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Abstract

We examine the econometric performance of regime switching models for interest rate data

from the US, Germany and the UK. Regime switching models forecast better out-of-sample

than single regime models, including an affine multi-factor model, but do not always match

moments very well. Regime switching models incorporating international short rate and term

spread information forecast better, match sample moments better, and classify regimes better

than univariate regime switching models. Finally, the regimes in interest rates correspond rea-

sonably well with business cycles, at least in the US.



1 Introduction

The stochastic behavior of interest rates varies over time. For example, the behavior of interest

rates in the 1979-1982 period in the US or around the German reunification period seems to

indicate a structural break in the time series. More generally, changes in business cycle condi-

tions and monetary policy may affect real rates and expected inflation and cause interest rates

to behave quite differently in different time periods. Regime-switching (RS) models constitute

an attractive class of models to capture these changes in the stochastic behavior of interest rates

within a stationary model. Many authors have built on the seminal work of Hamilton (1989) to

model short rates by a model where the parameters change over time driven by a Markov state

variable (assumed to be unobserved to the econometrician). For example, Hamilton (1988),

Lewis (1991), Evans and Lewis (1994), Sola and Driffill (1994), Garcia and Peron (1996),

Gray (1996) and Bekaert, Hodrick and Marshall (2001) all examine empirical models of regime

switches in interest rates.

Importantly, RS models accomodate regime-dependent mean reversion of interest rates.

Mankiw and Miron (1986), among others, argue that the predictive power of the term spread for

future short rates in the US is very much a function of the monetary policy regime. In particu-

lar, they argue that the interest rate smoothing efforts of the Federal Reserve Bank make the US

short rate behave like a random walk, and this behavior causes rejections of the Expectations

Hypothesis. When a regime switching model is fitted to US data however, Bekaert, Hodrick

and Marshall (2001) and Gray (1996) show that such random walk behavior is only true for

low interest rates whereas high interest rates show considerable mean reversion. Several au-

thors (Cecchetti, Lam and Mark 1993 and Garcia 1998) show that single regime models are

econometrically rejected in favor of their RS counterparts.

Despite their economic appeal, RS models are less attractive than one-regime models from

an econometric estimation perspective. Although with the recent work of Gray (1996) and

Hamilton (1994) the likelihood construction has been simplified, estimating RS models is dif-

ficult. Often, the data do not allow clear regime-classification, that is, the probability of having

observed a regime ex-post may hover around a half. These problems may explain why there are

few RS term structure models of interest rates (see Naik and Lee 1994, Evans 1998, and Bansal

and Zhou 1999).

In this paper, we provide an analysis of the econometric properties of RS models, both with

constant and state-dependent transition probabilities, for interest rates in the US, Germany and

the UK. Apart from residual diagnostic tests, we use two statistical criteria to compare and rank

alternative one-regime and RS models of short rates. The first criterion investigates the fit of the
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models with the unconditional moments of the data. One attraction of RS models is that they

may accommodate some of the non-linearities in interest rates which may show up in higher or-

der unconditional moments (see Aı̈t-Sahalia 1996, Stanton 1997, and Ahn and Gao 2000). The

dependence of mean reversion on the level of the interest rate may also induce an autocorrelo-

gram that is difficult to match by parsimonious ARMA models. The second criterion concerns

the forecasting power of the different models, both for first and second moments. Finally, we

propose a new metric to compare the performance of different RS models in identifying the

regime over the sample. Our Regime Classification Measure (RCM) uses the simple fact that

the ex-post probability of observing one of the regimes ought to be close to one at all times

when regime classification is perfect.

Given the econometric problems mentioned above, it is not a priori clear that RS models

perform well on these statistical criteria, even when they are the true data generating process

(DGP). Moreover, as Bekaert et al. (2001) stress, the estimation may suffer from a peso prob-

lem, in that the fraction of observations drawn from one particular regime in the sample at hand

may not correspond to the population frequency of that regime. In that case, the estimation is

biased. For example, it is unlikely that we could get a reliable estimate of the mean reversion at

large interest rates in US data, without including the 1979-1982 period. Furthermore, ARMA

models may generally constitute good approximations to any covariance stationary process and

hence may outperform RS models in small samples, if the parameter estimates of the RS models

are severely biased and inefficient.

To help overcome these problems, we extend the effective sample size through two chan-

nels. First, we investigate multi-country systems of interest rates. It is possible that short rates

in the US Granger-cause rates in other countries (or vice versa) and that Granger-causality may

be regime-dependent. Whereas such relations would immediately affect the forecasting perfor-

mance, we may also obtain more efficient estimates if interest rate innovations across countries

are correlated. If some parameters are identical in different countries, further gains in efficiency

are to be expected. The model we propose and estimate allows for correlated interest rate in-

novations and Granger-causality between rates in some regimes. We compare the performance

of several variants of the multivariate RS models to their single regime vector-autoregressive

(VAR) counterparts, and to one multi-factor model in the affine term structure class.

Second, we exploit information in the term structure, by adding term spreads to the model.

Under the null of the Expectations Hypothesis, spreads should forecast future short rates, so the

potential for improved performance is obvious. The moments criteria here include the cross-

correlations between short rates and spreads. As Pfann, Schotman and Tscherning (1996) show,

the correlation between short rates and long rates changes with the level of the interest rate,
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suggesting the correlation may be informative about the regime.

Apart from a number of methodological contributions, this article offers some important

empirical results. First, while RS models do not always outperform single regime models in the

in-sample diagnostics, they forecast very well out-of-sample. Second, multivariate RS models

perform better than univariate models in terms of regime classification and forecasting. The

best forecasting model is invariably a multivariate RS model. Hence, our results greatly expand

on Gray (1996), who examines the out-of-sample forecasting power of a univariate RS model

for second moments of the US short rate. Third, the regime classification implied by RS models

is closely related to economic business cycles and the ex-ante regime probabilities are good

short-horizon predictors of the business cycle in the US.

The paper is organized as follows. Section 2 describes the data and establishes a set of styl-

ized facts. Section 3 outlines the general empirical and econometric framework and discusses

our diagnostic statistics. It presents a general multivariate RS model and considers as special

cases univariate short rate models, multi-country models of the short rate and bivariate short

rate and term spread models for each country. A stark implication of the framework is that

univariate models generally cannot be consistently estimated. Section 4 briefly discusses the

empirical estimation results and Section 5 discusses the performance of the various models. To

help interpret the results we perform a Monte Carlo experiment that examines the performance

of single regime and RS models in small samples when the true DGP is a RS model. We con-

sider the quality of regime classification and ask if the regimes are related to the business cycle

in Section 6. Section 7 concludes.

2 Data and Stylized Facts

Our empirical work uses monthly observations on 3 month short rates and 5 year long rates of

zero coupon government bonds from the US, Germany and Great Britain from January 1972 to

August 1996. The data set combines data from Jorion and Mishkin (1991) with a proprietary

data set of zero coupon rates (see Bekaert et al. 2001). We denote the short rates as rmt and

the spreads as zmt for country m. We estimate models based on an in-sample period, with

forecasting done on an out-of-sample period of the last 30 months. Hence, our in-sample period

has 267 observations.

Table 1 reports the first four central moments of the short rates and spread data on the in-

sample period. The table also shows the autocorrelations for each country, the cross-correlations

of short rates for each pair of countries and correlations of short rates and spreads within each
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country. We note that the short rates for Germany and Great Britain do not show excess kurtosis.

Short rates are very persistent, with the UK showing the least persistence. Spreads are also

autocorrelated, but less so than short rates. Turning to international cross-correlations, lagged

short rates of the US are more highly correlated with current German and UK rates than present

levels of US short rates. This suggests that lagged US short rates may Granger-cause movements

in short rates in Germany and the UK. The contemporaneous correlations of short rates across

countries are not very high except for the US and UK rates.

In Table 2 we attempt to determine whether the behavior of the term structure depends

on the business cycle. For the US, we use the NBER dates for business cycle expansions

and contractions, and dates for the Germany and UK are from for the US can be found at

www.nber.org/cycles.html, dates for Germany and the UK are from the Center for International

Business Cycle Research at Columbia University (see Zarnowitz 1997). The table divides the

interest rate observations into periods of expansions and contractions and performs χ2 tests

for the equality of various moments assuming independence across the cycles. As Zarnowitz

(1997) notes, only the US has a business cycle history which is ‘official’, in the sense of being

accepted by governmental authorities, and the dating of the cycles for other countries is less

reliable. This means we must interpret the results for Germany and the UK with caution.

Focusing on the country with the best cycle dating, the US, Table 2 reveals that recessions

are characterized by significantly higher interest rates, and somewhat more variable interest

rates. The variability is, somewhat surprisingly, not significantly different across expansions

and recessions. Interest rates in expansions exhibit higher kurtosis than in recessions and they

are significantly less mean-reverting. Spreads are lower and more variable in recessions but only

the mean of the spread is significantly different across cycles. In recessions there is significantly

more skewness (or a lack of negative skewness) and spreads are more mean-reverting.

These patterns are not perfectly replicated in Germany and the UK. In these countries auto-

correlations of the short rate and spread are not significantly different across the business cycle.

In Germany, the patterns are similar to the US, except for mean reversion which is insignifi-

cantly higher in expansions. In the UK, the volatility of both spreads and interest rates is higher

in expansions, although the p-values are not very low. Although the point estimates of mean

reversion follow the same pattern as the US, the differences across cycles are not statistically

significant.

