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Abstract

We develop univariate regime-switching GARCH (RS-GARCH) models wherein the con-
ditional variance switches in time from one GARCH process to another. The switching
is governed by a time-varying probability, specified as a function of past information.
We provide sufficient conditions for stationarity and existence of moments. Because of
path dependence, maximum likelihood estimation is infeasible. By enlarging the param-
eter space to include the state variables, Bayesian estimation using a Gibbs sampling
algorithm is feasible. We apply this model using the NASDAQ daily return series.
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1 Introduction

Over the past two decades there has been a large amount of theoretical and empirical research
on modelling volatility in financial markets. Since volatility is commonly used as a measure
of risk associated with financial returns, it is important to portfolio managers, option traders
and market makers among others. Further, portfolio optimization, derivative pricing and
risk management, such as Value-at-Risk (VaR), use volatility estimates as inputs. So far in
the literature, the most widespread approach to modeling volatility consists of the GARCH
model of Bollerslev (1986) and its numerous extensions that can account for the volatility
clustering and excess kurtosis found in the data (see e.g. Bollerslev and Wooldridge (1992)
for an overview of the GARCH literature).

The accumulated evidence from empirical research suggests that the volatility of financial
markets displays some type of persistence that cannot be appropriately captured by classical
GARCH models. In particular, these models usually indicate high persistence in the condi-
tional volatility. This persistence, as was noted by Hamilton and Susmel (1994), Gray (1996),
and Klaassen (2002), is not compatible with the poor forecasting results of these models. Fur-
thermore, Diebold (1986) and Lamoureux and Lastrapes (1990), among others, argue that the
near integrated behavior of the conditional variance may originate from structural changes in
the variance process, which are not accounted for by standard GARCH models. Mikosch and
Starica (2004) show that estimating a GARCH(1,1) model on a sample displaying structural
changes in the unconditional volatility does indeed create an integrated GARCH (IGARCH)
effect. These findings clearly indicate a potential source of misspecification, to the extent
that the structural form of the conditional mean and variance is relatively inflexible and held
fixed throughout the entire sample period. For example, the existence of shifts in the variance
process over time can induce volatility persistence (see Wong and Li (2001) and Lanne and
Saikkonen (2003)). Hence the estimates of a GARCH model suffer from a substantial upward
bias in the persistence parameter. Therefore, models in which the parameters are allowed to
change over time may be more appropriate for modelling volatility.

In this perspective, several models that are based on a mixture of distributions have been
proposed. Schwert (1989) considers a model in which returns may have either a high or a low
variance, and switches between these states are determined by a two-state Markov process.
Hamilton and Susmel (1994) and Cai (1994) introduce an ARCH model with regime-switching
parameters in order to take into account sudden changes in the volatility. They use an ARCH
specification instead of a GARCH to avoid the problem of path dependence of the conditional
volatility on the ruling regime. Later, a tractable Markov-switching GARCH model was
presented by Gray (1996) and a modification of his model was suggested by Klaassen (2002),
see also Bollen, Gray, and Whaley (2000), Dueker (1997) and Haas, Mittnik, and Paolella
(2004b). Several authors have also examined the class of mixtures of normal GARCH models,
i.e. models where errors have a conditional distribution that is a mixture of normal ones with
GARCH variance components and the probability that each observation belongs to a given
volatility regime is constant. Vlaar and Palm (1993) were the first to suggest a mixture of two
normal distributions where the difference between the conditional variances in each state is
constant. Another version was proposed by Bauwens, Bos, and van Dijk (1999) who consider
a mixture GARCH in which the two conditional variances are proportional to each other.
Recently, Haas, Mittnik, and Paolella (2004a) specified a general framework for these models,
allowing for interdependence between the variance components in each regime.

The objective of this paper is to develop models that better describe the volatility behavior
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and to extend the recent literature on switching volatility models. We propose a regime-
switching GARCH (RS-GARCH) model, in which the parameters are different in each regime
to account for the possibility that the data generating process undergoes a finite number
of changes over the sample period. This model allows for a different speed of reversion to a
different volatility level at different times throughout the sample period. The probability that
each observation belongs to a given volatility regime is allowed to change over time according
to the past history of the process. We provide sufficient conditions for geometric ergodicity
and existence of moments of the proposed model.

The RS-GARCH model allows for periods in which the process is characterized by inte-
grated volatility or even by non-stationarity, giving the impression of structural instability in
the conditional volatility. However, the process endogenously collapses back from its explosive
component towards a stable regime. This occurs because the probability of staying in a non-
stable regime tends to zero as the level of volatility increases, which forces the RS-GARCH
process to be globally stationary. That is, large shocks have the effect of ‘relieving pressure’
by reducing the probability of a large shock is the next period, so that large shocks are less
persistent than moderate shocks. This type of behavior is in line with a well documented
feature of volatility in financial markets, namely, the occurrence of sharp upward jumps in
volatility, followed by fairly rapid reversion to near normal levels of volatility, see e.g. Dueker
(1997).

The computation of the likelihood function of a RS-GARCH model is not feasible due to
the well know problem of path dependence. The path dependence occurs because the condi-
tional variance at time t depends on the entire sequence of past regimes (or states) up to time
t, due to the recursive nature of the GARCH process. Since the regimes are unobservable, we
need to integrate over all possible paths when computing the sample likelihood. But the num-
ber of possible regime paths grows exponentially with time, which renders the computation
of the likelihood function infeasible. To circumvent the path dependence problem, a variety
of alternative tractable models that try to preserve the nature of the GARCH process have
been proposed. For example, Gray (1996) replaces the lagged conditional variance with its
conditional expectation with respect to the unobserved state variable. Dueker (1997) applies
a collapsing procedure based on Kim’s algorithm Kim (1994), but he essentially adopts the
same solution as Gray. Klaassen (2002) modifies Gray’s approach by taking the conditional
expectation with respect to a broader information set than Gray (1996). Haas, Mittnik, and
Paolella (2004a) and Haas, Mittnik, and Paolella (2004b), assume that the current value of
the conditional variance in each regime depends directly on the lagged value of the same
conditional variance in the previous regime, i.e. they assume the parallel existence of sev-
eral conditional variances. Our solution to the path dependence problem is to use Bayesian
inference for the RS-GARCH model. The unobservable state variables are treated as part
of the model parameters, which makes the construction of the likelihood function feasible.
We construct a Gibbs sampler algorithm to compute the posterior and predictive densities.
Therefore our solution is rigorous in the sense that we estimate RS-GARCH model exactly
as specified, without resorting to Gray’s or Dueker’s approximations.

