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Abstract

Recent evidence indicates that using multiple forward rates sharply predicts future
excess returns on U.S. Treasury bonds—the R2’s being around 30%. The projection
coefficients in these regressions exhibit a distinct pattern that relates to the maturity
of the forward rate. These dimensions of the data in conjunction with the transition
dynamics of bond yields offer a serious challenge to term structure models. In this
paper we show that a regime-shifts term structure model can empirically account for
these challenging data features. Alternative models, such as the affine specification,
fail to account for these important features. We find that regimes in the model are
intimately related to bond risk premia and real business cycles.

Keywords: Regime Switching, Term Structure of Interest Rate, Expectation Hypoth-
esis, Business Cycle, Efficient Method of Moments.
JEL classification: E43, G12, C51, C52.
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1 Introduction

Term structural models with regime-shifts considered in Naik and Lee (1997) and Bansal and

Zhou (2002) capture the important feature that the aggregate economy is subject to discrete

and persistent changes in the business cycle. The business cycle fluctuations together with

the monetary policy response to them have significant impacts on not only the short interest

rate, but also the entire term structure. Regime-switching term structure models represent a

parsimonious way to introduce interactions between the business cycles, the term structure,

and risk premia on bonds. Using the US treasury yield data from 1964 to 1995, Bansal

and Zhou (2002) find that the model-implied regime changes usually lead or coincide with

economic recessions. Therefore the term structure regimes seem to confirm and complement

the real business cycles. This evidence, consequently, also permits the possibility that this

class of term structure models may be able to capture the dynamics of risk premia on bonds.

The most common strategy for understanding bond risk premiums is to study deviations

from the the Expectations Hypothesis. One form of the violation that the regression of

yield changes on yield spreads produces negative slope coefficient instead of unity (Campbell

and Shiller, 1991), has been addressed in many recent papers (see Roberds and Whiteman,

1999; Dai and Singleton, 2002; Bansal and Zhou, 2002; Evans, 2003). Another form of the

violation of Expectations Hypothesis is that the forward rate can predict the excess bond

return (Fama and Bliss, 1987). More recently, Cochrane and Piazzesi (2002) document that

using multiple forward rates to predict bond excess returns generates very high predictability

of bond excess returns—the adjusted R2’s from the regression being around 30%. Further,

they show that the coefficients of multiple forward-rate regressors form a tent shape pattern

related to the maturity of the forward rate. The size of the predictability and nature of

projection coefficients is quite puzzling and constitutes a challenge to term structure models.

The main contribution of this paper is to account for the predictability evidence from

the perspective of latent factor term structure models. When evaluating the plausibility of

various term structure models it is important not to focus exclusively on the predictabil-

ity issue; previous work (see Dai and Singleton, 2000; Bansal and Zhou, 2002; Ahn et al.,

2002) highlight the difficulties that many received models have in capturing the transition

dynamics of yields (i.e., conditional volatility and conditional cross-correlation across yields).

The predictability evidence, in conjunction with the transition dynamics constitutes a suffi-

ciently rich set of data-features to discriminate across alternative term structure models and
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to evaluate their plausibility. The main empirical finding of this paper is that the regime-

shifts term structure models can simultaneously justify the size and nature of bond return

predictability and the transition dynamics of yields. More specifically, we find that mod-

els with regime-shifts can reproduce the high predictability and the tent-shaped regression

coefficients documented in Cochrane and Piazzesi (2002). Additionally, the regime-shifts

term structure model reproduces the dynamics of conditional volatility and cross-correlation

across yields. On the other hand, commonly used multi-factor CIR and affine models can-

not capture these dimensions of the data. Our overall evidence indicates that incorporating

regime shifts is important for interpreting key aspects of treasury bond market data.

We use US treasury yield data from 1964 through 2001. The period from 1996 to 2000

poses a tough challenge for standard asset pricing models, with unprecedented long eco-

nomic growth and bull market run. At the same time this stretch of the data has several

economic recessions and periods of economic boom. Using the whole sample we find that

the conditional correlation between the long and short yields vary over a range from about

40% to 80%. The conditional volatilities of the long and short yields also reveal very large

variations. Despite this, when confronting the U.S. treasury yields data from 1964 to 2001,

our regime-shifts model still stands out as the best performing candidate. The regime indi-

cator is related to business cycles in the data; for example, the model-based regime indicator

predicts the 2001-2002 recession.

To estimate various models under consideration we use the Efficient Method of Mo-

ments (EMM), developed in Bansal et al. (1995) and Gallant and Tauchen (1996). Tests of

over-identifying restrictions based on the EMM method provide a way to compare different,

potentially non-nested models. This estimation technique forces the model to confront sev-

eral important aspects of the data, such as the conditional volatility and correlation across

different yields. To generate diagnostic evidence to help discrimination across models, we

rely on the reprojection methods developed by Gallant and Tauchen (1998). Our empirical

evidence suggests that the benchmark CIR and affine model specifications with up to three

factors are sharply rejected with p-values of zero. The only model specification that finds

support in the data (with p-value of 1%) is our preferred two-factor regime switching model

where the market prices of risks depend on regime shifts. Our diagnostics of the various

models show that the our preferred regime shifts model specification produces the smallest

cross-sectional pricing errors across all the specifications considered in the paper. Using

reprojections we compute the conditional correlations and volatility under the null of the
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various models. Our results show that only the regime-shifts models can capture the large

variations in conditional correlations and conditional volatility that are observed in the data.

The remainder of this paper is organized in the following manner. Section 2 reviews the

regime shifts term structure model developed in Bansal and Zhou (2002). Section 3 discusses

the empirical estimation results, the specifications tests, and an array of diagnostics based

on the conditional correlation and volatility. It also examines cross-sectional implications

on pricing errors, violations of the expectation hypothesis of forward rate predictability and

the link between regime classification and business cycles, especially the recent economic

recession. Section 4 contains the concluding remarks.