Finally, in the US and UK the correlation between the short rate and the spread varies over

the business cycle. The difference in correlations suggests that in expansions the long rate is
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less sensitive to short rate shocks than in recessions. To see this, note that:

ρ(rlt, rt) = w1[w2 ρ(zt, rt) + 1] (1)

where w1 = σ(rt)/σ(rlt), w2 = σ(zt)/σ(rt) which is less than 1 empirically, rt is the short rate,

zt is the spread, rlt is the long rate, and ρ(x, y) is the correlation between x and y. In expansions,

ρ(zt, rt) is more negative and correspondingly the correlation between short and long rates is

lower.

For the US, the picture that emerges is one where in expansions, short rates are more persis-

tent, the long rate is not as sensitive to short rate shocks and the short rate-spread correlation is

more negative. In expansions, the interest rate persistence may arise from the smoothing efforts

of the monetary authorities. In recessions, long rates are more sensitive to short rate shocks de-

spite the lower persistence of short rates. Here, shocks to the short rate are more likely to move

the whole term structure. The difference in the short rate-spread correlation across expansions

and recessions is significant at the 5% level in the US, but only significant at the 10% level in

the UK and not significant in Germany. However, the pattern of the short rate-spread correlation

across expansions and recessions in the UK is quantitatively similar to the pattern in the US.

Overall, Table 2 implies the following points about the behavior of interest rates across

the business cycle. First, the moments of interest rates vary from recessions to expansions;

in particular, the mean is higher in recessions. Second, the spread is informative about the

regime, with the spread increasing during expansions and correlations between the spread and

short rate changing across the business cycle. Third, mean reversion in the US is significantly

different across economic regimes. These patterns can potentially be accomodated in models

which contain a regime variable.

3 The Empirical and Econometric Framework

3.1 A General Multivariate Regime Switching Model

We describe a general multivariate RS model of short rates rt = (rust , r
ger
t , r

uk
t )
′ and spreads

zt = (z
us
t , z

ger
t , z

uk
t )
′. Let yt = (r′t, z

′
t)
′. We assume that the information set It for our econo-

metric model is composed of [y′t, y
′
t−1, . . . ]

′. Our most general model is a RS Vector Autore-

gression (VAR):

yt = µ(st) + A(st)yt−1 + Σ
1

2

t−1(st)εt, (2)

where st denotes the regime realization at time t, and εt ∼ IID N(0, I). We restrict attention to

first-order VAR’s since in our empirical work we usually estimate at most first-order systems.
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The process st follows a Markov chain with K regimes, and with transition probabilities

which may be logistic functions of lagged endogenous variables:

p(st = i|st−1 = j, It−1) =
eαi,j+β

′

i,jyt−1

1 + eαi,j+β
′

i,jyt−1
. (3)

Let ỹT = (y′T y
′
T−1 . . . y

′
1 y
′
0)
′ and denote the parameters of the likelihood by θ. Then fol-

lowing the methodology of Hamilton (1994) we write the conditional likelihood as:

f(ỹT ; θ) =
T
∏

t=1

(

K
∑

i=1

f(yt|It−1, st = i; θ)p(st = i|It−1; θ)
)

. (4)

The ex-ante probability pit = p(st = i|It−1; θ) can be written as:

pit =

K
∑

j=1

p(st = i|st−1 = j, It−1; θ)
[

f(yt−1|st−1 = j, It−2; θ)p(st−1 = j|It−2; θ)
∑K

m=1 f(yt−1|st−1 = m, It−2; θ)p(st−1 = m|It−2; θ)

]

, (5)

where the first term in the sum is the transition probability which can be state-dependent, and

the other terms follow from Bayes’ Rule.

We start the algorithm using (5) with p(s1 = i|I0) equal to the ergodic probabilities of the

system at t = 1 given by:

πi =
Xii

∑K

j=1Xjj
, (6)

where Xii is the iith cofactor of the matrix X = I − P1, and P1 is the KxK transition matrix

of the system at t = 1 which can depend on our conditional information set I0. In the special

case of constant transition probabilities we start at the ergodic probabilities π of the transition

matrix P which solve π = P ′π.

3.2 Special Cases

Since the regime-variable is unobserved to the econometrician and must be factored out of the

likelihood function, under what conditions we can obtain inefficient but consistent estimates

when ignoring some variables? LetZt represent variables which do not enter into our estimation

and Xt represent variables which do, so yt = (Z ′t, X
′
t)
′. Using conditioning arguments we can
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write:

f(ỹT ; θ) =

T
∏

t=1

f(yt|It−1; θ)

=
T
∏

t=1

(

K
∑

i=1

f(yt|st = i, It−1; θ)p(st = i|It−1; θ)
)

=

T
∏

t=1

(

K
∑

i=1

f(Zt|Xt, st = i, It−1; θ)f(Xt|st = i, It−1; θ)p(st = i|It−1; θ)
)

. (7)

To take f(Zt|Xt, st = i, It−1; θ) out of the sum, assume that the excluded variables do not

depend on the regime:

f(Zt|Xt, st = i, It−1; θ) = f(Zt|Xt, It−1; θ). (8)

We parameterize the model so that θ = (θ′Z θ
′
X)
′ and {θZ} ∩ {θX} = φ, where θZ and θX affect

the conditional distribution of the excluded variables and the included variables respectively.

We also assume that the ex-ante probability of being in a particular regime depends only on θX :

p(st = i|It−1; θ) = p(st = i|It−1; θX). (9)

The likelihood can be written:

L(ỹT ; θ) =
T
∑

t=1

log f(Zt|Xt, It−1; θZ) +
T
∑

t=1

log

(

K
∑

i=1

f(Xt|st = i, It−1; θX)p(st = i|It−1; θX)
)

. (10)

Maximizing the second sum in (10) yields consistent but inefficient estimates relative to full

information maximum likelihood.

Estimation of the full system is infeasible given the dimension of θ, so we focus on models of

subsets of the variables. Our choice here is partially based on previous literature and partially on

economic reasoning. We believe that regimes in either real rates, expected inflation or business

cycles are the source for potential regimes in nominal interest rates (see Garcia and Perron 1996

and Evans and Lewis 1995). To obtain parsimony in modeling, we assume the existence of a two

state Markov regime variable in every country driving the entire term structure. These country

specific regime variables are assumed independent across countries. It is conceivable that there

is a world business cycle driving interest rates in many countries simultaneously and in some

of the models we consider we allow for interdependence of various forms across countries.

Nevertheless, it should be noted that the correlation between spreads and short rates within
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a country is typically of a higher magnitude than the correlation of short rates and spreads

across countries (see Table 1) providing empirical motivation for this assumption. Although

the two regime specification may seem restrictive, it is the most the data can bear without

extreme computational problems in estimation, and it suffices to capture the main empirical non-

linearities. In particular, Ang and Bekaert (2000) show that two-state RS models can replicate

the non-parametric drift and volatility functions of the short rate estimated by Aı̈t-Sahalia (1996)

and Stanton (1997). Finally, most of the past RS literature has focused on two-state models,

with the exception of Garcia and Perron (1996) and Bekaert et al., who estimate three state RS

models.

Since most of the RS literature focuses exclusively on univariate interest rate models, we

start by analyzing univariate short rate models for the US, Germany and UK. As (8) shows, to

consistently estimate univariate short rate RS models, the distribution of the term spreads or

short rates from other countries should not depend on the regime of the short rate we consider.

If regimes capture business cycle effects, the different correlations in the US across economic

cycles in Table 2 violate the assumptions needed for consistent estimation.

Incorporating the extra information from international and term structure data allows us to

weaken the implicit assumptions but makes estimation much more complex. In a second set

of models, we add information from the short rates from other countries. In our multi-country

model (below), defining the regime variable st becomes more involved as it embeds all possible

combinations of the country-specific regime variables for the three countries.

Finally, we consider models in which term spreads are added to the short rate and their

dynamics remain driven by one country-specific regime variable. In most term structure mod-

els, the term spread is an exact function of a number of factors that also drive the short rate.

However, the evidence from a growing literature looking at the response of the term structure

to various shocks, suggests that the spread contains additional independent information which

may help in the classification of regimes. For example, Evans and Marshall (2000) show that

monetary policy shocks have large effects on the short rate but leave the long rate unaffected,

hence shrinking the spread. However, shocks from real economic activity affect the whole

term structure and correspond to a level effect increasing the interest rate but leaving the spread

largely unaffected. Estrella and Mishkin (1997) find that the spread is useful in predicting future

activity, and the spread contains predictive information which is not captured by other monetary

policy variables. A reduced-form model where the spread and short rate have correlated innova-

tions and different feedback rules, in which spreads help predict future regimes, may be a good

representation of such a world. We estimate the short rate-spread model country by country but

also consider one estimation which uses cross-country information.
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Table 3 presents a summary of the models estimated, their abbreviations used throughout

the paper and the number of parameters in parentheses. We now brieftly outline each of these

models. (Parameter estimates are available in an Appendix which is available from the authors

on request.)

3.2.1 Univariate Models

For each country m, we consider special cases of the following general model considered in

Gray (1996):

rmt = µ(s
m
t ) + ρ(s

m
t )r

m
t−1 + h

m
t−1(s

m
t )εt, (11)

where εt ∼ IID N(0, 1). The conditional volatility hmt−1(s
m
t ) is specified as:

(hmt−1(st))
2 = a0(s

m
t ) + a1(s

m
t )η

2
t−1 + b1(s

m
t )(h

m
t−2)

2 + b2(st)(r
m
t−1), (12)

where (hmt−1)
2 = Et−1[(r

m
t )
2]− (Et−1[rmt ])2 and ηt = rmt −Et−1[rmt ]. The regime variable st is

either 1 or 2, and has transition probabilities:

p(smt = j|smt−1 = j, rmt−1) =
eaj+bjr

m
t−1

1 + eaj+bjr
m
t−1

, j = 1, 2. (13)

We denote constant transition probabilities as P and Q for j = 1, 2 respectively. We evaluate

Et−1[r
m
t ] and Et−1[(rmt )

2] as:

Et−1[r
m
t ] =

2
∑

j=1

pt,j(µj + ρjr
m
t−1)

Et−1[(r
m
t )
2] =

2
∑

j=1

pt,j
(

(µj + ρjr
m
t−1)

2 + (hmt−1,j)
2
)

, (14)

where subscripts indicate the state smt = j.