In Section 2, we define the RS-GARCH model and we state sufficient conditions for
stochastic stability and existence of moments. In Section 3, we explain how the model can
be estimated and used for prediction in the Bayesian framework and provide a numerical
example based on simulated data. In Section 4, we apply our approach to a long time series
of returns of the NASDAQ market index. In the last section, we conclude and discuss possible
extensions. Proofs of the theorems stated in the paper are gathered in the Appendix.
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2 Regime Switching GARCH Model

The standard GARCH(1,1) model of Bollerslev (1986) is defined as the process

yt = µ1 + εt = µ1 + σtut (1)
σ2

t = α1 + β1σ
2
t−1 + γ1ε

2
t−1, (2)

where the error term ut is i.i.d. with zero mean and unit variance. We assume for simplicity
that the conditional mean is constant. The sum β1 + γ1 measures the persistence of the
volatility process. When this model is estimated using daily or higher frequency data, the
estimate of this sum tends to be close to one, indicating that the volatility process is highly
persistent and may not be covariance-stationary. However it was argued that the high persis-
tence may artificially result from regime shifts in the GARCH parameters over time, Diebold
(1986), Lamoureux and Lastrapes (1990), and Mikosch and Starica (2004), among others.

This motivates specifying the RS-GARCH model that allows for regime-switching in the
parameters. We define for each t an unobserved state variable st ∈ {1, 2, . . . , n}, which selects
the model parameters with probability pjt = Pr(st = j|=t−1) where =t is an information set
available at time t, which includes (yt, σt, . . . y1, σ1). Thus we define the RS-GARCH model
as

yt = µst + εt = µst + σtut, ut ∼ i.i.d.(0, 1) (3)
σ2

t = αst + βstσ
2
t−1 + γstε

2
t−1 (4)

pjt = Pr(st = j|=t−1) = pjt(y2
t−1), j = 1, 2, . . . , n, (5)

where the function pjt(.) can be a logistic or exponential link function. This function depends
on parameters not introduced explicitly at this stage and must be defined so that the prob-
abilities are positive and sum to unity. In this way, the state probabilities are allowed to be
time varying and the dynamics of the regimes can be determined endogenously. Obviously,
the argument of the function pjt(.) can be different from y2

t−1, e.g. the absolute value or higher
lags, but it should be in the information set. This model was first proposed by Gray (1996)
who noted that it is analytically intractable, so that conditions for stability and existence
of moments had not yet been developed. The RS-GARCH model can be interpreted as a
Markov chain with transition kernel that is a mixture of distributions. We state below simple
assumptions for which this chain is geometrically ergodic and has finite moments. These
results are based on Markov chain theory and use the concept of a drift function, see e.g.
Meyn and Tweedie (1993) and Chan (1993).

In the RS-GARCH model, we assume that in the first regime (st = 1) the process behaves
locally as a strictly stationary process and its second moment exists. In other regimes (st > 1),
the conditional volatility can be integrated or even explosive, i.e. we impose no stability
restrictions on the parameters of these regimes. Here are formally our assumptions:

A1 ut is i.i.d. and has a continuous positive density on <, with E(ut) = 0, Var(ut) = 1.

A2 βj > 0 and γj > 0 for j = 1, 2, . . . n.

A3 p1t(y2
t−1) > 0 and p1t(y2

t−1) → 1 as y2
t−1 →∞ for all t.

A4 β1 + γ1 < 1, i.e. the first regime is stable.
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Assumption A1 is standard and is satisfied for commonly used distributions for GARCH
models, such as the normal and the Student with more than two degrees of freedom. Note
that we could replace the requirement of continuity by lower semi-continuity.

Assumption A2 is slightly stronger than the usual non-negativity conditions (βj ≥ 0 and
γj ≥ 0). It is needed in establishing the irreducibility and aperiodicity of the process. This
is not really restrictive since if βj = γj = 0 for all j, the model amounts to a static mixture
model.

In assumption A3, we postulate that the probability that st = 1 is strictly positive. This
implies that regardless of the state the process is in at time t − 1, there is always a positive
probability that it will reach the stable state at time t. The assumption does not bound p1t

from above, so the process can spend its entire time in the stable regime. Furthermore, it is
assumed that the stable process dominates the global process in the sense that the process
collapses back to the stable regime when a big shock has occurred or when the conditional
variance was large. These collapses relieve the pressure in the process, inducing stability as
shown in the next theorem.

Theorem 1 Under assumptions A1-A4, yt is geometrically ergodic. If the process is initiated
from its invariant distribution, it is strictly stationary and β-mixing with exponential decay.

The result means that their exists a unique invariant probability measure that solves the
Chapman–Kolmogorov equation, and we can construct a stationary probability measure for
the process using the standard bottom-up method to obtain marginals, followed by application
of the Kolmogorov extension theorem. Furthermore the geometric ergodicity property implies
that given any initial distribution the process converges in total variation to its stationary
measure with a uniform geometric rate. This implies that the process is exponentially β-
mixing, so the autocovariance function tends to zero at an exponential rate (e.g., Davidson
(1994), corollary 14.3). Unfortunately it is not possible to describe the stationary distribution
in general. There exists different numerical techniques for solving this problem; Tong (1996)
for an overview. It is important to note that the process is strictly stationary regardless of
the parameter values in non-stable regimes, which means that the model can have periods of
non-stationarity, but is globally stable.