2 Term Structure Model with Regime-Shifts

In this section, we review the term structure model with regime shifts that is proposed in

Bansal and Zhou (2002). The derivation focuses on a single factor specification, the multi-

factor extension is straightforward (also see Bansal and Zhou, 2002). To capture the idea

that the aggregate economy is subject to regime shifts, we model the regime shifts process as

a two state Markov process as in Hamilton (1989). Suppose that the evolution of tomorrow’s

regime st+1 = 0, 1 given today’s regime st = 0, 1 is governed by the transitional probability

matrix of a Markov chain

Π =




π00 π01

π10 π11


 , (1)

where
∑

j=0,1 πij = 1 and 0 < πij < 1. In addition to the discrete regime shifts, the economy

is also affected by a continuous state variable,

Xt+1 −Xt = κst+1(θst+1 −Xt) + σst+1

√
Xtut+1, (2)

where κst+1 , θst+1 , and σst+1 , are the regime-dependent mean reversion, long run mean,

and volatility parameters respectively. All these parameters are subject to discrete regime

shifts. Specifically, Xt+1 − Xt = κ0(θ0 − Xt) + σ0

√
Xtut+1 if the regime st+1 = 0, and

Xt+1−Xt = κ1(θ1−Xt)+σ1

√
Xtut+1 if the regime st+1 = 1. Note that the innovation in the

process (2), ut+1, is conditionally normal given Xt and st+1. For analytical tractability we

assume that the process for regime shifts st+1 is independent of Xt+1−l, l = 0 · · ·∞, this is

similar to the assumptions made in Hamilton’s regime switching models. It is also assumed

that the agents in the economy observe the regimes, though the econometrician may possibly

not observe the regimes.
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The pricing kernel for this economy, is similar to that in standard models, except for

incorporating regime shifts

Mt+1 = exp{−rf,t − (
λst+1

σst+1

)2Xt

2
− λst+1

σst+1

√
Xtut+1}. (3)

The above specification of the pricing kernel captures the intuition that these aggregate

processes are latent and subject to regime shifts (as in Hamilton, 1989). Note that the λ

parameter that affects the risk premia on bonds is also subject to regime shifts and hence

depends on st+1. Bansal and Zhou (2002) present a general equilibrium model that leads to

the pricing kernel in (3).

With regime shifts, we conjecture that the bond price with n periods to maturity, at date

t depends on the regime st = i, i = 0, 1, and Xt

Pi(t, n) = exp{−Ai(n)−Bi(n)Xt}.

The one period ahead bond price, analogously depends on st+1 and Xt+1

Pst+1(t + 1, n− 1) = exp{−Ast+1(n− 1)−Bst+1(n− 1)Xt+1}.

In addition we impose the boundary condition Ai(0) = Bi(0) = 0 and the normalization

Ai(1) = 0, Bi(1) = 1, for i = 0, 1, that is, rf,t = Xt. The key asset pricing condition is,

Et[µn,st+1,t +
σ2

n,st+1,t

2
− rf,t|Xt, st] = −XtEt[Bst+1(n− 1)λst+1|st] (4)

The conditional mean and volatility of the bond return in regime st+1 is µn,st+1,t and σ2
n,st+1,t

respectively. Equation (4) captures the idea that all risk-premiums and bond prices at date t

depend only on st and Xt. To further get some intuition regarding this risk premium result,

note that −σst+1Bst+1(n − 1)
√

Xt is the exposure of the bond return to the standardized

shock ut+1 in regime st+1. Further, [
λst+1

σst+1

√
Xt] is the exposure of the pricing kernel to ut+1

in regime st+1. The covariance between these exposures determine the compensation for risk

in regime st+1. Hence, the risk compensation for regime st+1 is the product

−σst+1Bst+1(n− 1)
√

Xt × [
λst+1

σst+1

√
Xt] = −Bst+1(n− 1)λst+1Xt

Given information regarding st, Xt, and the regime transition probabilities; agents integrate

out the future regime, st+1, which leads to the risk premium result stated in (4). In the

absence of regime shifts, the risk premium in (4), would simply be −XtB(n − 1)λ. Hence
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incorporating regime shifts makes the “beta” of the asset, that is the coefficient on Xt, be

time-varying and dependent on the current regime. This fashion of making the asset “beta”

time varying is potentially important for capturing the behavior of risk premia on bonds.

The market price of risk, that is the risk premium for an asset with a unit exposure to ut+1,

in this model is Et[
λst+1

σst+1
|st]
√

X t, and is clearly regime dependent.

Given (4), the solution for the bond prices can be derived, by solving for the unknown

coefficients A and B, in particular we show:




B0(n)

B1(n)


 =




π00 π01

π10 π11







(1− κ0 − λ0)B0(n− 1)− 1
2
σ2

0B
2
0(n− 1) + 1

(1− κ1 − λ1)B1(n− 1)− 1
2
σ2

1B
2
1(n− 1) + 1


 (5)

and



A0(n)

A1(n)


 =




π00 π01

π10 π11







A0(n− 1) + κ0θ0B0(n− 1)

A1(n− 1) + κ1θ1B1(n− 1)


 (6)

with initial conditions A0(0) = A1(0) = B0(0) = B1(0) = 0. Note that bond price coefficients

are mutually dependent on both the regimes—current bond prices reflect agent’s expectations

regarding regime shifts in the future. Finally, the bond yield of a K factor regime-switching

model can be derived in an analogous manner,

Ys(t, n) = − ln Ps(t, n)

n
=

As(n)

n
+

K∑

k=1

Bks(n)Xkt

n
. (7)

The above regime shifts term structure model does not entertain the possibility of sep-

arate risk compensation for regime shifts. In other words, the risk premium for a security

that pays one dollar contingent on a regime shift at date t + 1, is zero. The model can be

extended to include explicit and separate compensation for regime-shifts risks. Such an ex-

tension, however entails additional parameters. We have not discussed or pursued this more

embellished version of the model as we found it extremely hard to identify and estimate its

parameters. Further, as documented below, the key puzzles in the term structure data, can

be accounted for by the more parsimonious model described above.