The special cases we consider involve setting a1 = b1 = b2 = 0 (RS AR(1)), b2 = 0

(RS GARCH(1,1)), a0 = a1 = b1 = 0 (RS CIR). The last model is the RS equivalent of the

discretized square root model of Cox, Ingersoll and Ross (1985).

In practice, many interest rate RS models yield one unit-root or near unit-root regime, and

one more mean-reverting regime. Ang and Bekaert (1998) and Holst, Lindgren, Holst and

Thuvesholmen (1994) prove that such processes retain covariance stationarity as long as the

unconditional autocorrelation is strictly less than one. This is guaranteed by appropriate mixing

of the two regimes. With constant transition probabilities, a sufficient condition is that the

ergodic probability associated with the stationary regime is non-zero.
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3.2.2 Multi-Country Models

For rt = (rust r
ger
t r

uk
t )
′, we consider the following general multi-country RS model:

rt =









αus(sust )

αger(sgert )

αuk(sukt )









+ A(sust , s
ger
t , s

uk
t )rt−1 + Σ

1

2 (sust , s
ger
t , s

uk
t )εt, (15)

with εt = (εust ε
ger
t ε

uk
t )
′ ∼ IID N(0, I).

We assume that there are two regimes per country with constant probabilities, so for country

m the transition matrix is
(

Pm 1−Pm

1−Qm Qm

)

. For computational tractability, and to keep the number

of parameters as small as possible, we do not consider state-dependent transition probabilities

in the multi-country model.

We assume regimes in different countries to be independent of the regimes in another coun-

try. Formally, let Sm = {smt , smt−1, . . . } denote the past history of regimes for countrym. Then:

p(smt |Sust , Sgert , Sukt ) = p(smt |Smt ) = p(smt |smt−1). (16)

Intuitively this means that the regime for one country is unaffected by the regime in another

country. We may justify this by interpreting the regimes as arising from country specific fac-

tors. This independence assumption can only be relaxed at considerable computational cost and

proliferation of parameters. With 2 regimes for 3 countries, it is possible to enlarge the state

space to 23 = 8 regimes, where the regimes are defined as st = 1, . . . , 8 (see Hamilton 1994):

st US GER UK
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2

We then calculate an 8x8 transition matrix, where for example, p(st = 1|st−1 = 1) = P usP gerP uk.
With the regimes now redefined as st = 1, . . . , 8, we re-write (15) as:

rt = α(st) + A(st)rt−1 + ut, (17)

where ut ∼ N(0,Σ
1

2 (st)). From hereon subscript i’s refer to the values each specific country’s

state comprises in the overall state i. For example, for st = 4:

(

αus
4

α
ger
4

αuk
4

)

=

(

αus(sust =2)

αger(sgert =2)

αuk(sukt =1)

)

.
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Given the number of parameters, estimation of the full model is infeasible. To gain effi-

ciency, we test whether some parameters are identical in the one-regime VAR. In particular, we

test for Granger-causality on each country’s short rates. These results are presented in Table

4. The table shows that a joint test for no country Granger-causing another just fails to reject

(p-value = 0.0528). Nevertheless, there is some evidence that US rates Granger-cause German

and UK rates (p-value = 0.0029).

The results of Table 4 lead us to consider consider two formulations of Ai, a triangular

formulation where Ai =

(

ρusi 0 0

ζ
ger
i ρ

ger
i 0

ζuki 0 ρuki

)

, which we refer to as a Granger-causality formulation,

and a diagonal formulation where Ai =

(

ρusi 0 0

0 ρgeri 0

0 0 ρuki

)

.

To impose further structure on the error terms, we model the errors as:








uust,i

ugert,i

uukt,i









=









hust−1,iε
1
t

hgert−1,iε
2
t + γ

ger
i ε

1
t

hukt−1,iε
3
t + γ

uk
i ε
1
t









, (18)

where εt = (ε1t , ε
2
t , ε
3
t )
′ are drawn from an IIDN(0, I) distribution and the conditional volatility

of country m, hmt−1,i, is specified either as a constant, hmt−1,i = σ
m
i or as a square root process,

hmt−1,i = σ
m
i

√

rmt−1. In this specification the errors from the US also shock the interest rates

of Germany and the UK, but not vice versa. Another interpretation along the lines of a world

business cycle is that there are “world” shocks which drive the dominant US economy while

Germany and the UK are also subject to these shocks as well as “country-specific” shocks.

The extent to which these countries are exposed to the world shock depends on the state of

the domestic economy. Given the dominance of the US in the world economy such a structure

seems reasonable. The conditional covariance matrix, conditional on state st = i is given by:

Σt(st = i) = E[utu
′
t|It−1, st = i]

=









(hust−1,i)
2 γgeri h

us
t−1,i γuki h

us
t−1,i

γgeri h
us
t−1,i (h

ger
t−1,i)

2 + (γgeri )
2 γgeri γ

uk
i

γuki h
us
t−1,i γuki γ

ger
i (hukt−1,i)

2 + (γuki )
2









. (19)

This specification arises because the errors umt,i inherit a multivariate normal distribution from

the normality of the errors εmt,i. Note that German and UK shocks are conditionally correlated

to the extent only that they correlate with the US shock.

It is possible to obtain probability inferences for a particular country by summing together

the relevant joint probabilities. For example if we want the ex-ante probability p(sust = 1|It−1)
we just sum over the probabilities p(st|It−1) where sust = 1. In this case, we would sum over

states st = 1, 3, 5, 7.
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3.2.3 Term Spread Models

For ymt = (r
m
t z

m
t )
′, the short rate and spread for countrym, the RS term spread model is:

ymt = µ(s
m
t ) + A(s

m
t )y

m
t−1 + Σ(s

m
t )εt, (20)

where εt ∼ N(0, I). We use 2 regimes, with constant transition probabilities, and also logistic

state-dependent transition probabilities where:

p(smt = j|smt−1 = j, ymt−1) =
exp(aj + bjr

m
t−1 + cjz

m
t−1)

1 + exp(aj + bjrmt−1 + cjz
m
t−1)

j = 1, 2. (21)

We also estimate the term spread model jointly across the US, Germany and UK, following

Bekaert et al. (2001). This estimation views each country as an independent draw of the DGP,

by assuming independence of the regimes across countries, lack of cross-country correlation

and the same parameters across countries.

We consider two classes of one-regime models as potential benchmarks. First, we estimate

unconstrained VAR’s of the short rate and the term spread, restricting attention to first and

second-order VAR’s. Second, we consider the affine class of term structure models (see Duffie

and Kan 1996). In these models, zero coupon yields are affine (constant plus linear term)

functions of the unobservable factors. This implies that we can represent ymt (n), the yield for

maturity n for countrym, as an affine function of the state variablesXmt for countrym:

ymt (n) = Ā(n) + B̄(n)
′Xmt , (22)

where the scalar Ā(n) and vector B̄(n) are functions of the model parameters. We represent the

dynamics of Xmt , without loss of generality, by a first-order VAR:

Xmt = φ+ ΦX
m
t−1 + Ωε

m
t , (23)

where εt ∼ N(0, 1). The one-month yield (which we do not observe) takes the form:

ymt (1) = δ0 + δ
′
1X
m
t , (24)

where δ0 is a scalar and δ1 is a vector. The specification of a pricing kernel πmt+1, for each

country m, completes the model. The pricing kernel prices all nominal bonds through the

recursive relation:

Pmt (n+ 1) = Et[π
m
t+1P

m
t+1(n)], (25)

where Pmt (n) is the zero coupon bond price of maturity n for countrym.

12



Different affine models make different assumptions about the state variable dynamics and

the specification of the pricing kernel, specifically the specification of the prices of risk. Stan-

dard models assume either homoskedastic state variable dynamics with constant prices of risk,

for example correlated Vasicek (1977) models, or square-root process with time-varying prices

of risk or a combination of the two. Duffee (2001) demonstrates that standard affine term struc-

ture models forecast very poorly out of sample. Therefore, we consider an alternative affine

model not considered by Duffee. We consider Gaussian, homoskedastic state variables, but

time-varying prices of risk. More specifically, we assume that the pricing kernel has the form:

πt+1 = exp(−
1

2
λ′tλt − δ0 − δ′1Xmt − λ′tεt+1), (26)

where the risk premia λt are time-varying:

λt = λ0 + λ1X
m
t , (27)

where λ0 is a vector and λ1 is a matrix.

For identification purposes, we impose the following parameter restrictions:

φ =

(

0

0

)

, Φ =

(

Φ11 0

Φ12 Φ22

)

, Ω = I, λ0 =

(

λ01

0

)

, andλ1 =

(

λ11 0

0 λ22

)

. (28)

We call this bivariate correlated factor model the Gaussian Affine Term Structure Model (ATSM)

with time-varying risk premia.