The result on the existence of moments is given in the next theorem. We observe that the
persistence parameters (β1 and γ1) in the stable GARCH regime are important in establishing
the existence of moments. In particular, for k = 1, the conditions imposed in Theorem 1 are
sufficient for covariance-stationarity of the process.

Theorem 2 Under assumptions A1-A3, if E(β1 + γ1u
2
t )

k < 1 for some k ≥ 1, yt is geomet-
rically ergodic and E(y2k

t ) < ∞.

In the special case where the probabilities are constant, i.e. pjt = pj for all j and t,
sufficient conditions for geometric ergodictiy and existences of moment are given in Corollaries
1 and 3.

Corollary 1 Under assumptions A1-A2 and constant probabilities, if
∑n

j=1 pj(βj + γj) < 1,
the results of Theorem 1 follow.

This corollary implies that it is not necessary that the covariance-stationarity requirement,
βj + γj < 1, be satisfied for all the GARCH regimes, but it must be satisfied on average with
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respect to the probability distribution of the regimes. Note that high values of βj +γj for the
non-stable GARCH processes must match low enough probabilities for these regimes. This
result is similar to the condition for strict stationarity of the mixed-normal GARCH model
defined by Haas, Mittnik, and Paolella (2004a); see also Francq, Roussignol, and Zakoian
(2001).

Corollary 2 Under assumptions A1, A2, A4, and constant probabilities, if the GARCH pro-
cesses (4) for st > 1 are integrated (IGARCH) and p1t > 0, the results of Theorem 1 follow.

With more than two regimes, one may conceive that at least two different IGARCH
processes co-exist with different persistence parameters that sum to one, but this does not
seem very likely in practice. So in the perspective of applications, Corollary 2 may be relevant
for a model with two regimes, one of them being an IGARCH. From this corollary, we see that
in the special case where the volatility process are IGARCH in the non-stable regimes, the RS-
GARCH process is covariance-stationary regardless of the features of the state probabilities
if there exists a real number δ such that 0 < δ ≤ p1t. When the state probabilities are time
varying, they can be relatively high in tranquil periods regardless of the parameter values
of the GARCH model in each regime, which allows to deduce more information about the
current state of the process given the available information. Furthermore, in the case of time
varying probabilities, it is sufficient that the sum βj + γj in one of the regimes is less than
one, to ensure strict stationarity, which is not the case when the probabilities are fixed.

Corollary 3 Under assumptions A1-A3, and constant probabilities, if
∑n

j=1 pjE(βj + γju
2
t )

k

< 1 for some k ≥ 1, the results of Theorem 2 follow.

This corollary shows that, in terms of existence of moments, the condition E(βj + γju
2
t )

k < 1
must hold only on average when probabilities are constant, whereas it must hold only for the
stable regime when they are time varying.

3 Estimation and Prediction

Given the current computing capability, the estimation of switching GARCH models by the
maximum likelihood method is impossible, since the conditional variance depends on the
whole past history of the state variable. Indeed, the conditional variance σ2

t depends directly
on the state variable st and σ2

t−1, which itself depends on st−1 and σ2
t−2, and so on. To compute

the likelihood function for the t-th observation we have to sum over nt possible paths, which
is numerically infeasible even for a relatively small sample size. In Figure 1, we illustrate
the path dependence in a model with two regimes and zero means. The subscripts show the
paths of the regimes: for example, σ2

2|1,2, stands for the conditional variance at time 2, given
that the process was in regime 1 and 2, respectively, at times 1 and 2. So, each conditional
variance depends not just on the current regime, but on the entire history of the process. Cai
(1994) and Hamilton and Susmel (1994) were the first to point out such a difficulty. That is
why they apply the regime-switching approach only to a low order ARCH process. We tackle
the estimation problem by Bayesian inference, which allows to treat the latent state variables
as parameters of the model and to construct the likelihood function assuming we know the
states. This technique is called data augmentation, see Tanner and Wong (1987) for the basic
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principle and more details. In Section 3.1, we present the Bayesian algorithm for the case of
two regimes, and in Section 3.2, we illustrate that it recovers correctly the parameters of a
simulated data generating process.

↗ σ2
2|1,1 = α1 + β1σ

2
1|1 + γ1y

2
1

σ2
1|1 = α1 + β1σ

2
0 + γ1y

2
0

↗ ↘ σ2
2|1,2 = α2 + β2σ

2
1|1 + γ2y

2
1

σ2
0, y0

↘ ↗ σ2
2|2,1 = α1 + β1σ

2
1|2 + γ1y

2
1

σ2
1|2 = α2 + β2σ

2
0 + γ2y

2
0

↘ σ2
2|2,2 = α2 + β2σ

2
1|2 + γ2y

2
1

Figure 1: The problem of path dependence in a RS-GARCH model with two states

3.1 Bayesian Inference

We explain the Bayesian algorithm for a RS-GARCH model with two regimes and normality
of the error term ut. The normality assumption is a natural starting point. A more flexible
distribution, like a Student, could be considered, although one may be skeptical that this
is needed since Gray (1996) reports large and imprecise estimates of the degrees of freedom
parameters. The excess kurtosis property characterizing the standard GARCH model, is
preserved in the two regime RS-GARCH model. Moreover if the two means differ (µ1 6= µ2),
this model allows for time varying skewness (see e.g. McLachlan and Peel (2000)), a feature
that can be implemented by the use of a skew distribution for ut in the case of standard
GARCH models, see e.g. Hansen (1994), Brooks, Burke, and Persand (2002) and Wang,
Fawson, Barrett, and McDonald (2001).

For the case of two regimes, the model is given by equations (3), (4), st = 1 indicating
the stable regime and st = 2 for the other regime, and a functional specification of either p1t

or p2t (since p2t = 1− p1t). We specify

p1t = [1 + exp(δ0 + δ1y
2
t−1)]

−1, (6)

with δ1 < 0. Thus, p1t tends to 1 as y2
t−1 tends to infiniy, as required by assumption A3.