A recent paper by Dai et al. (2003) incorporates a separate risk premium for regime-

shifts, but for analytical tractability, this paper assumes that the within regime volatility

is constant. Given the nature of yields data, it would seem that allowing for within regime

volatility to be stochastic is quite important. It remains to be seen if the specification
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which assumes a constant within regime volatility can account for the observed time-varying

volatility and conditional cross-correlation of yields. As discussed below in our empirical

work, these dimensions of the term structure data are important in discriminating across

term structure models.

3 Empirical Estimation and Model Evaluation

3.1 Estimation Methodology

To utilize a consistent approach for evaluation and estimation across the different models we

rely on the simulation-based EMM (efficient method of moments) estimator, developed in

Bansal et al. (1995) and Gallant and Tauchen (1996). The EMM estimator consists of three

steps. The first, called the projection step, entails estimating a reduced form model, termed

the auxiliary model, that provides a good statistical description of the data. Multivariate

bond yields are difficult data to model as they exhibit extreme persistence in location and

scale, time varying correlations, and non-Gaussian innovations. Since we do not have good

a priori information on the specification of a model to capture all of these features, we

utilize a semi-nonparametric (SNP) series expansion. The SNP expansion has a VAR-ARCH

Gaussian density as its leading term, and the departures from the leading term are captured

by a Hermite polynomial expansion. We elected to use a simpler, ARCH-like leading term,

instead of a GARCH-type leading term because of the similar problems with multivariate

GARCH-type models of bond yields noted by Ahn et al. (2002).

In the second step, termed the estimation step, the score function from the log-likelihood

estimation of the auxiliary model is used to generate moments for a GMM-type criterion

function. The score function provides a set of moment conditions that are true by con-

struction and are to be confronted by all term structure models under consideration. In the

computations, the score function is averaged over the simulation output from a given term

structure model and the criterion function is minimized with respect to the parameters of

the term structure model under consideration. By using the scores from the non-parametric

SNP density as the moment conditions, each model is forced to match the conditional dis-

tribution of the observed 6-month and 5-year yields. Being a GMM-type estimator, EMM

provides a chi-squared measure of goodness-of-fit. In particular, the normalized objective

function acts as an omnibus specification test, which is distributed as a chi-square (as in

GMM) with degrees of freedom equal to the number of scores (moment conditions) less the
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number of parameters in the particular term structure model. The distance matrix (the

weight matrix in GMM) used in constructing the specification test is identical across dif-

ferent model specifications (the null hypotheses). Consequently, the p-values based on this

specification test can be directly compared across different structural models to identify the

best model specification. For a discussion of the importance of having the same distance

matrix, for a consistent comparison across models, see Hansen and Jagannathan (1997). It is

well recognized in the literature, that tests for the absence of regime-shifts against a regime

shifting alternative require non-standard approaches (see Hansen, 1992; Garcia, 1992). Our

approach of comparing all the considered models to a common non-parametric density (the

SNP density), allows us to rank order all the considered models according to the p-values

implied by the EMM criterion function. The advantage of using the non-parametric SNP, as

discussed in Gallant and Tauchen (1999), is that it can asymptotically converge to virtually

any smooth distributions, including mixture distributions (as is the case with a model of

regime shifts).

The third step is reprojection, or post-estimation analysis of model simulations. Since

EMM is a simulation-based estimator, there are available for analysis long simulated real-

izations from each estimated model. These simulations can be used to compute statistics of

interest that can be compared to analogous values computed from the observed data. The

reprojected statistics should be thought of as population quantities implied by the model at

the estimated parameter values. Among other things, we compute the reprojected Cochrane-

Piazzesi forward rate regressions for models with and without regime switching.

3.2 Data Description

The data set is monthly, June 1964 to December 2001, bond yield data obtained from the

Center for Research in Security Prices (CRSP). There are total 451 monthly observations,

with eight maturities 1, 3, 6, month and 1, 2, 3, 4, 5 year. It is important to recognize that

the data period 1964–2001 contains six major recessions and six major expansions, which

as stated earlier provides potential economic motivation for incorporating regime shifts.

The summary statistics of these monthly yields are displayed in Table 1. On average, the

yield curve is upward sloping. The standard deviation, positive skewness, and kurtosis are

systematically higher for short maturities than for long ones. To incorporate important

time-series and cross-sectional aspects of term structure data we focus on a short term and

a long term yield—the yield on the six month bill and the five year note. Time series plots
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of the basis yields are in Figure 1. It is not unusual for using two or three time series to

estimate a model with three or more latent factors, since the identifications are coming from

the number of scores (or moment restrictions) generated from the auxiliary model (see, e.g.

Chernov et al., 2003).

We very briefly summarize the first step estimation results for the non-parametric SNP

specification which was guided by the BIC information criterion; details are available upon

request. The leading term of the bivariate SNP density has 1 lag in the VAR based condi-

tional mean (Lµ = 1) and 5 lags in ARCH specification (Lr = 5). The preferred specification

accommodates departures from conditional normality via a Hermite polynomial of degree 4

(Kz = 4). This “semiparametric ARCH” specification is similar to that proposed by Engle

and González-Rivera (1991). This specification allows for skewness and kurtosis in the error

distribution. The total number of parameters for the specification is la = 28; hence, there

are a total of 28 data-determined moments conditions that each model must confront.

The conditional moments of the estimated SNP density for the observed interest rates

are available analytically. It is fairly instructive to focus on some specific aspects of the

estimated non-parametric SNP bivariate density. The top panel in Figure 6 gives the esti-

mated conditional volatilities and cross correlations of the 6-month and 5-year yields, which

seem to be very persistent and fairly volatile. The short interest rate has a wide range for

the conditional volatility which peaks around 1980, while the range for the five year yield

volatility is narrow. The range for the conditional correlation is from about 40% to 80%—a

wide range indeed. The most volatile period for bond yields, the early 80’s sees, is associ-

ated with a considerable drop in the conditional correlation. The behavior of the conditional

variance and the cross-correlation, as documented above, poses a serious challenge to the

various term structure models under consideration.