The model has a structural VAR representation in terms of the observable yields. The short

rate and spread for countrym can be written as:

ymt ≡
(

rmt

zmt

)

=

(

Ā(3)

Ā(60)− Ā(3)

)

+

(

B̄(3)

B̄(60)− B̄(3)

)′

Xmt (29)

or, by appropriately defining Ā and B̄, as ymt = Ā+B̄X
m
t . The discrete-time recursive relations

determining Ā(n) and B̄(n) are derived in Ang and Piazzesi (2001). By substituting (23) into

(29), it is straightforward to show that:

ymt = µ+ Ay
m
t−1 + Σεt, (30)

where εt ∼ N(0, I), µ = (I− B̄ΦB̄−1)Ā, A = B̄ΦB̄−1 and Σ = B. This representation makes

both maximum likelihood estimation and forecasting using the observed yields easy. Clearly,

the ATSM is simply a VAR model with cross-equation restrictions. Whereas the estimation of

this model went smoothly for the US, the likelihood surfaces for the UK and Germany proved

13



very flat. Models with λ1 restricted to 0, that is, standard correlated Vasicek (1977) models, do

not converge at all for all countries. Dai and Singleton (2001) show that a Gaussian model with

affine prices of risk matches the deviations from the Expectations Hypothesis observed for US

data, but they ignore small sample biases (see Bekaert, Hodrick and Marshall 1997).

3.3 Model Diagnostics

We start by reporting a number of standard in-sample residual tests for our various models. Our

second diagnostic more easily leads to comparisons across a large number of non-nested models

of varying complexity. We measure the fit of the unconditional moments implied by the models

to the sample estimates of the unconditional moments. Single regime models may perform rea-

sonably well along these dimensions even though they are not the true DGP. However, they are

less likely to perform well over tests that exploit the changing behavior of interest rates across

regimes. To easily rank the performance across all models, we focus on summary statistics for

out-of-sample forecast errors. Finally, we compare different RS models, using a measure of the

quality of the regime classification. We discuss these in turn.

3.3.1 Residual Tests

We report two tests on in-sample scaled residuals emt of short rates of country m where emt =

(rmt − Et−1[rmt ])/hmt−1. The conditional volatility hmt−1 is given by:

(hmt−1)
2 = vart−1(r

m
t − Et−1[rmt ])

= Et−1[(r
m
t )
2]− (Et−1[rmt ])2. (31)

For a univariate RS model Et−1[rmt ] and Et−1[(rmt )
2] are evaluated using equation (14).

Following Bekaert and Harvey (1997), we use a GMM test of the moment conditions on the

mean of the scaled residuals:

E[emt e
m
t−j] = 0 for j = 1, 2, . . . , k, (32)

which we refer to as “mean” residual tests, and a GMM test of the moments of the variance of

the scaled residuals:

E[((emt )
2 − 1) ((emt−j)2 − 1)] = 0 for j = 1, 2, . . . , k, (33)

which we refer to “variance” residual tests. In both tests we choose k = 6 and correct for

heteroskedasticity in the residuals following Andrews (1991).
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3.3.2 Unconditional Moment Comparisons

We compute the unconditional population moments of our various models using analytical ex-

pressions where possible but use a simulation for the RS models for time-varying probabilities.

Analytical formulae for moments are available only for one-regime CIR and GARCH processes

as well as for autoregressive regime switching models with constant probabilities (see Timmer-

man 2000). Because of the high persistence of the series, we use sample sizes of one million.

To enable comparison across several models, we introduce the point statistic:

H = (ĝ − ḡ)′Σ−1g (ĝ − ḡ), (34)

where ḡ are sample estimates of unconditional moments, ĝ are the unconditional moments from

the estimated model, and Σg is the covariance matrix of the sample estimates of the uncondi-

tional moments. Σg is estimated using a GMM estimation of the unconditional moments, and

for the purposes of this paper, we use a Newey-West (1987) estimate with 6 lags. The point

statistic assigns weights to the deviations between the unconditional moments implied by var-

ious models and the sample unconditional moments, which are inversely proportional to the

error by which the sample moments are estimated.

We test for the first four central moments, the autocorrelogram and cross-correlations. In the

first case ḡ contains the mean, variance, skewness and kurtosis; for the autocorrelogram the first

10 autocorrelations; and for cross-correlations lags from -3 to +3. Generally, the high persis-

tence of interest rates may lead to poor estimation of unconditional moments. Therefore, there

are instances where high correlation between the estimated moments leads to somewhat poorly

conditioned weighting matrices. Hence, we also calculate a related statistic H ∗, which uses

as a weighting matrix the diagonal of Σg. Strong correlations between the estimated moments

sometimes imply that the model minimizingH does not minimizeH ∗.

3.3.3 Forecast Comparisons

Our forecast methodology is to estimate only using the in-sample period and forecast without

updating the parameters on the out-of-sample period. We use two point statistics for compar-

ison of unconditional forecast errors, the root mean squared error RMSE, and mean absolute

deviation MAD. For a time series φt, these are defined as:

RMSE =

√

1

T

∑

(φt − φ̂t)2

MAD =
1

T

∑

|φt − φ̂t|, (35)

15



where hatted values denote conditional forecast values. In our application we let φt = rt for

univariate and multi-country models, looking at first and second moments k = 1, 2. In term-

spread models we also consider φt = zt and the cross-moment φt = rtzt.

3.3.4 Regime Classification

Previous specification tests for RS models have focused on properties of residuals (Gray 1996)

or scores (Hamilton 1996), but here we propose a summary point statistic which captures the

quality of regime classification. A RS model assumes that at each point of time the data are

drawn from one of the regimes which is observed by agents in the economy but not by the

econometrician. To conduct inference about the regime, most papers focus on the smoothed

(ex-post) regime probabilities, p(st = 1|IT ) which we denote as pt. Weak regime inference

implies that the RS model cannot successfully distinguish between regimes from the behavior

of the data and may indicate misspecification. An ideal RS model should classify regimes

sharply so that pt is close to one or zero; in inferior models pt may hover close to a half.

To measure the quality of regime classification, we therefore propose the regime classifica-

tion measure (RCM), defined for two states as:

RCM = 400× 1
T

T
∑

t=1

pt(1− pt). (36)

The constant serves to normalize the statistic to be between 0 and 100. Good regime classifica-

tion is associated with low RCM statistic values: a value of 0 means perfect regime classifica-

tion and a value of 100 implies that no information about the regimes is revealed. Since the true

regime is a Bernoulli random variable, the RCM statistic is essentially a sample estimate of its

variance.

The statistic easily generalizes to multiple regimes. A general definition of the statistic for

K regimes is:

RCM(K) = 100K2
1

T

T
∑

t=1

(

K
∏

i=1

pi,t

)

, (37)

where pi,t = p(st = i|IT ).
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4 Empirical Results

4.1 Estimation Results of the Regime-Switching Models

Estimation of regime switching models in finite samples is plagued with the presence of mul-

tiple local maxima. To ensure that we identify the global maximum for the 31 RS models we

estimate, we use the following procedure. First, we obtain estimates for a large set of starting

values and select a candidate global maximum. Second, to check for stability of the global we

re-estimate using starting values randomly chosen in a ±10% interval around the parameters

of the provisional global maximum. When models have trouble converging to a well-behaved

global using this procedure, we either dropped the model or simplified it, rather than continuing

the numerical search towards poorly identified models.

The RS models all produce one regime with a unit root and lower conditional volatility and

a second regime which is stationary with higher conditional volatility. This type of estimation

is found in univariate, multi-country and term spread models. Economically the first regime

corresponds to “normal” periods where monetary policy smoothing makes interest rates behave

like a random walk. When extraordinary shocks occur, interest rates are driven up, volatility

becomes higher and interest rates become more mean-reverting.

In general, models with time-varying transition probabilities have many insignificant coef-

ficients in the probability terms which suggests over-parameterization. Previous studies with

time-varying probabilities such as Gray (1996) also document this. For some of our models, we

fail to reject the null hypothesis of constant probabilities. Nevertheless, the general pattern that

emerges in the majority of cases is as expected: higher short rates (and spreads) increase the

probability of switching to the high volatility regime.

To highlight the features of specific models we discuss univariate, multi-country and term

spread RS models in turn. Recall that Table 3 presents the nomenclature scheme of the models.

4.1.1 Univariate Models

As Table 3 shows, we consider three different conditional volatility specifications. We retain

constant transition probability models for all countries for all the formulations, except for the

UK GARCH model. We do not estimate state-dependent models for the GARCH formulation,

since the constant probability models are already over-parameterized. In estimating models

with state-dependent transition probabilites, we only find significant state dependence for the

US CIR model and the German RS AR(1) model. We drop the RS AR(1) model with state-

dependent transition probabilities for the US.
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4.1.2 Multi-Country Models

RSD1 is a diagonal model with the same parameters (αi, ρi, σi) across countries and homoskedas-

tic within-regime errors. The RSG1-model is identical but has square root errors. Constraining

σi to be the same across countries imposes the restriction that the conditional volatility for Ger-

many and the UK is higher than the conditional volatility for the US. We relax this formulation

in the RSG2-model and find that it makes little qualitative difference.

The estimation results show that Granger-causality by US shocks is important only for the

UK in the second mean-reverting high variance regime. Granger-causality of Germany is in-

significant in both regimes. Looking at the impact of US shocks on the error terms of Germany

and the UK, the Granger-causality model RSG2 has significant shock terms for Germany and

the UK in the first random walk regime. The diagonal model, however, shows US shocks affect-

ing only UK shocks in the first regime. To summarize, in the “normal” random walk regime US

shocks propagate into Germany and the UK, while in the second regime only the US Granger-

causes UK short rates.