In the current presentation, we change equation (4) to

σ2
t = αst + βstσ

2
t−1 + γsty

2
t−1 (7)

because it renders the algorithm quicker (see the remark in Section 3.1.3). We stress that
there is no additional intrinsic difficulty in dealing with the specification (4) rather than (7).
Moreover the theorems and corollaries of Section 2 also apply to this model although the
proofs have to be adjusted.

The model parameters consist of δ = (δ0, δ1)′, µ = (µ1, µ2)′, and θ = (θ′1, θ
′
2)
′, where

θk = (αk, βk, γk)′ for k = 1, 2. Given µ, θ, and the vector of states S = (s1, s2, . . . , sT ) , the
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joint density of the observations y = (y1, y2, . . . , yT ) is given by

f(y|S, µ, θ) =
T∏

t=1

1√
2πσ2

t

exp
(
−(yt − µst)2

2σ2
t

)
, (8)

where σ2
t is a function of θ through st, defined by equation (7). This would be the likelihood

function to maximize if the sates were known. Notice that it does not depend on δ. Given δ
and y the distribution of S is given by

f(S | y, δ) =
T∏

t=1

p2−st
1t (1− p1t)st−1, (9)

which does not depend on µ and θ. Given (8) and (9), we implement a Gibbs sampling
algorithm that allows to sample from the full conditional posterior densities of blocks of
parameters given by θ, µ, δ, and the elements of S. We define the prior densities of θ, µ, and
δ when we explain the corresponding full conditional posterior densities in Sections 3.1.1-3.1.4.
We explain how to compute predictive results in Section 3.1.5.

3.1.1 Sampling st

The elements of S are not conditionally independent, because observations after time t are
informative about st (this is the problem of path dependence). Therefore,

ϕ(st|S6=t, µ, θ, δ, y) ∝ p2−st
1t (1− p1t)st−1

T∏

j=t

σ−1
j exp

(
−(yj − µj)2

2σ2
j

)
(10)

where S6=t is the vector S without the element st, and µj and σ2
j depend on sj since it defines

the parameters operating at time j. We see that to sample st we must condition only on the
future state variables (st+1, st+2, . . . sT ), not on the past ones. To sample st, we evaluate (10)
for st = 1 and 2, normalize and draw as from a Bernouilli distribution.

3.1.2 Sampling θ

Given a prior density π(θ),

ϕ(θ|S, µ, δ, y) ∝ π(θ)
T∏

t=1

σ−1
t exp

(
−(yt − µt)2

2σ2
t

)
, (11)

which does not depend on δ. We sample θ with the griddy-Gibbs sampler. The algorithm
works as follows at iteration r + 1, given draws at iteration r denoted by the superscript (r)
attached to the parameters:

1. Using (11), compute κ(α1|S(r), β
(r)
1 , γ

(r)
1 , θ

(r)
2 , µ(r), y), the kernel of the conditional pos-

terior density of α1 given the values of S, β1, γ1, θ2, and µ sampled at iteration n, over
a grid (α1

1, α
2
1 · · · , αG

1 ), to obtain the vector Gκ = (κ1, κ2, · · · , κG).
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2. By a deterministic integration rule using M points, compute Gf = (0, f2, . . . , fG) where

fi =
∫ αi

1

α1
1

κ(α1|S(r), β
(r)
1 , γ

(r)
1 , θ

(r)
2 , µ(r), y) dα1, i=2,...,G. (12)

3. Generate u ∼ U(0, fG) and invert f(α1|S(r), β
(r)
1 , γ

(r)
1 , θ

(r)
2 , µ(r), y) by numerical inter-

polation to get a draw α
(r+1)
1 ∼ ϕ(α1|S(r), β

(r)
1 , γ

(r)
1 , θ

(r)
2 , µ(r), y).

4. Repeat steps 1-3 for ϕ(β1|S(r), α
(r+1)
1 , γ

(r)
1 , θ

(r)
2 , µ(r), y),

ϕ(γ1|S(r), α
(r+1)
1 , β

(r+1)
1 , θ

(r)
2 , µ(r), y), ϕ(α2|S(r), β

(r)
2 , γ

(r)
2 , θ

(r+1)
1 , µ(r), y), etc.

Note that intervals of values for the elements of θ1 and θ2 must be defined. The choice of
these bounds (such as α1

1 and αG
1 ) needs to be fine tuned in order to cover the range of the

parameter over which the posterior is relevant. Over these intervals, the prior can be chosen
as we wish, for example as uniform densities.

3.1.3 Sampling µ

Given a prior density π(µ),

ϕ(µ|S, θ, δ, y) ∝ π(µ)
T∏

t=1

exp
(
−(yt − µt)2

2σ2
t

)
(13)

which does not depend on δ. Given S, we can split the observations into one group belonging
to regime 1, and the rest which belongs to regime 2, so that

ϕ(µ|S, θ, δ, y) ∝ π(µ)
∏

t|st=1

exp
(
−(yt − µ1)2

2σ2
t

) ∏

t|st=2

exp
(
−(yt − µ2)2

2σ2
t

)
. (14)

The factor
∏

t|st=1 exp
(
− (yt−µ1)2

2σ2
t

)
can be written as a normal density in µ1, with mean µ̄1

and variance τ2
1 defined by

τ2
1 =

( ∑

t|st=0

σ−2
t

)−1
(15)

µ̄1 = τ2
1

∑

t|st=0

σ−2
t yt. (16)

The second factor
∏

t|st=2 exp
(
− (yt−µ2)2

2σ2
t

)
is also a normal density in µ2. If the prior factor-

izes as π(µ) = π(µ1)π(µ2), the posterior factorizes in the same way and we can sample µ1

independently of µ2 in this block. If π(µi) is a normal density (respectively uniform density),
π(µi|S, θ, δ, y) is also normal (respectively truncated normal). If π(µ) is bivariate normal, with
a non-zero correlation, the joint posterior is also bivariate normal and can be simulated easily.