It is important to note that our estimation of the various term structure models utilizes

information in the bivariate SNP density based on the 6-month and the 5-year yields. We

do not directly rely on bond excess returns—hence our estimation does not directly utilize

information on the predictability of bond returns. We use the estimated model to evaluate via

simulation, if model can reproduce the predictability regressions discussed in Cochrane and

Piazzesi (2002). These predictability regressions are challenging for two reasons. First, the

size of the predictability is fairly high, the R2’s in these projections are quite large. Second,

the nature of the predictability—the “tent shape” of the multiple regression coefficients

captures the unconditional covariation of future bond returns with current forward rates. A
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reasonable term structure model should account for both these features of the predictability

along with the important data aspects embodied in the bivariate SNP density for 6-month

and 5-year yields.

3.3 Model Estimation Results

Table 2 gives the main EMM estimation results for four different models: one-factor regime-

switching (1-Factor[RS]), two-factor square-root (2-Factor[CIR]), two-factor regime switch-

ing (2-Factor[RS]), and three-factor affine (3-Factor[AF]). Three additional models (not re-

ported here), one-factor square-root, two-factor Naik and Lee (1997), and three-factor square-

root, are also estimated with results similar to that in Bansal and Zhou (2002); none of these

can replicate the Expectation Hypothesis puzzle and other data features of interest. The re-

sults reported here are for simulation size of 50,000. The one factor model with regime-shifts

(1-Factor[RS]) is rejected with a p-value less than 0.0000. The two factor square-root model

(2-Factor[CIR]) improves things but this specification is still sharply rejected—the model

specification test drops to 56.066 with p-value smaller than 0.0003. The best model amongst

all specifications is the two-factor regime switching specification with p-value reaching 1%.

The estimated regime switching probabilities are both just under 0.95. All the parameters

of the model are estimated rather accurately. The transition probabilities reported for the

2-Factor[RS] specification are comparable to those found in other papers (see Gray, 1996;

Hamilton, 1988; Cai, 1994).

The 2-Factor[RS] model can be viewed as a three factor model with the regime switching

factor being a multiplicative or nonlinear third factor. For a fair comparison of this two

factor regime switching model, we also estimate a three-factor affine term structure model, (3-

Factor[AF]) preferred by Dai and Singleton (2000)—they find considerable empirical support

for this specification using the post 1987 swap yield data. The discrete time counterpart to

this affine specification is;

X1t+1 −X1t = κ1(θ1 −X1t) + σ1

√
X1tu1t+1

X2t+1 −X2t = κ2(θ2 −X2t) + σ2u2t+1 + σ23

√
X1tu3t+1

X3t+1 −X3t = κ3(X2t −X3t) +
√

X1tu3t+1 + σ31σ1

√
X1tu1t+1 + σ32σ2u2t+1

(8)

Associated with this 3-Factor[AF] specification are three market price of risk parameters,

which as before we label as λk, k = 1, 2, 3. In all there are 13 parameters to estimate. As

reported in Table 2, the 3-Factor[AF] specification is sharply rejected with a X 2(15) = 42.803
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and a p-value of 0.0017. In a more general semiparametric setting, Ghysels and Ng (1998)

reject the affine restrictions on the conditional mean and variance of yields.

Table 3 reports the t-ratio diagnostics for the 28 moment conditions implied by each of

the four specifications. These 28 scores (moment conditions) should, for a correctly specified

model, be close to zero. If the structural model under consideration matches the particular

moment under consideration, then at conventional 5% level of significance the t-ratio should

be smaller than 1.96. The reported t-ratios are not adjusted for parameter estimation so these

t’s are therefore asymptotically slightly downward biased relative to 2.0. They thus must be

interpreted with cautious intuition guided by the overall chi-square diagnostics, which are

free of such asymptotic bias. For the 1-Factor[RS] model, 17 out of 28 moment tests are

rejected, with fitting of conditional volatility especially bad. The 2-Factor[CIR] model only

has 9 t-ratios higher than 1.96, and adding one more linear factor dramatically improves

the fitting of conditional volatility and conditional mean. It is remarkable that our favored

2-Factor[RS] model matches well all the mean, volatility, and polynomial scores, except for

the single ARCH(1) score of the six month yield that is just over 2.0. The 3-Factor[AF]

specification is certainly an improvement than the one or two factor models, but it still has

4 out of 13 ARCH scores and 2 out of 9 Hermite scores are not well matched. Overall,

our preferred 2-Factor[RS] specification seems to have the greatest advantage in matching

the conditional volatility and covariance (i.e., the ARCH scores), and the non-Gaussian

polynomials (i.e., the Hermite polynomial parameters), relative to other multifactor CIR or

affine specifications.

3.4 Risk Premium Analysis

An important diagnostic is to evaluate if the different model specifications can justify the

observed patterns of violations of the Expectations Hypothesis, in particular, as documented

in Fama and Bliss (1987), the predictability of forward rates on excess returns. The simple

existence of the predictability from forward rate to excess return—R-square significantly

higher than zero—is easily explained by any dynamic term structure model with time-varying

risk premium. However, the greater challenge, as recently popularized by Cochrane and

Piazzesi (2002), is to explain the robust tent-shaped pattern of the slope coefficients when

multiple forward rates are used as regressors. Another form of the EH violation (not a focus

of this paper) is the negative slope in stead of unity when regressing yield changes on yield

spreads (Campbell and Shiller, 1991). Bansal and Zhou (2002) provide evidence that the
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two-factor regime-shifts model is the only one that can replicate this type of EH violation

at the shorter maturities, while all multi-factor models fair well at the longer maturities.