4.1.3 Term Spread Models

In the RS term spread models we find that Granger-causality is model dependent. For the US

and Germany, one regime produces a significant Ai[1, 2] term, so the spread Granger-causes the

short rate in only one regime (the higher variance regime for the US but the lower variance one

for Germany). The evidence for the UK is less clear as the coefficient is just insignificant in

one regime but very insignificant in the other. Similarly, the short rates Granger-cause spreads

only in one regime but these may not be the same regimes where spreads Granger-cause short

rates. In the US these are in opposite regimes, but for Germany these regimes are the same. In

the joint estimation where we assume independence and the same parameters across countries,

short rates and spreads Granger-cause each other in the same regime (the lower conditional

variance regime).

The correlation between short rates and spreads differs markedly across regimes. The high

variance less persistent regime has more negative correlation than the low variance regime.

Wald tests for equality across the regimes reject with zero p-value for all countries. Short rates

and spreads seem less correlated in the first regime, which corresponds to “normal” periods.

However, note from Table 2 that the correlation between the short rate and spread is more

negative in expansions, which is the opposite to what the regime switching models imply. Nev-

ertheless, the high mean, high variance second regime does correspond to economic recessions.

We examine this further in Section 6.
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For our time-varying probability formulations the transition probabilities depend on both

the short rate and spread, except for the US where we use a model with transition probabili-

ties dependent only on the spread. Likelihood ratio tests for constant transition probabilities

versus time-varying probabilities reject for all countries. The results on Granger-causality and

regime-dependent correlations hold for both the constant and time-varying transition probability

models.

5 Performance Measures

Section 5.1 analyzes residual tests and the moment performance and Section 5.2 analyzes fore-

cast performance. Section 5.3 summarizes the evidence and makes use of a Monte Carlo exper-

iment to help interpret the results. The results are reported in Tables 5 through 10.

5.1 In-Sample Tests

5.1.1 Residual Tests

Table 5 lists the results of the mean and variance residual tests. Turning first to the US results,

the benchmark single-regime models perform well, passing both the mean and variance residual

tests. However, in each of the univariate, multi-country and term spread models, the variance

residual test has a p-value of only slightly larger than 5%. The only models which comfortably

pass both the mean and variance residual tests incorporate term spread information in a RS

model (RSM1 and RSM2). The single-regime or RS (RS3) univariate GARCH models and the

CIR models fail to pass the mean residual tests. The multi-country RS models generally do

poorer than their single-regime counterparts.

The mean residual tests for Germany reject all the models, with the exception of a second

order VAR, despite a first order VAR being the optimal AIC and BIC choice. Several RS

specifications (RS2 and RSD2) do less well than their single-regime counterparts, with the

variance residual test also rejecting them. In comparison, almost all the models pass the residual

tests on UK data, with univariate RS state-dependent transition probability specifications (RS2

and RS5) and the ATSM being the exception.

The Gaussian ATSM’s reject the mean residual test at a 5% level across all countries. The

implied factors from affine models are severely biased, which leads to the poor in-sample per-

formance, but the ATSM’s manage to pass the variance residual tests. This confirms evidence

in Ghysels and Ng (1998) who reject the conditional mean specification of affine models, but
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also find less evidence of mis-specification with second moments.

In summary, no single model passes all the residual tests for all countries. For the US and

UK, RS term spread models comfortably pass the residual tests, while almost all models fail to

pass the residual tests on German data.

5.1.2 Matching Sample Moments

We present H-statistics for univariate models in Panel A of Table 6. For the US, the one-regime

models seem to work better in matching unconditional moments than the RS models. The

dismal performance of models RS1-3 for the US is partly caused by the unit root in one of the

regimes, although the models are theoretically stationary. For Germany, RS2 and RS3 do poorly

because they produce large values for kurtosis. The best fits for the moments for Germany are

for the one-regime and RS CIR models. For the UK, the AR(1) RS processes work best with the

square root processes performing more poorly. RS models with state-dependent probabilities

(RS2, RS5) and GARCH errors (RS3) fare less well than the constant probability models, RS1

and RS4.

Panel B of Table 6 reports H-statistics for the multi-country models. Among the one-

regime models, diagonal models match central moments better than the unconstrained VAR(1)

or Granger-causality models, suggesting over-parameterization in these models. With the ex-

ception of the UK, the RS diagonal model performs better than its one-regime diagonal coun-

terpart. This is quite an achievement considering that this model constrains each country to

have the same parameters. The RS Granger-causality models perform more poorly than the RS

diagonal models for the US and UK but not for Germany. There is little difference when we no

longer constrain σi to be equal across countries in the RS Granger-causality models.

Table 7 reports the H and H* statistics for the bivariate short rate-spread system. The one-

regime models (VAR(1), VAR(2) and ATSM) generally out-perform the RS models (RSM1 and

RSM2) at matching unconditional moments. For one-regime models, the more parsimonious

VAR(1) definitely does better at matching autocorrelations than VAR(2), with comparable re-

sults for the central moments. For the US, the ATSM performs almost as well as VAR(1) and

VAR(2) in matching central moments, but this is not the case for the UK and Germany. In

matching autocorrelations, the ATSM performs best across the board in Germany, performs

best for the short rate aucorrelations in the UK, and also performs best for spread correlations

in the US. However, the ATSM’s perform extremely poorly in all countries matching the short

rate-spread cross-correlation. This is because the off-diagonal term in the companion matrix

of the factors (Φ12 in (28)) is near zero for Germany and the UK. Turning to the RS models,
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the state-dependent probability models fare better for the US and Germany than their constant

probability counterparts, but for the UK this result is reversed. One-regime models clearly out-

perform RS VAR’s for central moments and autocorrelograms. Only for cross-correlations does

RSM2 provide good fits.

Does incorporating extra information improve the performance of RS models? By looking

across Panels A and B of Table 6 we compare the univariate RS models with the multi-country

RS models. We see a dramatic improvement when incorporating multi-country information for

the US but not for Germany or the UK. Comparing the univariate RS models in Table 6 with the

bivariate RS term spread models in Table 7, the term spread information leads to a better match

of moments only for the US, and for autocorrelations only for the UK. Overall, using the extra

information from other countries or the term spread unequivocally helps the US obtain a better

fit to unconditional moments, but it definitely does not help for Germany. The evidence for the

UK is mixed.

5.2 Out-of-Sample Tests

Tables 8 and 9 list the forecast performance results. Focusing first on univariate models in Panel

A of Table 8, the state-dependence of the probabilities in RS AR(1) models produces superior

forecasts, even though many of the estimated coefficients are insignificant and the performance

in matching the sample moments is poor. However, this result is not shared by the RS CIR

model, with only the UK’s state dependent formulation performing better. Overall, with the

exception of the UK, the GARCH models produce the best results. For the UK, the superior

performance of the RS2 model, using either the RMSE or MAD criterion for both first and

second moments, is remarkable given that regime classification in the UK is rather poor (see

Figure 1 discussed below). Relative to their one-regime counterparts, RS models generally

perform better. For all countries with the exception of the one-regime GARCH model, the RS

AR(1) models forecast better than a simple AR(1) and the RS CIR models forecast better than

the single regime CIR models.

Panel B of Table 8 presents the forecasting results for the multi-country models. The diag-

onal one-regime models out-perform the unrestricted VAR on mean forecasts and do worse for

second moment forecasts only for the US, again showing over-parameterization of the uncon-

strained VAR. The multi-country RS diagonal model outperforms the one-regime model despite

having the interest rate DGP constrained to be the same across all countries. This is a strong

endorsement of the importance of regime shifts in forecasting. Granger-causality seems to aid

in forecasting both in one-regime and RS frameworks. The RS Granger models do particularly
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well for the US and the UK.

Table 9 reports forecast performance in the term spread models. In forecasting the first and

second moments, the more parsimonious VAR(1) outperforms the VAR(2) for all countries,

suggesting that the VAR(2) is over-parameterized. In the US, the ATSM provides better fore-

casts of the short rate than unrestricted VAR’s, which confirms the results in Ang and Piazzesi

(2001). This finding is repeated for Germany but not for the UK, where the ATSM fails to beat

the VAR specifications. For the US, the ATSM out-performs all the other bivariate specifica-

tions for forecasting short rates and second moments of short rates. Duffee (2001) comments

that affine models with constant risk premia forecast very poorly, but he does not consider fore-

casts of affine models with time-varying risk premia as in our ATSM specification. In contrast

to the US results, in Germany and the UK RS models out-perform the one-regime models for

forecasting the level and square of short rates. The results of forecasts of spreads and cross-

moments are mixed. While the RS models out-perform the one-regime specifications in the US,

the ATSM and VAR specifications provide better forecasts in Germany and the UK. The lowest

RMSE-statistics for cross-moment forecasts belong to the RS models for the US and Germany,

the best cross-moment forecast for the UK is VAR(1).

Adding information from other countries or term spreads to the estimation uniformly im-

proves forecasts. Focusing on the RMSE criterion, Table 8 shows that the multi-country ap-

proach generally yields better forecasts than the univariate models. Table 9 shows that adding

term spreads improves forecasts, with the RS spread models beating univariate forecasts with

the exception of the US, where the ATSM dominates.

5.3 Summary and Interpretation

In general, we find that in matching sample moments RS models do not systematically outper-

form one-regime models. However, in forecasting out of sample, RS models almost invariably

do better. Focusing on short rates, Table 10 reports the best models with the lowest H, RMSE

and MAD statistics. There is no clear-cut “best” model. However, it appears that while single

regime models may produce lower H-statistics (for example in the case of the US), RS models

forecast better for all countries. We note that for the US, the ATSM comes very close to giv-

ing the best forecast for the short rate. Moreover, the best RS forecasting models incorporate

information from other countries or the spread. Interestingly, RS models with state-dependent

probabilities tend to forecast better than their constant probability counterparts even though they

perform very poorly at matching sample moments.