Remark: this part of this algorithm gets heavier if we use equation (4) instead of equation
(7). The reason is that we cannot express

∏
t|st=1 exp

(
− (yt−µ1)2

2σ2
t

)
as a normal density in µ1

because µ1 also appears in σ2
t . Moreover we have to put the factor σ−1

t back in (13). Then
we must sample µ1 and µ2 jointly and numerically (by griddy-Gibbs, or a Metropolis step).
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3.1.4 Sampling δ

Given a prior density π(δ),

ϕ(δ|S, µ, θ, y) ∝ π(δ)
T∏

t=1

p2−st
1t (1− p1t)st−1, (17)

which does not depend on µ and θ. We sample δ = (δ0, δ1)′ with the griddy-Gibbs sampler,
see Section 3.1.2, so that given prior intervals, the prior can be chosen as we wish, for example
as uniform densities.

3.1.5 Predictive Results

The outcome of the Gibbs sampler described above is a sample of values of the parameters of
the model, generated from the posterior distribution. We denote by Ψ the parameter vector,
i.e. Ψ = (µ′, θ′, δ′, S′), and by Ψ(r), for r = 1, 2, . . . , R, the sample of size R obtained by
running the Gibbs sampler. Given the latter, it is straightforward to compute by simulation
predictive densities of future observations and features of these. In particular, the quantile of
level a of a predictive distribution serves to compute the value-at-risk (VaR) of an investment,
for the risk level a. Another feature of interest is the probability integral transforms of a series
of future observations that are not used for estimation but are saved for density forecast
evaluation of the model.

The predictive density of the first post-sample observation evaluated at the value yT+1 is
defined as

f(yT+1|y) =
∫

f(yT+1|Ψ, y)ϕ(Ψ|y)dΨ, (18)

where f(yT+1|Ψ, y) is N(µ1, σ
2
T+1(1)) with probability p1,T+1 and N(µ2, σ

2
T+1(2)) with prob-

ability 1− p1,T+1, and σ2
T (j), for j = 1 or 2, means that we evaluate σ2

t with the parameters
of the j-th regime. Therefore, we can approximate f(yT+1|y) by

f(yT+1|y) ≈ 1
R

R∑

r=1

f(yT+1|Ψ(r), y). (19)

If we repeat this evaluation for m different values of yT+1 that we choose, we can normalize
the predictive density by applying a deterministic integration rule using the m points, and
simultaneously compute any moment of this density. We can also compute any quantile or
probability as a by-product of the deterministic integration.

A simple alternative procedure consists in generating R random draws of the predictive
density as follows:

Step 1: simulate Ψ(r) ∼ ϕ(Ψ | y), which is done by the Gibbs sampler.

Step 2: simulate y
(r)
T+1 ∼ f(yT+1 | Ψ(r)). Go to step 1.

Using the sample y
(r)
T+1, r = 1, 2, . . . , R of the predictive density, it is then straightforward to

approximate the density by a kernel estimation and to approximate moments and other fea-
tures of the density by the corresponding sample quantities. Although this simple alternative

9



method is in principle less precise than the procedure based on deterministic integration, it
can be easily generalized to multi-step prediction. Extending (18), we have

f(yT+s | y) =
∫ [∫ ∫

. . .

∫
f(yT+s | yT+s−1, . . . , yT+1, y,Ψ) ×

f(yT+s−1 | yT+s−2, . . . , yT+1, y,Ψ)× . . .

×f(yT+1 | y, Ψ) dyT+s−1 dyT+s−2 . . . dyT+1

]

ϕ(Ψ | y) dΨ, (20)

for which draws can be obtained by extending the above algorithm to a (s+1)-step algorithm.
The draw of yT+1 serves as conditioning information to draw yT+2, both realisations serve to
draw yT+3, etc. Each of these draws is generated from the corresponding finite mixture of
two normal densities defined by the model. Note that to generate a draw from the mixture
density of yT+j , we compute the probability p1,T+j as defined in (6), using the simulated value
of yT+j−1 as input, we draw sT+j as a Bernouilli variable, and finally we draw yT+j from the
N(µsT+j , σ

2
T+j(sT+j)) density.

3.2 Simulation Example

We have simulated a DGP corresponding to the model defined by equations (3)-(7)-(6), with
parameter values as reported in the second column of Table 2, and ut ∼ N(0, 1). One
component is stable (β1 + γ1 = 0.95) and the other is explosive (β2 + γ2 = 1.40). The
probability of the stable regime is given by 1/[1 + exp(−2.4− 0.2y2

t−1)] and fluctuates around
0.92. All the assumptions for stationarity and existence of moments of high order are satisfied.
In Table 1, we report the summary statistics for 50,000 observations from this DGP, and
in Figure 2, we show the 4,000 initial observations of the series, and based on the 50,000
observations, the estimated density of the data and the autocorrelations of the squared data.
Finally, the mean of the data is estimated to be 0.086, which is approximately equal to
0.92µ1 + (1 − 0.92)µ2, with µ1 = −µ2 = 0.10. The density is symmetric, and its excess
kurtosis, estimated to be 1.56, is much larger than 0.025, the excess kurtosis of the process
when it is always in the stable regime. The ACF of the squared data is strikingly different from
the ACF of the GARCH(1,1) process of the first regime, which would start at ρ1 = 0.0238 and
decline according to ρn = 0.95ρn−1, so that ρ50 = 0.0019. The corresponding values in panel
(c) of Figure 2 are 0.172 for ρ1 and 0.037 for ρ50. Thus, it is clear that, due to the explosive
component, the ACF declines relatively slowly, although the decline rate is exponential.