Following the same conventions in Cochrane and Piazzesi (2002), we work with log bond

prices, i.e., pk
t is the log of the price at t of a k year bond, and geometric (log) yields and

returns, so y1
t = −p1

t is the geometric yield on the 1-year bond. Cochrane and Piazzesi (2002)

consider the regression of excess returns of bonds on the yields and the forward rates:

exk
t+12 = βk0 + βk1y

1
t +

5∑

i=2

βkif
i
t + εk

t+12, k = 2, .., 5 (9)

where exk
t+12 = pk−1

t+12 − pk
t − y1

t is the excess return on the k year bond and fk
t = pk−1

t − pk
t

is the forward rate. Note that exk
t+12 is effectively the return on holding a k year bond for

one year in excess of the one year yield. This excess return data is collected on a monthly

frequency which leads to the usual overlap in return data.

We first check the robustness of the Cochrane and Piazzesi (2002) findings. As shown in

the top panel of Table 4, the regression R-square with five forward rates reaches 36%, which

confirms their findings. An important note is that the difference between using three, four,

or five forward rates is negligible, while reducing to two or one forward rates dramatically

decreases the R-square. This seems to suggest the existence of three latent factors, and

the use of five regressors creates near perfect co-linearity problem, up to cross-sectional

measurement errors that can mask the singularity. We concentrate on the regressions with

three forward rates. The estimated coefficients are plotted in the top-left panel of Figure 2

and the tent shape finding of Cochrane and Piazzesi (2002) is quite apparent.

Next, we examine if any of the dynamic term structure models under consideration can

meet the challenge of replicating this unique tent-shape phenomenon. Using the estimated

parameters of the four models, we simulate 50,000 monthly data and run the same regres-

sions of excess bond returns on forward rates. As seen in the lower panel of Table 4, the

2-Factor[RS] model not only achieves the highest predicting R-squares (20-36%), but also

clearly mimics closely the tent-shape regression coefficients. On the other hand, the 2-

Factor[CIR] model produces a skewed and inverted tent shape, and the 3-Factor[AF] model

produces a inverted tent shape. Both models achieve R-squares around 10-20%. Interest-

ingly, even the 1-Factor[RS] model can replicate to some degree the tent shape, even though

its R-square is only about 1%. These patterns are quite apparent in Figure 2. These results

suggest that the prediction capability of forward rates for excess returns may be explained

by two or three linear factors, while the tent pattern of regression coefficients appears to be
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due to the regime-switching nature of the yield curve.

The analysis of Duffee (2002) and Dai and Singleton (2002) suggest that allowing more

flexible specification of the risk premium parameters for the conditional Gaussian factor

model can dramatically improve its ability to match the predictability of excess returns.

To explore this argument, we have also estimated the “Preferred Essentially Affine A0(3)

Model” discussed in Duffee (2002) with three Gaussian factors and eight market-price-of-risk

parameters (we call it 3-Factor[EA] model). The Chi-square test of overall specification is

29.278 with 9 degrees-of-freedom and a p-value of 0.0006—hence, the model is not supported

by the data. The estimation result suggests that the 3-Factor[EA] model overshoots the

excess returns predictability, the R-squares range from 26% to 65% vis-a-vis 30% observed

in the data. More importantly, it cannot reproduce the tent-shape of the predictability

regression coefficients. Further, its performance for cross-sectional pricing error is somewhat

worse than the three factor affine model. Our diagnostics for this model specification reveal

that the implied conditional volatility and conditional correlations of yields do not match

those in the data. Given this result, for brevity, we do not present very detailed evidence on

this specification.

3.5 Regime Indicator, Risk Premium, and the Business Cycle

We now explore the cross sectional implications of the term structure models over the ma-

turities that are not used in the model estimation. We also look at the association between

the bond market implied regimes and the real business cycle. For the 2-Factor[CIR] and

3-Factor[AF] models, a standard method is used to calculate the pricing errors—since the

yield curve solution is linear in the factors, we first invert from two or three basis yields

to get the latent factors and then use the linear pricing solution to calculate the non-basis

yields. For the 1-Factor[RS] and 2-Factor[RS] models, the presumption that agents in the

economy know the current regime implies a strategy to recover the regimes. Specifically,

dates are classified into regimes according to which of the two yield curves produces the

smallest pricing error. Under the null of correct specification, the pricing error should be

zero given the true regime and the population parameter values. For more details see Bansal

and Zhou (2002).

Table 5 reports the time-series average of pricing errors 1/T
∑T

t=1 PEs(t) or other statistics

from the cross-sectional average PEs(t) = 1/N
∑N

n=1 |Ŷs(t, n) − Ys(t, n)|, where Ŷs(t, n) is

the calculated yield and Ys(t, n) is the observed yield for maturity n at time t (where the
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current state s is inferred from minimizing the pricing errors of the two yield curves, as

mentioned above). It is clear from the sample statistics that the 2-Factor[RS] model has

the smallest average pricing error and also the smallest standard deviation in the pricing

error. The maximal pricing error associated with the 2-Factor[RS] specification is also the

smallest. Further, on average the pricing error is only about 27 basis points for the annualized

percentage yields. The 3-Factor[AF] specifications have average pricing errors of 31 basis

points, which in an absolute sense is also quite small. The 1-Factor[RS] and 2-Factor[CIR]

models achieve similar pricing result as 44-45 basis points.

It has been well recognized that the slope of the yield curve (i.e., spread) has the ability to

predict future real GDP growth—in particular, negative spreads tend to predict a recession

e.g., see Harvey (1988) and Estrella and Hardouvelis (1991). Figure 3 recreates this linkage

between the monthly yield spread, our regime indicator for regime 0 (our low regime), and

the NBER business cycles recession indicator. Most of the time, it seems that the economy

is in regime 1. The total number of regime switches recovered from the sample period is

44. The regime relates to the NBER business cycles. Our low regime (regime 0) obtains

during or before recessions in the economy. In the data, the correlation between NBER

business cycle indicator and the yield spread (5 year yield minus 6 month yield) is 15%.