How do we interpret these results? As indicated before, the RS models considered here need
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large simulations to pin down their unconditional moments with any precision. This means that

the small sample behavior of RS models may be poor. In other words, it is conceivable that

more parsimonious one-regime models produce better estimates of the sample unconditional

moments than RS models in small samples, even though a RS model is the true DGP. Here we

run a Monte Carlo experiment to specifically investigate this conjecture.

Consider the following RS VAR population model of the short rate and spread, yt = (rt zt)′:

yt = µ(st) +A(st)yt−1 +Σ
1

2 (st)εt where εt ∼ N(0, I), st = 1, 2 with Markov state-dependent

logistic transition probabilities depending on lagged yt. We use the parameters from the joint

estimation as the population model and find the true population moments of this model using

a very long simulation. Then, we simulate a small sample of size T + N and compute uncon-

ditional moment estimates over the in-sample of size T and RMSE forecast statistics over the

out-sample of sizeN for several aproximations to the true model. We set T andN to be the size

of our in-sample and out-sample data sets in this paper, 267 and 30 respectively. The models we

consider are an AR(1) and a RS AR(1) on the short rates with constant probabilities, a VAR(1)

and a RS VAR(1) on the bivariate short rate and spread with constant transition probabilities.

We denote these as AR, RS AR, VAR, and RS VAR respectively.

Unfortunately we cannot include the true model because of the problems we encounter in

finding satisfactory estimates of the RS VAR with time-varying probabilities in small samples.

The many convergence failures that occur even when starting from the true parameters are in

itself proof of the small sample problems RS models face.

To compare the unconditional moment estimators, we calculate H-statistics with the mean,

standard deviation, skewness and kurtosis, and then record which of the four models yields the

best (lowest) statistic value for each simulated sample. To compare out-of-sample forecasts, we

record which model produces the lowest RMSE statistic. We use 1000 Monte Carlo replications.

Table 11 reports the percentage times each model best fit the population moments or produced

the best forecasts. For example, for the simulations performed, in 15.9% of cases the AR(1)

model gave the best fit to the population moments as measured by the H-statistic even though

the true model was a RS VAR(1) with state-dependent probabilities.

Table 11 shows that the one-regime models are good approximations to the true RS models

in small samples, and that despite the true DGP being a RS model, parsimonious one-regime

models may perform better at matching moments and forecasting. It is notable that RS models

perform quite poorly in matching unconditional moments, but perform better in forecasting.

These results parallel our findings for the actual RS models estimated on real data.

We also examine the empirical distribution of the moments produced by the models in small

samples. Table 12 reports the population values of the unconditional moments for the short
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rates and spreads. The table also lists the mean values and standard deviations of the small

sample distribution of the moments produced by the various models. RS models tend to over-

estimate the mean and under-estimate the variance of the short rate, but the population val-

ues lie within 95% confidence intervals of the small sample model moments. However, the

AR and VAR single-regime models produce close to unbiased estimates of the mean and vari-

ance. This result may help justify the popularity of VAR-type models to test unconditional term

structure hypotheses, such as the Expectations Hypothesis, even in the presence of significant

non-linearities in the data.

6 Regime Classification and Regime Interpretation

Figure 1 displays the regime probabilities for the RS VAR state-dependent transition probability

model for the US, Germany and UK. The solid line in the top plots are smoothed probabilities

p(st = 1|IT ) using information over the full sample of size T and the broken line represents

ex-ante probabilities p(st = 1|It−1). Plots of ex-ante and smoothed probabilities for the other

models look similar. For the UK, there is a high frequency of switching between regimes

because the transition probabilities P and Q are very close to a half. In a regime switching

model, if P + Q = 1 the model reduces to a simple switching model. For the UK models, we

often cannot reject this hypothesis and the regime classification also appears poor because the

smoothed regime probability often is far away from 1 or 0.

For a more quantitative examination of regime classification, we present RCM statistics in

Table 13. In univariate models the RS AR(1) model produces the sharpest regime classifica-

tion for the US, while RS CIR models produce the sharpest regime classification for Germany

and the UK. For univariate models, moving from constant to state-dependent transition prob-

abilities produces very little improvement. Our multi-country model produces sharper regime

classification for the UK and Germany at the expense of the US. In particular, there is a large

improvement in regime classification for the UK by adding US information. Including term

spread information leads to lower RCM statistics for all countries.

Are the regimes correlated with the business cycle? Table 14 attempts to answer this ques-

tion. The table first presents correlations between various lags j of the ex-ante probabilities

pt−j+1 and a recession indicator for the business cycles of each country. The ex-ante proba-

bilities are generated from the term spread RS model with time-varying probabilities (RSM2).

We use this model because it is the model with the lowest RCM statistic for the US in Table

13. We report the correlations between the second regime with mean-reverting higher volatility
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and the economic downturns. The table shows that this regime is associated with economic

recessions, while the “normal” unit root regime with lower volatility represents economic ex-

pansions. The US and Germany have significant correlations, while the correlations of the UK

are insignificant.

The business cycle association of the regimes is not surprising for the US. Figure 1 shows

that the ex-ante probabilities during the 1979-1982 period of monetary targeting are near zero,

placing this period in the second regime. During this period high variable interest rates were

accompanied by a large recession. Germany also experienced a similar episode around the

same time (1980:03 to 1983:07), and also went through an earlier recession accompanied by

high interest rates in the early 1970’s (1973:09 to 1975:05). The recession brought on by the re-

unification, beginning in mid-1991, also saw rising interest rates but the regimes do not capture

this period as successfully. The poor results for the UK are not surprising given the poor regime

classification of the UK model.

The last four columns of Table 14 report coefficients from a Probit regression with the

recession indicator being the dependent variable, and current and lagged ex-ante probabilities

being the independent variables. The Probit regressions yield significant coefficients for the US

and Germany. We also list the percentage of correctly forecasted recessions in-sample from the

Probit regressions. For the US, the ex-ante probabilities successfully predict 84% of recessions

one-month ahead, with the success ratio slightly increasing as we try to predict further into the

future. The success ratio is around 60% for Germany and, not surprisingly, only 50% for the

UK.

Harvey (1988) and Estrella and Mishkin (1997) find that term spreads successfully predict

real economic activity. Table 14 confirms their findings showing that the magnitude of corre-

lations between recessions and the spread increases with the lag, and that the accuracy of the

Probit forecasts increases with the forecast horizon. This happens in all three countries. Look-

ing specifically at the US, the ex-ante regime probabilities have better forecast ratios for one and

two month ahead predictions than the spread. While the forecast ratios increase with horizon

for the spread, the forecast ratios of the the ex-ante probabilities remain essentially flat. This

evidence indicates that for the US the ex-ante regime probabilities are better contemporaneous

indicators of the business cycle than the spread, and the spread is a forward looking indicator

with greater forecasting ability at longer horizons. For the other countries, the spread better

predicts recessions than our regime probabilities at all horizons. Given that both the regime

classification and the dating of the actual business cycles is less precise for these countries, this

is not surprising.
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7 Conclusions

We compare the econometric performance of regime-switching (RS) models relative to their

one-regime counterparts in several ways. First, residual tests show that RS models often per-

form worse than single regime models. However, for the US only RS models with term spread

information comfortably pass the residual tests. Second, the moments implied by RS models

do not always fit the sample moments as well as simpler models do because of the difficulties in

estimating RS models in small samples. A Monte Carlo experiment confirms that this happens

even when the RS model is the true data generating process. Finally, RS models invariably fore-

cast better than one-regime models, although a parsimonious multi-factor affine term structure

model with time-varying prices of risk performs almost as well for US short rates.

To improve the econometric performance of RS models it is important to incorporate addi-

tional information. In fact, univariate RS models yield inconsistent estimates when the omitted

variables contain information on the regime. We compare the performance of univariate with

multi-country short rate models and models incorporating term spreads. In particular, US short

rates improve both the regime classification and the statistical performance for German and UK

short rates (but not vice versa). Furthermore, inclusion of term spread information leads to gen-

eral improvements over univariate models in forecasting and to dramatic superior performance

in regime inference. The inclusion of additional cross-sectional country short rates or term

spreads does not always improve the fit of the unconditional moments. However, the regimes

correspond well with business cycle expansions and contractions.
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Table 1: Sample Moments

Panel A: Sample Central Moments
Parameter US GER UK

short rate spread short rate spread short rate spread
mean 7.3381 1.2198 6.9045 0.4984 10.5605 0.0643

(0.4449) (0.2028) (0.4197) (0.2719) (0.4268) (0.2491)
variance 8.3103 2.0366 7.1111 3.1241 8.2388 2.7458

(1.9390) (0.3833) (1.3380) (0.6714) (1.4354) (0.5292)
skewness 0.8172 -0.7281 0.6806 -0.5410 -0.1521 -0.2596

(0.2167) (0.2782) (0.2515) (0.3227) (0.1797) (0.2404)
kurtosis 3.6102 3.5921 2.6987 3.3732 2.5406 2.8086

(0.6718) (0.7179) (0.4405) (0.5768) (0.3264) (0.4071)

Panel B: Sample Autocorrelations
Lag US GER UK

short rate spread short rate spread short rate spread
1 0.9706 0.8669 0.9845 0.9657 0.9565 0.9322

(0.0181) (0.0292) (0.0216) (0.0265) (0.0237) (0.0238)
2 0.9295 0.7663 0.9583 0.9207 0.8948 0.8776

(0.0347) (0.0497) (0.0436) (0.0507) (0.0450) (0.0425)
3 0.8931 0.6958 0.9253 0.8715 0.8271 0.8234

