (3) (the ρFj
t,n in (38)). Consistent with the view that

expected returns should not fluctuate dramatically under “normal” circumstances, the curves
are much smoother in regime L (thick line) than in regime H (thin line).27 A very different
impression comes from inspection of the expected excess returns from the corresponding
single-regime Gaussian A0(3) model displayed in Figure 1 (induced solely by factor risks).
They look much more like the choppy patterns during regime H than the relatively smooth
behavior during regime L. This finding lends support to a basic premise of this paper;
namely, omission of the regime-switching process tends to distort the model-implied (factor
risk component of) excess returns both in tranquil and turbulent times.

To demonstrate the critical role of state-dependent MPRS risks in capturing the vari-
ations in excess returns, Figure 7 plots the regime-shift component of expected returns on
a ten-year bond implied by three models, ordered from the least to the most flexible spec-
ifications of the MPRS risk. Model ARS

0 (3)[πQ = πP] restricts Γjk
t = 0, and the regime

-shift component of excess returns is comprised solely of the convexity term. As anticipated,
the magnitudes are negligible, with maximums of about 0.003%. Allowing for a constant,
nonzero Γjk

t in model ARS
0 (3)[πP = const, πP 6= πQ] gives rise to persistent positive (negative)

contributions to excess returns within the L (H) regime. However, relative to our most flexi-

27The regime dependent characteristics of ρF
t are attributable to the corresponding market prices of factor

risks in L and H regimes. We confirm in unreported results that the market prices of factor risks are much
smoother in the L regime than in the H regime.
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Figure 6: Regime-shift (top) and factor (middle) risk components of one-month ahead ex-
pected excess returns for two- and ten-year bonds implied by model ARS

0 (3). The bottom
panel further displays the factor risk component of the expected excess returns for ten-year
bond in the L and H regimes.

ble model ARS
0 (3), model ARS

0 (3)[πP = const, πP 6= πQ] understates the average contributions
of regime-shift risk to excess returns, and completely misses the large spikes in excess returns
during regime transitions. Model ARS

0 (3) suggests that there is a substantial contribution of
the state-dependent MPRS risk to excess returns, particularly during transitions between
turbulent and tranquil periods.

Finally, regarding the predictability of excess returns on bonds, the empirical results in
Duffee [2002] and Dai and Singleton [2002] suggest that, within the family of single-regime
affine DTSMs, the rich state dependence of the market prices of factor risks accommodated
by Gaussian models is essential for predictability puzzles associated with violation of the
“expectations theory” of the term structure (e.g., Campbell and Shiller [1991]). Since our
ARS

0 (3) model nests single-regime Gaussian models it is not surprising that it also does a
reasonable job of matching the Campbell-Shiller evidence against the expectations theory.
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Figure 7: Regime-shift risk component of one-month ahead expected excess returns for ten-
year bonds implied by various models.

6 Concluding Remarks

In this paper, we show that regime switching term structure models in which regime tran-
sition probabilities are constant and equal under both physical and risk-neutral measures
may potentially give a mis-leading impression of the dynamics of expected bond returns and
the relationship between the shape of the term structure and business cycle fluctuations.
Likelihood ratio tests formally reject the case of constant regime transition probabilities in
favor of a model with state-dependent regime transition probabilities and market prices of
regime-shift risk. In concluding this paper, we point out some limitations/caveats of our
analysis.

First, in order to price bonds analytically, we have imposed some parametric restric-
tions on the joint dynamics of the state vector and the Markov regime switching process
under the risk-neutral measure. These restrictions preclude examination of a model in
which regime-shift risk is priced and the regime transition probabilities are state-dependent
under both physical and risk-neutral measures (as in Boudoukh, Richardson, Smith, and
Whitelaw [1999]), or a model in which factor loadings on bond yields are allowed to be
regime-dependent. We could relax these constraints, but at the cost of introducing ap-
proximations to both pricing and likelihood functions. Following the tradition of the large
single-regime term structure literature, it seemed worthwhile to explore how far one could
go in improving the fits over single-regime affine models, while preserving the analytical
tractability of this family.

Perhaps of greater concern is the fact that our empirical study is based on the assumption
that the state vector conditional on a regime is an autoregressive Gaussian state process.
The regime dependence of both the level and the volatility of the short-term interest rates
in model ARS

0 (3) induce time varying, and in particular level dependence, of the volatilities
of bond yields of all maturities. However, we are unable to accommodate level dependence
of volatilities within each regime, as incorporated in the models of Naik and Lee [1997] and
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Figure 8: Conditional volatilities of ten-year bond yields from models ARS
0 (3) and

ARS
0 (3)[πQ = πP] plotted against the implied volatility from a descriptive regime-switching

GARCH model (DRSG).