In general, the yield curve becomes inverted (or flat) several months before the economic

growth becomes negative (or depressed). Our regime indicator is mostly zero, as Figure 3

shows, when the yield curve becomes inverted (or flat). The correlation between the model

based regime indicator and the yield spread (5 year yield minus 6 month yield) is 24%—that

is, our high regime (regime 1) coincides with high yield spread and our low regime (regime 0)

largely coincides with low yield spread. Therefore, as in Bansal and Zhou (2002), the regime

indicator has power to predict recessions. The correlation between the NBER business cycle

(NBER recession as regime 0 and NBER boom as regime 1) and our regime indicator is

0.1117. In the context of modeling the short interest rate, Ang and Bekaert (2002) also

document the links between regime shifts and business cycles.

Fama and Bliss (1987) attribute the time-varying risk premium in bonds to the business

cycle. In particular, their argument is that the bond excess return is high when the economy

is in recessions and low in expansions. The top panel of Figure 4 shows that our regime

zero and negative ex-post excess returns bear close relation—the correlation between our

regime indicator and ex-post bond excess returns is 21%. That is our high regime (regime 1)

tends to coincide with high ex-post returns. We also explore how the expected excess returns
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relate to the regimes. The middle panel of Figure 4 plots the fitted expected return in the

data based on the excess return forward rate projection discussed above. The correlation in

the data between our regime indicator and the expected excess return is 32%, i.e., high risk

premia and the high regime (regime 1) tend to go together. In this sense our regimes can also

be thought of as ranking on high and low risk premium on bonds. In the last panel of Figure

4 we plot the reprojected expected excess returns for bonds from our preferred 2-Factor[RS]

model. The reprojected expected excess return for this model duplicates the expected excess

return patterns observed in the data. Further, the reprojected expected excess return has

a correlation of 37% with our regime indicator. The overall evidence indicates that our

regime indicator tracks the time-varying risk premium on the bond market. As discussed

above none of the other models can replicate the Cochrane and Piazzesi (2002) predictability

regressions; consequently they also cannot account for the expected risk premium dynamics

plotted in the middle panel Figure 4.

3.6 The Reprojected Conditional Volatility and Correlation

As a final diagnostic we assess the various models’ capabilities to match the shape and track

the conditional distribution and covariance characteristics of the data. Following Gallant and

Tauchen (1998) we compute the reprojected conditional density of the two basis yields. Given

the estimated null model and the simulated output for yields, the reprojected conditional

density is obtained by re-estimating the parameters of the SNP density. Moments of interest,

such as the conditional variances and correlations implied by the model specification can

then be computed. These conditional moments are simply functions of the conditioning

information used to estimate the reprojected density. Given the conditioning information,

the implications of a given null model for any conditional moment of interest can be evaluated

on the observed data and compared to the conditional moment implied by the unrestricted

SNP density.

Figure 5 plots the reprojected conditional density (evaluated at the sample mean), for

the different models under consideration. The unrestricted 6 month yield SNP density has

high peak and narrow shoulders and the unrestricted density for the 5 year yield is skewed

to the left and moderately peaked. The reprojected densities for the 3-Factor[AF] model do

capture the peakedness of the 5 year yield but miss the peak of the 6 month yield and the

skew of 5 year yield. On the other hand, the reprojected densities for the 1-Factor[RS] and

2-Factor[CIR] models capture somewhat the skewness of the 5 year yield but largely miss the
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peak of both yields. The 2-Factor[RS] regime shift model has greater success in capturing

the left skew of the five year yield and the peak of both yields.

Figure 6 displays the conditional volatility and cross correlation for the various model

specifications as implied by the reprojected densities. Note that, in the data, the dynamics of

the conditional variance of the 6-month yield is quite different from that of the 5-year yield.

The range for the conditional volatility for the 6-month yield rate is much larger than for

the 5-year yield—the high end being almost three times the lowest for the 6-month, and two

times for the 5-year yield. The short yield volatility is more persistent, while the long yield

volatility seems more choppy. The 1-Factor[RS] model does not reflect any time-variations

of short and long rate volatilities, although the levels of volatility are matched. The 2-

Factor[CIR] model has difficulty in matching the short rate volatility and does somewhat

better in matching the volatility of the 5-year yield. The 2-Factor[RS] model is capable of

duplicating the projected volatility of the short rate extremely well, and that of the long

yield volatility almost completely. The 3-Factor[AF] model seem to capture the volatility of

the short rate much better than the 2-Factor[CIR] model, however, its capability to mimic

the long rate volatility is diminished relative to the 2-Factor[CIR] model.

The rightmost subplots of Figure 6 provide evidence regarding the conditional correlation

between the 6-month and 5-year yields. The 2-Factor[RS] model succeeds in capturing the

wide range of the correlation observed across these yields. The correlation varies from 40% to

80%. Note that although the conditional volatility increases during the volatile period of the

early 80’s, the conditional correlation decreases—suggesting that the volatilities of the two

yields rise more rapidly relative to the conditional covariance. The 1-Factor[RS] model, with

only one linear factor, not surprisingly presents a nearly constant correlation very close to

unity. The 2-Factor[CIR] and the 3-Factor[AF] specifications have difficulty in capturing the

conditional covariance. However, the 3-Factor[AF] specification seems doing a considerably

better job of capturing the conditional covariance relative to the 2-Factor[CIR] specification.

The 2-Factor[RS] model comes quite close to capturing virtually all the observed dynamics

of the conditional correlation between these yields. The main message of this evidence, is

that our preferred regime shifts term structure model, is quite successful in capturing the

conditional volatility and cross-correlation dynamics of yields. In addition, it captures the

size and nature of the predictability of bond returns.
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4 Concluding Remarks

Business cycle movements between economic expansions and recessions affect macroeconomic

variables, financial markets, and in particular, the term structure of interest rates. In this

paper, we incorporate the well documented feature of regime-shifts as in Hamilton (1988)

into the standard term structure model such as Cox et al. (1985). We uncover additional

important new evidence on the empirical success of regime switching models beyond that

reported in Bansal and Zhou (2002).

The empirical work is conducted on nominal U.S. treasury bill and bond yields from 1964

to 2001. For estimation and specification tests of the various models, we use the Efficient

Method of Moments estimation technique developed in Bansal et al. (1995) and Gallant

and Tauchen (1996). A two factor regime shifting model is the only specification that fits

the data according to the usual chi-square test of the restrictions; other models, including

the multi-factor CIR and affine, are rejected. Furthermore, the preferred two-factor regime

switching model matches the semiparametric moments with acceptable t-ratio diagnostics.