(0.0513) (0.0689) (0.0638) (0.0711) (0.0637) (0.0596)
4 0.8551 0.6221 0.8858 0.8127 0.7627 0.7692

(0.0653) (0.0820) (0.0812) (0.0868) (0.0784) (0.0753)
5 0.8256 0.5873 0.8428 0.7502 0.7006 0.7200

(0.0778) (0.0836) (0.0957) (0.0999) (0.0895) (0.0895)

Panel C: Sample Cross Correlations
Short rates of countries Short rates/Spreads

Lag US/DEM US/UK DEM/UK US GER UK
-3 0.4197 0.6470 0.3279 -0.3655 -0.7929 -0.6524

(0.1334) (0.0777) (0.1007) (0.1130) (0.0563) (0.0727)
-2 0.4205 0.6549 0.3523 -0.4213 -0.8326 -0.7016

(0.1322) (0.0725) (0.0964) (0.1091) (0.0435) (0.0607)
-1 0.4120 0.6521 0.3696 -0.4907 -0.8656 -0.7375

(0.1315) (0.0686) (0.0939) (0.1038) (0.0317) (0.0521)
0 0.3953 0.6454 0.3808 -0.5920 -0.8804 -0.7637

(0.1310) (0.0678) (0.0933) (0.0976) (0.0284) (0.0459)
1 0.3756 0.6139 0.3782 -0.5952 -0.8634 -0.7057

(0.1325) (0.0698) (0.0945) (0.0982) (0.0335) (0.0539)
2 0.3542 0.5758 0.3717 -0.5715 -0.8389 -0.6608

(0.1335) (0.0754) (0.0974) (0.1013) (0.0406) (0.0629)
3 0.3294 0.5485 0.3650 -0.5522 -0.8097 -0.6210

(0.1328) (0.0828) (0.1008) (0.1080) (0.0477) (0.0718)

NOTE: Sample period 1972:01 to 1993:02 (in-sample period). Standard errors are in paren-
theses and are estimated using GMM with 6 Newey-West (1987) lags. In Panel C, the

cross-correlations are the estimates of
cov(rm1

t+j
,r
m2
t )√

var(rm1t )
√

var(rm2t )
for j = −3,−2, . . . ,+2,+3

and countrym1 and countrym2.
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Table 3: Summary of Models Estimated

Univariate Models of short rates

One-regime Two-regime equivalents
const probs time-dep probs

AR(1) RS1 RS2
(3) (8) (10)

GARCH(1,1) RS3
(5) (12)

CIR RS4 RS5
(3) (8) (10)

Multi-Country Models of short rates

Model Description
VAR1u unconstrained VAR(1)

(18)
G1 one-regime Granger-causality model, homoskedastic errors
(13)

RSG1 RS Granger-causality with the same αi, ρi, σi, P , Q across countries,
(16) square root errors

RSG2 RS Granger-causality with the same αi, ρi, P , Q across countries,
(20) but different σi, square root errors
D1 one-regime diagonal model, homoskedastic errors
(11)

RSD1 RS diagonal model with the same αi, ρi, σi, P , Q across countries,
(12) homoskedastic errors

Multivariate Models of the Term Spread

One-regime Two-regime equivalents
const probs time-dep probs

VAR(1) RSM1 RSM2
(9) (20) (24)

VAR(2)
(13)

ATSM (Affine Term Structure Model)
(9)
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Table 4: Granger Tests in the Multi-Country VAR Model

Granger-causality A[i, j] = 0 p-value
no country Granger-causes another all off-diagonal elements = 0 0.0528
US Granger-causes Germany and UK A[2, 1] = A[3, 1] = 0 0.0029
Germany and UK Granger-cause US A[1, 2] = A[1, 3] = 0 0.7332
Germany and UK Granger-cause each other A[2, 3] = A[3, 2] = 0 0.6742

NOTE: Wald tests are performed using GMM with 6 Newey-West lags. The notationA[i, j]
refers to the element in row i, column j.

Table 5: Residual Tests on Short Rates

US GER UK
mean var mean var mean var

Univariate Models
AR1 0.3170 0.0523 0.0212* 0.4826 0.4855 0.8401
RS1 0.0101* 0.4980 0.0003** 0.2782 0.4868 0.6243
RS2 - 0.0001** 0.0094** 0.0000** 0.0248*
GARCH 0.0085** 0.1529 0.0000** 0.5841 0.4543 0.8894
RS3 0.0153* 0.5452 0.0011** 0.4612 -
CIR 0.0071** 0.0000** 0.0088** 0.1321 0.4410 0.7602
RS4 0.0039** 0.5368 0.0000** 0.1489 0.4519 0.8656
RS5 0.0030** 0.6816 0.0000** 0.0592 0.0000** 0.2700

Multi-Country Models
VAR1u 0.3728 0.0508 0.0137* 0.2463 0.5197 0.6841
G1 0.8767 0.0000** 0.0246* 0.1189 0.7495 0.6441
RSG1 0.0483* 0.1081 0.0002** 0.5369 0.7702 0.5769
RSG2 0.0311* 0.1478 0.0002** 0.5476 0.7753 0.6668
D1 0.2497 0.0513 0.0211* 0.4820 0.4885 0.8407
RSD2 0.0016** 0.0000** 0.0000** 0.0000** 0.6210 0.4704

Term Spread Models
VAR1 0.5087 0.0547 0.0197* 0.4432 0.4598 0.4517
VAR2 0.8715 0.0185* 0.3146 0.1572 0.4568 0.4146
ATSM 0.0120* 0.0911 0.0233* 0.4902 0.0329* 0.4132
RSM1 0.3831 0.1753 0.0011** 0.3581 0.5929 0.8920
RSM2 0.2988 0.1434 0.0013** 0.3682 0.4338 0.9694
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Table 6: Moments of Univariate and Multi-Country Models

Panel A: Univariate Models

RS1 RS2 RS3 RS4 RS5 AR(1) GARCH CIR

US
Central moments H 330.99 - 327.56 113.72 63.03 30.32 - 3.11*

H* 112.15 - 72.92 36.78 46.24 15.26 - 1.71*
Autocorrelogram H 10.01 - 6.67 8.82 5.23 3.88* - 3.91

H* 20.84 - 7.81 16.31 6.19 1.30* - 5.34

GER
Central moments H 67.03 4563.76 5211.55 100.78 17.03* 165.53 - 34.11

H* 17.80 153.80 4088.45 27.78 9.61 7.98 - 6.54*
Autocorrelogram H 6.82 9.21 5.08* 6.14 7.67 6.91 - 5.96

H* 13.01 22.30 3.07* 12.46 20.59 13.74 - 9.59

UK
Central moments H 3.49* 4.00 - 29.02 36.90 5.81 6.82 25.11

H* 4.38 4.19 - 18.34 34.27 2.83* 4.09 19.13
Autocorrelogram H 7.43 7.75 - 7.98 7.36* 9.51 8.84 8.43

H* 11.06* 13.07 - 14.01 14.61 20.24 17.55 15.58

Panel B: Multi-Country Models

VAR1u D1 RSD1 G1 RSG1 RSG2

US
Central moments H 30.83 21.73 13.38* 30.31 28.66 32.66

H* 15.25 15.76 11.10* 15.26 17.26 22.64
Autocorrelogram H 3.43 3.34* 8.06 3.87 9.77 11.70

H* 0.97 0.25* 13.44 1.29 19.84 27.34

GER
Central moments H 174.98 166.62 54.91 207.78 26.09* 26.47

H* 7.90* 7.98 15.50 8.20 10.09 11.09
Autocorrelogram H 6.12* 6.91 7.19 6.99 7.96 9.12

H* 12.43* 13.82 13.21 15.10 16.55 21.84

UK
Central moments H 6.40 6.06* 64.62 7.94 146.54 287.66

H* 2.76 2.80 55.29 2.71* 81.77 123.56
Autocorrelogram H 10.08 9.63* 26.13 11.67 31.97 34.04

H* 21.90 20.69* 81.71 26.34 106.81 113.68
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Table 7: Unconditional Moments of Term Spread Models

VAR1 VAR2 ATSM RSM1 RSM2

US
Central Moments rt H 31.51 29.99 29.62* 193.20 141.95

H* 15.26* 15.27 15.35 97.05 54.83
zt H 10.09 10.07* 10.88 119.70 30.96

H* 7.62* 7.62 7.87 86.30 21.77
Autocorrelations rt H 2.46* 890.48 52.25 4.32 5.13

H* 0.84* 17.35 249.45 1.33 12.11
zt H 21.70 5724.77 5.30* 16.82 10.58

H* 43.26 68.67 5.67* 69.27 14.52
Crosscorrelation rtzt H 86.99 444.51 73.71 12.73 2.05*

H* 16.24 8.82 260.11 31.29 0.19*

GER
Central Moments rt H 232.01 157.55* 250.97 374.27 268.22

H* 8.24 8.08* 10.42 20.11 11.40
zt H 6.43 6.03* 17.11 38.98 18.69

H* 3.29* 3.69 7.49 10.04 5.97
Autocorrelations rt H 7.41 2941.41 4.85* 6.65 6.04

H* 15.28 23.09 3.24* 13.90 10.63
zt H 8.50 316.92 5.70* 15.57 14.66

H* 17.39 34.19 8.68* 51.67 47.65
Crosscorrelation rtzt H 6.96* 142.92 1718.14 17.30 10.80