Table 1: Descriptive statistics for simulated data

Mean 0.086 Maximum 5.29
Standard deviation 0.779 Minimum -4.85
Skewness -0.015 Kurtosis 4.56

Statistics for 50,000 observations of the DGP defined in Table 2.
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Figure 2: Graphs for simulated data for DGP defined in Table 2
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Table 2: Posterior means and standard deviations (simulated DGP)

DGP values RS-GARCH N -GARCH
(prior bounds)

α1 0.0050 0.0036 0.0059
(0.0001,0.025) (0.0026) (0.0015)

β1 0.930 0.937 0.931
(0.85,0.99) (0.022) (0.0084)

γ1 0.0200 0.0193 0.0584
(0.001,0.08) (0.012) (0.0070)

α2 0.100 0.125 -
(0.01,0.30) (0.073)

β2 1.200 1.201 -
(0.75,1.60) (0.15)

γ2 0.200 0.160 -
(0.02,0.60) (0.13)

µ1 0.100 0.070 0.0723
- (0.010) (0.0071)

µ2 -0.100 0.076 -
- (0.072)

δ0 -2.40 -2.52 -
(-3.50,-1.60) (0.47)

δ1 -0.200 -0.496 -
(-0.80,0) (0.21)

Posterior standard deviations under posterior means.
Sample of 4,000 observations from DGP.
DGP: equations (3)-(7)-(6) with N(0, 1) distribution.
RS-GARCH: same model as DGP.
N -GARCH: equations (1)-(2), and N(0, 1) distribution.
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Figure 3: Posterior densities for the RS-GARCH model (simulated DGP)

In Table 2, we report the posterior means and standard deviations for the model cor-
responding to the DGP, using the first 4,000 observations of the simulated data described
above and shown in panel (a) of Figure 2. The results are in the column with the header
RS-GARCH. In Figure 3, we report the corresponding posterior densities. The bounds for
the prior density of each parameter are reported in the second column of Table 2 with the
DGP values. Thus, these bounds were used for the integrations in the griddy-Gibbs sampler.
The number of iterations of the Gibbs sampler was set to 10,000, but the initial 4,000 draws
were discarded, because after these the sampler seems to have converged (based on cumsum
diagrams not reproduced to save space). Thus the posterior moments are based on 6,000
dependent draws of the posterior distribution. They show that the posterior means are close
to the true values for the sample we use (4,000 observations), with two exceptions: for µ2

the true value is 2.5 standard deviations away from the posterior mean, and for and δ1, it is
1.5 times away. We also find that the posterior standard deviations are much larger for the
parameters related to the second regime than to the first one, which is consistent with the
fact that about 8 per cent of the observations come from the second regime. The computing
time for generating 10,000 draws was about 210 hours using a 2.6 Ghz Intel Xeon processor.

The last column of Table 2 contains the results for a GARCH(1,1) model with N(0, 1)
errors, for the same sample of 4,000 observations. These results are based on 6,000 draws
obtained by a griddy-Gibbs sampler after discarding 4,000 draws as a warm-up. These results
illustrate that the posterior mean of the persistence effect (γ1 + β1), equal to 0.99, is pushed
towards 1 due to the specification error. Forgetting the second component forces the estimates
to adjust to fit the persistence in the squared data illustrated in panel (c) of Figure 2.
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4 Application

We use the NASDAQ daily percentage returns from 23/12/1986 to 28/10/2002 (4,000 ob-
servations) for estimation. Figure 4 displays the sample path, the kernel density, and the
correlogram of the squared returns. We observe a strong persistence in the squared returns,
negative skewness, and a high kurtosis, see also Table 3.

Table 3: Descriptive statistics for NASDAQ daily returns

Mean 0.033 Minimum -12.05
Standard deviation 1.52 Maximum 13.26
Skewness -0.24 Kurtosis 10.93

Sample period: 23/12/1986 to 28/10/2002 (4,000 observations)

In Table 4, we report the posterior means and standard deviations from the estimation
of different models using the estimation sample. The estimated models include the two-
regime RS-GARCH model defined by equations (3), (7), and (6), the same model with a fixed
probability, the standard GARCH model defined by equations (1) and (2) with ut distributed
as N(0, 1), the same model with ut ∼ tν (Student distribution with ν degrees of freedom),
and the MN-GARCH(2,2) model of Haas et al. (2004), defined as

yt =





µ1 + σ1,tut, with probability 1− p

µ2 + σ2,tut, with probability p,
(21)

σ2
1,t = α1 + β1σ

2
1,t−1 + γ1y

2
t−1, (22)

σ2
2,t = α2 + β2σ

2
1,t−1 + γ2y

2
t−1, (23)

ut ∼ i.i.d. N(0, 1). (24)

Equivalently, the distribution of yt is the Gaussian mixture (1− p)N(µ1, σ
2
1,t) + pN(µ2, σ

2
2,t).

For identification we impose that p is larger than 0.5. Bauwens and Rombouts (2005) explain
how to estimate this model by Bayesian inference. However, we do not impose that the mix-
ture mean is equal to zero, hence µ1 and µ2 are not linked by imposing that pµ1 + (1− p)µ2

is equal to 0. Note that for the models with a fixed probability (RS-GARCH-2 and MN-
GARCH), we report the results for p = (1 + exp(δ0))−1 rather than δ0. Some comments
about the estimation results follow.

1) RS-GARCH-1: the marginal posterior densities are shown in Figure 5. The intervals over
which the densities are drawn are the prior intervals (except for µ1 and µ2 since the prior is
not truncated for these parameters). These intervals were chosen to avoid negative values,
and by trial and error so as to avoid truncation, though it still occurs for α2. The density
of α2 is apparently bimodal. The first regime is stable, with the posterior mean of β1 + γ1

equal to 0.93 and the second one is explosive, with the posterior mean of β2 + γ2 equal to
1.92. There is not much evidence for a time-varying probability, since the posterior mean
of δ1 is equal to 0.037 with standard deviation equal to 0.025. Computing the time-varying
probability of the first regime at the posterior mean of δ0 and δ1, we get the value 0.91 if
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Figure 4: NASDAQ daily returns from 23/12/1986 to 28/10/2002

15



Table 4: Posterior means and standard deviations (NASDAQ daily returns)

RS-GARCH-1 RS-GARCH-2 MN-GARCH N -GARCH t-GARCH

α1 0.0063 0.0071 0.0008 0.0217 0.0073
(0.0035) (0.0037) (0.0007) (0.0033) (0.0028)

β1 0.924 0.915 0.922 0.848 0.887
(0.023) (0.029) (0.010) (0.012) (0.020)