In terms of cross-sectional implications, the preferred model achieves the smallest pricing

error among all the specifications considered.

Regime switching and the risk premium for holding bonds appear closely connected—we

show that the main channel that the regime shifts model accommodates is a time-varying

“beta” with respect to risk factors. Our empirical evidence indicates that of the considered

models—only the regime switching model can account for the size of the predictability (i.e.,

high R2’s) and the tent-shape structure of regression coefficients in the generalized Expecta-

tions Hypothesis regressions of excess bond returns on forward rates (Cochrane and Piazzesi,

2002). It is also able to account for the conditional volatility and conditional cross-correlation

across yields. We find that there is an intimate link between business cycles, the slope of

the yield curve, expected excess return of bond, and the regimes extracted from our term

structure model.
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Table 1: Summary Statistics
There are 451 monthly observations of the yields with eight maturities. The data are obtained
from CRSP (Center for Research in Security Prices) Treasury bill and bond files, ranging
from June 1964 to December 2001.

1 Month 3 Month 6 Month 1 Year 2 Year 3 Year 4 Year 5 Year
Mean 5.9424 6.3765 6.5971 6.8106 7.0156 7.1711 7.2909 7.3545
Stdv 2.4499 2.5767 2.6038 2.5239 2.4559 2.3814 2.3491 2.3240
Skew 1.4278 1.3717 1.3041 1.1737 1.1288 1.1283 1.1003 1.0565
Kurt 5.4659 5.1336 4.8778 4.4157 4.1226 4.0313 3.9196 3.7344
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Table 2: Model Estimation by Efficient Method of Moments
The four term structure models are laid out in Section II. The 1-Factor[RS] or 2-Factor[RS] model refers to
the regime shifts specification. The 2-Factor[CIR] model is the Cox-Ingersoll-Ross model with two factors.
The 3-Factor[AF] model is the affine specification mentioned in the main text. The simulation size of EMM
(efficient method of moments) is chosen to be 50,000 for all the four models.

1-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[AF]
Factor 1 Regime 0
θ10 .00566 (.00021) .00548(.00051) .00501(.00069) .14e-6(.01e-6)
κ10 .01678 (.00201) .03515(.00304) .01109(.00285) .03530(.00247)
σ10 .00652 (.00034) .00508(.00032) .00504(.00039) .00006(.00000)
λ10 -.00721 (.00165) .02624(.00178) .01877(.00273) -.04136(.00223)
Factor 1 Regime 1
θ11 .00218(.00031) .00629(.00060)
κ11 .01498(.00243) .04655(.00971)
σ11 .00194(.00018) .00075(.00021)
λ11 -.00324(.00276) -.00673(.00310)
Factor 2 Regime 0
θ20 .00091(.00008) .00039(.00310) .00340(.00024)
κ20 .02666(.00305) .01817(.00004) .02487(.00660)
σ20 .00545(.00011) .00305(.00502) -.00005(.00001)
λ20 -.04212(.00389) -.04938(.00024) .00097(.00012)
σ23 -.27376(.05107)
Factor 2 Regime 1
θ21 .00031(.00003)
κ21 .02982(.00603)
σ21 .00476(.00020)
λ21 -.05977(.00576)
Factor 3
κ3 .01925(.00074)
σ31 -344.37(43.686)
σ32 -.45467(.00257)
λ3 336.76(2.9700)
Transitional Probability Pr{st+1|st}
π00 .97564(.00565) .94007(.00008)
π11 .94489(.00001) .93005(.00005)
Specification Test
X 2 94.523 56.066 23.211 42.803
p-Value .00000 .00003 0.0100 .00017
d.o.f. 18 20 10 15
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Table 3: Diagnostic t-Ratios
The SNP score generator is explained in Section 3.2. The t-ratios are testing whether the fitted sample
moments are equal to zero, as predicted by population moments of the SNP density.

Parameter Description 1-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[AF]
Hermite A(1) 00 00

A(2) 01 00 0.30 -1.038 -0.752 0.528
A(3) 10 00 2.13 0.240 -0.646 0.898
A(4) 02 00 1.47 1.874 1.809 2.215
A(5) 11 00 -3.13 -2.258 1.251 -1.402
A(6) 20 00 2.36 -2.752 1.921 -1.538
A(7) 03 00 0.08 -0.072 -0.152 1.431
A(8) 30 00 0.40 -1.093 -0.442 -0.582
A(9) 04 00 1.05 2.018 1.634 2.384

A(10) 40 00 2.20 -1.230 1.423 -0.389
Mean ψ(1) u( 1) 2.61 0.263 -1.022 1.100

ψ(2) u( 2) -0.69 -0.716 -0.299 -0.487
ψ(3) u( 1), y( 1), lag 1 -1.75 0.859 0.963 0.568
ψ(4) u( 2), y( 1), lag 1 -0.11 -0.407 -0.342 -0.213
ψ(5) u( 1), y( 2), lag 1 -2.31 0.534 1.312 0.017
ψ(6) u( 2), y( 2), lag 1 0.29 -0.047 -0.219 0.085

ARCH τ(1) R( 1) 1.85 -3.402 1.264 -2.140
τ(2) R( 2) -4.27 -2.924 0.155 -2.692
τ(3) R( 3) 3.98 3.579 1.369 2.962
τ(4) R( 1), z( 1), lag 5 2.56 -1.606 1.576 -0.640
τ(9) R( 3), z( 2), lag 5 2.76 2.063 0.104 1.641