H* 8.89 7.71 4228.46 10.91 4.21*

UK
Central Moments rt H 4.84 4.93 4.33* 23.51 32.49

H* 3.03 3.00* 3.10 4.33 5.60
zt H 2.25 2.17* 77.39 9.80 11.09

H* 1.42 1.40* 46.42 7.63 9.15
Autocorrelations rt H 8.04 50.26 7.24* 8.69 8.98

H* 16.26 60.28 13.31* 19.00 21.69
zt H 2.82* 119.41 8.61 2.99 3.09

H* 0.38* 21.27 16.61 2.00 2.42
Crosscorrelation rtzt H 7.87* 199.73 397.72 17.00 11.36

H* 11.44 10.93 1233.65 9.34 2.09*
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Table 8: Forecasts of Univariate and Multi-Country Models

Panel A: Univariate Models

RS1 RS2 RS3 RS4 RS5 AR(1) GARCH CIR

US
rt MAD 0.1488 - 0.1458 0.1458 0.1487 0.1483 0.1387* 0.1664

RMSE 0.1956 - 0.1943 0.1945 0.1968 0.1888* 0.1999 0.1999
r2t MAD 1.5161 - 1.4696 1.4771 1.5048 1.6540 1.3410* 1.9874

RMSE 1.9421 - 1.9167* 1.9277 1.9525 2.0335 1.9207 2.3042

GER
rt MAD 0.1307 0.1299 0.1329 0.1285 0.1327 0.1501 0.1207* 0.1615

RMSE 0.1732 0.1732 0.1716 0.1694 0.1732 0.1900 0.1627* 0.2006
r2t MAD 1.2097 1.1979 1.1822 1.1407 1.1824 1.4568 1.0895* 1.4985

RMSE 1.5936 1.5943 1.5351 1.5114 1.5423 1.8174 1.4736* 1.8637

UK
rt MAD 0.2509 0.2137* - 0.2449 0.2288 0.2419 0.2555 0.2539

RMSE 0.2890 0.2668* - 0.2819 0.2771 0.2772 0.2910 0.2893
r2t MAD 3.5109 2.9807* - 3.2783 3.0626 3.3666 3.4550 3.3090

RMSE 4.0030 3.5617* - 3.7319 3.6206 3.8180 3.9192 3.7569

Panel B: Multi-Country Models

VAR1u D1 RSD1 G1 RSG1 RSG2

US
rt MAD 0.1619 0.1499 0.1378 0.1483 0.1160* 0.1174

RMSE 0.2002 0.1891 0.1841 0.1888 0.1625* 0.1626
r2t MAD 1.5550 1.7159 1.2139 1.3992 0.9949* 1.0388

RMSE 1.8065 2.0771 1.4980 1.6453 1.1930* 1.2146

GER
rt MAD 0.1580 0.1500 0.1429 0.1327* 0.1451 0.1466

RMSE 0.1959 0.1899 0.1868 0.1704* 0.2035 0.2062
r2t MAD 1.6591 1.4557 1.2822 1.4632 1.1957 1.2436*

RMSE 1.8537 1.8164 1.5706 1.6303 1.5206* 1.5899

UK
rt MAD 0.2747 0.2410 0.1429 0.2668 0.1124* 0.1142

RMSE 0.3116 0.2762 0.2017 0.3055 0.1766* 0.1833
r2t MAD 2.2897 3.3541 1.6389 2.1274 1.2960 1.2872*

RMSE 2.0020 3.8040 2.1859 1.8801 1.8465* 1.8554
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Table 10: Overall Moments and Forecast Comparisons for short rates

Best H-statistics
US GER UK

Central moments CIR RS5 RS1
Autocorrelogram VAR1 ATSM ATSM

Best RMSE-statistics Best MAD-statistics
US GER UK US GER UK

rt RSG1 RSM2 RSG1 RSG1 RSM2 RSG1
r2t RSG1 RSM2 RSG1 RSG1 RSM2 RSG2

Table 11: Small Sample Experiment: % Time Models do Best

Unconditional Moments Forecasts
AR RS AR VAR RS VAR AR RS AR VAR RS VAR

rt central 15.9% 59.9% 14.8% 9.4% rt 30.6% 16.3% 24.5% 28.6%
ρ(rt) 43.4% 3.3% 43.7% 9.6% r2t 29.4% 18.0% 20.5% 32.1%
zt central 90.1% 9.9% zt 45.8% 54.2%
ρ(zt) 36.3% 63.7% z2t 46.1% 53.9%
ρ(rt, zt) 88.9% 11.1% cross 44.2% 55.8%

NOTE: We simulate data of length 297 from the joint estimation across the US-Germany-UK of a bivariate
system of the short rate rt and spread zt with time-varying probabilities (Model RSM2). We then estimate
an AR(1), a regime-switching AR(1), a VAR, and a regime-switching VAR, denoted AR, RS AR, VAR and
RS VAR respectively and record which model gives the lowest H and RMSE statistics. The table lists the
percentage times of which model performed the best in each small sample. We conduct 1000 simulations.
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Table 12: Small Sample Distribution of Moments

Short Rates
Population AR RSAR VAR RSVAR

Mean 7.3289 7.3905 8.5011 7.4066 8.8526
(1.3454) (1.4462) (1.3802) (1.7742)

Variance 11.2885 10.9206 7.8944 11.0027 8.9975
(3.8646) (2.2026) (4.3127) (2.6317)

Skewness 0.5750 0.2032 0.1185
(0.1700) (0.3087)

Kurtosis 3.0639 3.1360 3.2287
(0.3263) (3.3094)

Spreads
Population AR RSAR VAR RSVAR

Mean 0.8642 0.8509 0.3410
(0.3903) (0.4304)

Variance 1.5460 1.4306 1.0500
(0.5161) (0.2705)

Skewness -0.1815 -0.0790
(0.2812)

Kurtosis 3.0084 3.2709
(1.8155)

NOTE: These are the means, with standard errors in parentheses, of the moments of the estimated models in
a small sample of 267, in the experiment of Table (11). Skewness and kurtosis for the AR and VAR models
are theoretically 0 and 3 respectively.

Table 13: RCM Statistics

US GER UK
RS1 10.44 22.57 43.14
RS2 - 23.69 41.54
RS3 19.04 52.53 -
RS4 11.53 21.02 42.29
RS5 12.88 20.45 40.64

RSD1 18.11 13.44 27.23
RSG1 21.16 19.72 28.17
RSG2 21.94 22.25 24.48
RSM1 7.67 14.60 38.70
RSM2 6.68 16.12 34.90
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Table 14: Markov Regimes and Business Cycles

US
Correlations Probit Forecasting

mths ahead j ρ(1− pt−j+1, rect) ρ(zt−j , rect) β(1− pt−j+1) %forecast β(zt−j) %forecast
1 0.4264 -0.3047 1.6203 83.8 -0.2811 80.8

(0.1153) (0.1104) (0.2569) (0.0605)
2 0.4618 -0.3989 1.7537 84.2 -0.3847 82.3

(0.1149) (0.1028) (0.2603) (0.0645)
4 0.4840 -0.5096 1.8428 84.4 -0.5611 86.7

(0.1123) (0.0851) (0.2640) (0.0760)
6 0.4122 -0.5296 1.5569 85.1 -0.5750 87.0

(0.1126) (0.0820) (0.2584) (0.0745)

Germany
Correlations Probit Forecasting

mths ahead j ρ(1− pt−j+1, rect) ρ(zt−j , rect) β(1− pt−j+1) %forecast β(zt−j) %forecast
1 0.1892 -0.5276 0.5789 60.2 -0.4903 75.2

(0.1109) (0.0719) (0.1879) (0.0601)
2 0.2162 -0.5830 0.6632 61.5 -0.6073 75.8

(0.1107) (0.0615) (0.1890) (0.0696)
4 0.2472 -0.6590 0.7615 63.9 -0.8474 77.9

(0.1101) (0.0508) (0.1908) (0.0927)
6 0.2392 -0.6811 0.7366 63.6 -0.9400 81.6

(0.1106) (0.0483) (0.1915) (0.1024)

UK
Correlations Probit Forecasting

mths ahead j ρ(1− pt−j+1, rect) ρ(zt−j , rect) β(1− pt−j+1) %forecast β(zt−j) %forecast
1 0.0911 -0.3439 0.6856 54.1 -0.2821 67.3

(0.1066) (0.0999) (0.4590) (0.0506)
2 0.0779 -0.3828 0.5864 53.6 -0.3218 69.4

(0.1067) (0.0962) (0.4601) (0.0522)
4 0.0098 -0.4508 0.0740 51.3 -0.4018 74.1

(0.1077) (0.0899) (0.4646) (0.0564)
6 -0.0230 -0.4680 -0.1756 49.0 -0.4274 72.4

(0.1063) (0.0837) (0.4710) (0.0584)

NOTE: Recessions are coded as a 1, expansions as 0. The symbol pt represents the ex-ante probabilities
p(st = 1|It−1) of the first regime from the term spread RS model with time-varying transition probabilities
(RSM2). The first two columns give the correlation of the recession indicator (rec) with the ex-ante proba-
bility of the second regime and the spread zt. Standard errors are calculated using GMM with 3 Newey-West
lags. The last four columns show results from fitting the Probit model p(rect = 1) = F (α+β(.)at−j), where
F (.) is the normal cumulative distribution function, β is the coefficient corresponding to the variable at−j ,
and we let at−j be current and lagged values of 1 − pt−j and zt−j−1. Lags are in months. The %forecast
column is the percentage of correctly forecasted (in-sample) values from the Probit regression.
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Figure 1: Regime Probabilities

40



Figure Legend

Figure 1 shows the ex-ante probabilities p(st = 1|It−1) (dotted line) and smoothed probabilities p(st = 1|IT )
(solid line) in the top subplots for each country, and the short rate and spread for each country in the bottom
subplots.
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