Bansal and Zhou [2002].
To gain some insight into how models ARS

0 (3) and ARS
0 (3)[πQ = πP] perform relative to a

model with time-varying volatility within each regime, we extended our descriptive model for
the first three principal components of bond yields to allow the volatility of each principal
component in each regime to follow a GARCH(1, 1) process (model DRSG).28 Figure 8
displays the one-month ahead conditional volatilities for the ten-year bond yield from our
pricing models against those from model DRSG.29 Perhaps the most striking feature of this
figure is the fact that our pricing models understate conditional volatility relative to model
DRSG during the monetary experiment of the early 1980’s. (This is also true, but to a lesser
degree, for the spike up in volatility around 1975.)

Of particular concern to us was the robustness (to the presence of time-varying volatil-
ity) of our finding that regime-switching DTSMs with state-independent regime switching
probabilities (constant πP) are over-stating the persistence of the high volatility regime H.
Equation (41) presents the average value of πP from the descriptive model DRSG. The esti-

28The parameters of the GARCH processes were allowed to differ both across principal components and
across regimes. The spirit of this analysis is a multi-variate version of the switching GARCH model examined
by Gray [1996]. However, we set up our switching GARCH model using the same timing conventions as in
our pricing model.

29The analogous pictures for yields on bonds with shorter maturities show higher levels of volatility, but
very similar temporal patterns.
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mates are very similar to those from the model DRS:

π̄DRSG =

[

91.39% 8.61%
49.11% 50.89%

]

. (41)

This extended descriptive analysis with model DRSG does not, of course, allow us to assess
the implications of within-regime time-varying volatility for the structure of the market
prices of factor or regime-shift risks. Such an assessment would require a regime-shifting
DTSM that allows for both within regime stochastic volatility and state-dependent regime-
shift probabilities. Nevertheless, given the similarity between the results for models DRS
and DRSG, we are reassured that some of our key findings– in particular, the asymmetry in
the persistence of regimes– are robust to extended specifications of volatility beyond what
is inherent in model ARS

0 (3).
Finally, a natural question is whether our findings are sensitive to our choice of sample

period. The nature of a regime-switching model is such that the answer has to be (a qualified)
yes. As documented above, in both our pricing and descriptive regime-switching models, the
regimes identified by our model are related to stages of the business cycle. For such an
identification to be feasible, it is essential that the sample period span a sufficient number of
cycles. Otherwise, the flexibility of a regime-switching model will largely be used to capture
relatively minor within-cycle variations in the conditional distributions of bond yields.

This was confirmed upon re-estimation of model ARS
0 (3) over the post-1987 sample. For

this shorter sample, the two-regime model associated the period 1987–1992 with the H
regime, and the post-1992 with the L regime. The pre-1992 H regime spans the recession
of the early 1990’s. Not unexpectedly, the differences in the volatilities of the factors across
the H and L regimes are much smaller than those obtained for the full sample period
(the diagonal elements of

√
12ΣH are (0.96, 1.06, 1.26) in the shortened sample compared to

(1.51, 2.03, 4.56) in the full sample). This is consistent with the full-sample results, which
treat the post-1987 era as a homogeneous L regime. Many other features of the full-sample
results, including faster rates of mean reversion in the H regime and asymmetry in the
matrix πP when these probabilities are state-dependent, remain qualitatively the same in
the post-1987 period. These findings provide further assurance that our key results are
robust.
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A Decomposition of Expected Excess Returns

The price of a n-period bond is

Dj
t,n = e−A

j
n−B′

nYt .

The log price is

pj
t,n ≡ log Dj

t,n = log EQ
t

[

e−r
j
t Dt+1,n−1|st = j

]

= −rj
t + log

(

S
∑

k=0

πQjkEQ
t

[

Dk
t+1,n−1|st = j

]

)

= −rj
t + log

(

S
∑

k=0

πQjke−Ak
n−1EQ

t

[

e−B′

n−1
Yt+1|st = j

]

)

= −rj
t + log

(

S
∑

k=0

πQjke−Ak
n−1

)

− B′
n−1µ

Qj
t +

1

2
B′

n−1Σ
jΣj′Bn−1.

The expected value of the log price is

Et[pt+1,n|st = j]

=
S

∑

k=0

πPjk
t Et[p

k
t+1,n|st = j]

=
S

∑

k=0

πPjk
t

(

−Ak
n − B′

nEt[Yt+1|st = j]
)

= −
(

S
∑

k=0

πPjk
t Ak

n

)

− B′
nµ

Pj
t .

The expected excess return is then

Et[pt+1,n−1|st = j] − pj
t,n + pj

t,1

= −
(

S
∑

k=0

πPjk
t Ak

n−1

)

− B′
n−1µ

Pj
t

+rj
t − log

(

S
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k=0

πQjke−Ak
n−1

)

+ B′
n−1µ

Qj
t − 1

2
B′

n−1Σ
jΣj′Bn−1

−rj
t

= log
e
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k=0

π
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t (−Ak
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)
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k=0 πQjke−Ak
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2
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t .
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