τ(10) R( 1), z( 1), lag 4 2.57 -1.307 1.858 -0.467
τ(15) R( 3), z( 2), lag 4 2.80 1.916 0.933 1.891
τ(16) R( 1), z( 1), lag 3 1.68 -2.097 1.008 -1.621
τ(21) R( 3), z( 2), lag 3 4.41 3.474 1.963 3.198
τ(22) R( 1), z( 1), lag 2 2.99 -0.212 1.644 -0.003
τ(27) R( 3), z( 2), lag 2 2.25 1.846 0.879 1.597
τ(28) R( 1), z( 1), lag 1 3.46 -0.529 2.061 0.325
τ(33) R( 3), z( 2), lag 1 2.62 1.893 1.294 1.811
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Table 4: Predictability of Bond Excess Returns Using Multiple Forward Rates
The dependent variable in all the regressions below is the one year return from holding a bond with n
years to maturity less the yield on a bond with one year to maturity. This annual excess return is tracked
monthly. All R2s are adjusted for degrees of freedom. The sample size in the data is 451 observations. In
the top panel the predictability regression is run using 1, 2, 3, 4, and 5 year forward rates as regressors. As
the R2 using 1yr, 3yr, 5yr forward rates is almost the same as using additional forward rates (see 1yr, 3-
5yr, and 1-5yr) we focus on the 1yr, 3yr, 5yr projection. Newey-West robust standard errors are reported in
parenthesis in the panel “Regression Coefficients and R2 in Data” for this projection. The results reported in
1-Factor[RS], 2-Factor[CIR], 2-Factor[RS], 2-Factor[AF] panels are based on simulating 50,000 observations
from the estimated term structure model and running the same regression as reported in the “Regression
Coefficients and R2 in Data” panel.

R-Square 4yr 1yr, 3yr 1yr, 3yr, 5yr 1yr, 3-5yr 1-5yr
R2’s in the Data

2 Year Bond 0.1744 0.2619 0.3088 0.3187 0.3280
3 Year Bond 0.1322 0.2538 0.3326 0.3357 0.3373
4 Year Bond 0.1368 0.2634 0.3406 0.3617 0.3639
5 Year Bond 0.1297 0.2640 0.3163 0.3308 0.3336
Coefficient Intercept 1yr 3yr 5yr R-Square

Regression Coefficients and R2 in Data
2 Year Bond -2.2222 (0.5747) -0.6753 (0.1743) 1.7041 (0.2527) -0.7245 (0.2109) 0.3088
3 Year Bond -3.5737 (1.0078) -1.4040 (0.3207) 3.5688 (0.4704) -1.6963 (0.3657) 0.3326
4 Year Bond -4.9032 (1.4403) -2.0580 (0.4597) 5.0008 (0.6552) -2.3245 (0.4864) 0.3406
5 Year Bond -6.2848 (1.7667) -2.5018 (0.5674) 5.6134 (0.8329) -2.3573 (0.6004) 0.3163
Coefficient Intercept 1yr 3yr 5yr R-Square

1-Factor[RS]
2 Year Bond 8.3712 -0.4714 4.4622 -4.9444 0.0164
3 Year Bond 15.0127 -0.8423 7.9971 -8.8619 0.0149
4 Year Bond 20.1520 -1.1259 10.7298 -11.8906 0.0138
5 Year Bond 24.0829 -1.3394 12.8183 -14.2055 0.0129
Coefficient Intercept 1yr 3yr 5yr R-Square

2-Factor[CIR]
2 Year Bond -1.8475 -0.2066 -0.0302 0.3613 0.1741
3 Year Bond -3.6219 -0.3211 -0.0105 0.6765 0.2209
4 Year Bond -5.5087 -0.3954 0.0380 0.9938 0.2538
5 Year Bond -7.6055 -0.4542 0.1060 1.3377 0.2718
Coefficient Intercept 1yr 3yr 5yr R-Square

2-Factor[RS]
2 Year Bond -3.3175 -0.8523 1.9875 -0.6116 0.1914
3 Year Bond -6.1451 -1.4279 3.2531 -0.8669 0.2308
4 Year Bond -8.9064 -1.8229 4.0214 -0.8262 0.2936
5 Year Bond -11.9532 -2.1004 4.4245 -0.5051 0.3621
Coefficient Intercept 1yr 3yr 5yr R-Square

3-Factor[AF]
2 Year Bond 9.3180 0.6074 -1.8067 1.3361 0.1256
3 Year Bond 16.4960 1.2536 -3.7574 2.8143 0.1745
4 Year Bond 22.6622 1.9470 -5.8732 4.4451 0.2206
5 Year Bond 28.6284 2.6990 -8.1863 6.2503 0.2579
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Table 5: Average Absolute Pricing Error (Basis Points)
There are eight maturities (1, 3, 6 month; 1, 2, 3, 4, 5 year) for each of 451 dates. The
absolute pricing error of 1-Factor[RS] model is over 7 points; 2-Factor[CIR] over 6 points;
2-Factor[RS] over 6 points; and 3-Factor[AF] over 5 points. The summary statistics of the
absolute pricing errors are calculated over the 451 dates for each of the four models.

1-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[AF]
Mean 45 44 27 31
Median 34 40 19 23
Std. 33 24 22 28
Min. 5 5 3 1
Max. 223 156 154 188
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Figure 1: Observed Short Rate and Long Rate
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Figure 2: Predictability Regression Coefficients
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Figure 3: Yield Spread, Regime Indicator, and Business Cycle
The thick line is the five year yield minus the six month yield (yield spread), the shaded
area is the NBER recession period, and the star is the indicator of our low regime (regime 0)
from our preferred 2-Factor[RS] model. The high regime (regime 1) corresponds to all dates
without the star.
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Figure 4: Excess Return, Regime Indicator, and Business Cycle
The shaded area is the NBER recession period, and the star is the indicator of the low
regime (regime 0) from our preferred regime-shifts term structure model. The thick line is,
respectively, the annual ex-post excess return (top panel), the expected excess return based
on projecting future ex-post excess returns on three forward rates (middle panel), and the
reprojected expected excess return from our 2-Factor[RS] model (bottom panel). All ex-post
and expected excess returns are averages (across bonds) using the 2-5 year bonds.
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Figure 5: Reprojected Densities
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Figure 6: Reprojected Volatilities and Correlations
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