γ1 0.0058 0.0068 0.057 0.148 0.082
(0.0049) (0.0058) (0.0087) (0.013) (0.016)

α2 0.089 0.104 0.121 - -
(0.051) (0.066) (0.049)

β2 1.499 1.457 0.779 - -
(0.24) (0.25) (0.157)

γ2 0.420 0.315 0.631 - -
(0.195) (0.201) (0.055)

µ1 0.106 0.106 0.165 0.082 0.105
(0.015) (0.016) (0.018) (0.0098) (0.013)

µ2 -0.077 -0.068 -0.641 - -
(0.088) (0.088) (0.118)

δ0/p δ0 = −2.36 p = 0.895 p = 0.845 - -
(0.34) (0.052) (0.029)

δ1 -0.037 - - - -
(0.0254)

ν - - - - 7.09
(0.91)

Posterior standard deviation in parenthesis under the corresponding posterior mean.
Sample period: 23/12/1986 to 28/10/2002 (4,000 observations).
RS-GARCH-1: equations (3)-(7)-(6) (time-varying probability).
RS-GARCH-2: (3)-(7)-(6) with δ1 = 0 (fixed probability p).
MN-GARCH: (21)-(24).
N -GARCH: equations (1)-(2), and N(0, 1) distribution.
t-GARCH: equations (1)-(2), and tν distribution.
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Figure 5: Posterior densities for the RS-GARCH-1 model (NASDAQ daily returns)

yt−1 = 0 and 0.94 if |yt−1| = 13.26 (the largest observed absolute return). We notice that the
posterior mean of µ2 has a large proportion of its mass on negative values and its mean is
−0.077. Actually, the second regime is mostly associated with large negative returns, which
explains the negative estimate of µ2, and is capturing the leverage effect.

2) RS-GARCH-2: the results are close to those for the time-varying probability model, which
is not a surprise given the previous comments. The posterior mean of the fixed probability
p of the first regime is about 0.90, which is marginally smaller than the average value of the
time-varying probability in the first model. However, we notice that the posterior density
of p is slightly bimodal, with a secondary mode at 0.82 and a long left tail. The marginal
posterior densities are shown in Figure 6.

3) MN-GARCH: the marginal posterior densities are shown in Figure 7. The posterior mean
of the mixture expectation pµ1 + (1 − p)µ2 is equal to 0.042, which is not far from the
data mean. The posterior mean of the probability parameter p is equal to 0.85, smaller
than for the RS-GARCH model with fixed probability. The GARCH parameters of both
models are either very different (α1, γ1, γ2, β2) or very similar (β1, α2), and the sum
γ2 + β2 is estimated to be equal to 1.77 in the RS-GARCH-2 model and 1.41 in the MN-
GARCH one. The weak stationarity condition for this model, see Haas et al. (2004), is that
[(1−β1−γ1)p/(1−β1)+(1−β2−γ2)(1−p)/(1−β2)](1−β1)(1−β2) is positive. Evaluated at
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Figure 6: Posterior densities for the RS-GARCH-2 model (NASDAQ daily returns)

the posterior mean, this is equal to −0.0011, but the mean of these quantities over the Gibbs
draws is equal to 0.0025 (with a large variance due to some extreme values).

4) Normal-GARCH: the posterior mean of the persistence parameter (β1 + γ1) is equal to
0.996, which makes it almost an IGARCH model. The model with a single component is not
enough flexible.

5) t-GARCH: the posterior mean of the degrees of freesom parameter is close to 7. The
relevant persistence parameter for this model is β1 +γ1ν/(ν− 2)). Evaluated at the posterior
means, this is equal to 1.002 indicating again that the process is integrated.

5 Conclusion

We have developed a regime-switching univariate GARCH model with a time-varying prob-
ability of switching between a non-explosive regime and an explosive one. The model cannot
be estimated by the ML method because of the path dependence problem that has previously
prevented estimation of such models, unless one was willing to use Grays or Dueker’s approx-
imations without knowing the quality of the approximations. Thus further research could be
devoted to comparing the results of the Bayesian estimation algorithm we have proposed with
the approximate ML solutions. Very preliminary results tend to indicate that the approxi-
mate estimators are strongly biased. Another idea to improve upon these approximate ML
estimators is to use indirect inference since the RS-GARCH model can be easily simulated.

More research is needed about the regime switching GARCH model. Current and future
work involves:

• Estimating the model with equation (4) rather than (7).
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Figure 7: Posterior densities for the MN-GARCH model (NASDAQ daily returns)

• In-sample and out-sample comparisons of the RS-GARCH models with other GARCH
models (such as those estimated in this paper).

• Estimating the model with other data series.

• Making the Bayesian algorithm faster, e.g. we can try to use a Metropolis algorithm
rather than the griddy-Gibbs for the GARCH parameters.

Appendix

To prove Theorems 1 and 2, we write the model in its Markovian state space representation.
We use the notation σ2

t = ht−1 to make it clear that σ2
t is a function of information dated at

t− 1 or earlier, not of information dated at t. Then we write

yt = µj +
√

ht−1ut, with probability pi(y2
t−1) (25)

ht = αj + βjht−1 + γjε
2
t = αj + (βj + γju

2
t )ht−1 (26)

with probability pj

(
(µj +

√
ht−1ut)2

)
.

Proof of Theorem 1: The process {yt, ht} forms a homogeneous Markov chain with state
space (<×<+,=, λ), where <+ = (0,∞), = is the Borel σ-algebra on <×<+, and λ denotes
the usual Lebesgue measure on (< × <+,=). Let Pm((y, h), A) = P ((yt, ht) ∈ A|yt−m =
y, ht−m = h) denote the probability that {yt, ht} moves from (y, h) to the set A ∈ = in m
steps. In order to establish the geometric ergodicity of the Markov chain, we first show that
the process is aperiodic and λ-irreducible. To prove these features it is sufficient to show that
Pm((y0, h0), A) > 0 for some m ≥ 1, for all (y0, h0) ∈ < × <+ and all Borel measurable
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sets A ∈ = with positive Lebsgue measure (Chan (1993)). By solving recursively the state
space equations we can show that for a given (y0, h0) we can reach any (y, h) ∈ A through
the following steps (note that ht is determined given yt): (h0, y0) → (h0, ỹij`) → (h̃ij , ỹij`) →
(h̃ij , y) → (h, y), that is for the set A ∈ =, we can define the following ‘connecting’ sets:

Aij` =
{

((ỹijl, y, h̃ij) ∈ <2 ×<+ :

(h, y) ∈ A, h̃ij =
[h− αj − γj(y − µi)2]

βj
, (ỹij` − µ`)2 =

h̃ij − αi − βih0

γi

}

where i, j, ` ∈ {1, . . . , n}. The continuity of the state space equations implies that λ(Aij`) > 0
and given assumption A3 there exists a real number δ such that 0 < δ ≤ p1(·), hence

P 2((y0, h0), A) ≥
∑

(i,j,`)∈{1,...n}

∫

Aij`

p`(y2
0) pi(ỹ2

ij`) pj(y2)fij`

(
ỹij` − µ`√

h0

)
fij


y − µi√

h̃ij


dỹ dy dh

≥
∫

A111

p1(y2
0) p1(ỹ2

111) p1(y2)f111(·)f11(·) dỹ dy dh

≥ δ3

∫

A111

f111(·)f11(·) dỹ dy dh > 0.

It is also straightforward to show that for all m ≥ 2, Pm((y0, h0), A) > 0, for all (y0, h0). Hence
the chain is λ-irreducible and aperiodic. We note that every λ-non null compact set is small
and petite (Chan (1993)) and can serve as test set. Given these results, it remains to check the
drift criterion of theorem 15.0.1 of Meyn and Tweedie (1993) to obtain the desired result. As
drift function we use V (y, h) = 1+ η̄y2 +h, η̄ = η−β1−γ1 where η is some positive number
that satisfies β1 + γ1 < η < 1 and as compact set we use C = {(y, h) ∈ <×<+ : h + y2 ≤ c},
where c is a positive number to be determined below. Thus,

E [V (yt, ht)|ht−1 = h, yt−1 = y] = 1 + η̄h + M + (β1 + γ1)h

+ h
n∑

i=1

pi(y2)
∑

j 6=1

E
[
pj

(
(µi +

√
htut)2

)
h [(βj + γju

2
t )− (β1 + γ1u

2
t )]

]

= 1 + h



η +

M

h
+

n∑

i=1

pi(y2)
∑

j 6=1

E
[
pj

(
(µi +

√
htut)2

)
[(βj + γju

2
t )− (β1 + γ1u

2
t )]

]




where M =
∑
i,j

{
η̄µ2

i pi(y2) + pi(y2)E
[
αjpj

(
(µi +

√
hut)2

)]}
. Assumption A3 implies that

M

h
+

n∑

i=1

pi(y2)
∑

j 6=1

E
[
pj

(
(µi +

√
hut)2

)
[(βj + γju

2
t )− (β1 + γ1u

2
t )]

]
→ 0 as h →∞.

Since E[V (yt, ht)|ht−1 = h, yt−1 = y] is continuous on a compact set, it is bounded, and since
h < V (y, h), we can choose c such that E[V (yt, ht)|ht−1 = h, yt−1 = y] ≤ η V (y, h)+a 1l C(y, h)
(where 1l C denotes an indicator function) for some a < ∞ and for all (y, h), so that the drift
criterion is satisfied. Hence the Markov chain {yt, ht} is geometrically ergodic, and so is {yt}.
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The chain is also V-geometrically mixing (Meyn and Tweedie (1993), theorem 16.0.1), which
is equivalent to the requirement that the process is β-mixing with exponential decay.

Proof of Theorem 2: In this case it is sufficient to consider the drift function V (y, h) =
1+(η̄/∆)y2k +hk, where ∆ = E(u2k

t ), η̄ = η−E(β1 +γ1u
2
t )

k, and η is a positive number that
satisfies E(β1+γ1u

2
t )

k < η < 1. The relevant compact set is C = {(y, h) ∈ <+×< : h+y2 ≤ c}.
After some tedious calculations, we have

E[V (yt, ht)|ht−1 = h, yt−1 = y] = 1 + η̄hk + O(hk−1) E(β1 + γ1εt)khk

+
n∑

i=1

pi(y2)



O(hk−1) + hk

∑

j 6=1

E
[
pj((µi +

√
hut)2) [(βj + γju

2
t )

k − (β1 + γ1u
2
t )

k]
]




= 1 + hk



η +

O(hk−1)
hk

+
n∑

i=1

pi(y2)
∑

j 6=1

E
[
pj

(
(µi +

√
hut)2

)
[(βj + γju

2
t )

k − (β1 + γ1u
2
t )

k]
]


 .

Assumption A2 and the boundedness of the moment of the error term imply that

O(hk−1)
hk

+
n∑

i=1

pi(y2)
∑

j 6=1

E
[
pj

(
(µi +

√
hut)2

)
[(βj + γju

2
t )

k − (β1 + γ1u
2
t )

k]
]
→ 0 as h →∞.

Using the same arguments as in Theorem 1, we can show that there exists a compact set C
such that E[V (yt, ht)|ht−1 = h, yt−1 = y] ≤ η V (y, h) + a 1C(x) for some a < ∞ and for all
(y, h). Theorem 14.3.7 of Meyn and Tweedie (1993) then implies the desired result.

Proof of Corollary 1: We follow the same steps as in Theorem 1 and set η̄ = η −∑n
j=1 pj(βj + γj) where η satisfies

∑n
j=1 pj(βj + γj) < η < 1.

Proof of Corollary 2: It is straightforward given Corollary 1.

Proof of Corollary 3: We follow the same steps as in Theorem 2 and set η̄ = η −∑n
j=1 pjE(βj + γju

2
t )

k where 0 < η̄ < η < 1.
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