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Abstract

The electron diffusion region during magnetic reconnection lies in different regimes depending on

the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic

simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow

electron pressure to become nearly isotropic. Above a threshold guide field that depends on a

range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio,

electron pressure anisotropy develops in the exhaust and supports extended current layers. This

new regime with electron current sheets extending to the system size is also reproduced by fluid

simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent

spacecraft observations.
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Magnetic reconnection, a rapid reconfiguration of the magnetic field embedded in a

plasma, energizes particles in explosive events such as fusion experiment disruptions, so-

lar coronal flares, and magnetospheric substorms [1]. A still unresolved question is how

electron physics couples to the larger structure of the reconnecting plasma.

In collisionless regimes, such as most space plasmas, the collective electron dynamics

is tied to the kinetic behavior of the individual particles. A variety of charged particle

orbits are possible even in simplified, prescribed magnetic fields that qualitatively resemble

reconnection geometries [2, 3]. Already in the linear phase of the tearing mode, three

regimes have been identified depending on how strongly the electron orbits are magnetized

[4]. Particle-in-cell (PIC) methods afford a numerical means of studying how the various

classes of particle orbits, including meandering, chaotic, and magnetized adiabatic orbits,

self-consistently feed back on magnetic reconnection. Here, we report on a series of PIC

simulations with varying ion-to-electron mass ratio, guide magnetic field, and upstream

normalized electron pressure. We find a number of regimes related to qualities of the electron

orbits.

We identify a new regime that includes an electron current sheet extending to the simu-

lated system size embedded in the reconnection exhaust. A fluid simulation that accounts

for electron pressure anisotropy [5] reproduces the embedded current layer in larger sim-

ulation domains. The current layers form a basic feature of the electron diffusion region,

taken here to mean where the electron frozen-in condition is violated. Magnetic dissipation

need not occur in this so-called diffusion region, and it remains to be seen how the electron

layers alter dissipation in regions with more restrictive definitions as in Ref. [7]. We note

also that the layers may be unstable to secondary instabilities and thus profoundly influence

the reconnection dynamics in 3D systems [6].

The new regime is a good candidate for the electron diffusion region inferred from Cluster

spacecraft data collected in Earth’s magnetosheath during reconnection [8]. And it resolves

discrepancies between observation and simulation pointed out by Goldman et al. [9], in

particular that previously identified current layers of unmagnetized electrons are shorter in

simulations and are deflected by guide fields much weaker than the measured one. Additional

spacecraft data may become available soon, as NASA’s upcoming Magnetospheric Multiscale

Mission has the express goal of taking high-resolution electron measurements.

We use three ion-to-electron mass ratios of mi/me = 100, 400, and 1836 in simulations
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FIG. 1: (a) Electron pressure anisotropy with p‖/p⊥ > 1 extends into the exhaust with a guide

field of Bg/B0 = 0.14, (b) approaches the firehose threshold µ0(p‖− p⊥)/B
2 = 1, and (c) drives an

out-of-plane current density Jy/J0 (J0 = n0evA0, where vA0 = B0/
√
µ0n0mi). (d-f) The electrons

are nearly isotropic for Bg/B0 = 0.1. (mi/me = 1836 and βe∞ ∼ 0.09.)

with the code VPIC [10]. Although the total reconnection rate is largely insensitive to

the implemented mass ratio [11–13], we find other measurable quantities, including the

current density profile and electron pressure anisotropy, strongly depend on this parameter.

The initial conditions contain a Harris sheet with unperturbed magnetic field components

Bx = B0 tanh(z/λ) and By = Bg, where λ = 0.5di. The domain is Lx × Lz = 20di × 20di

(40di × 20di for mi/me = 100) with no gradients in the y direction and open boundary

conditions in the exhaust. For each mass ratio, the uniform guide field Bg is scanned

over a range of values from Bg/B0 = 0 to 0.8. The Harris sheet plasma parameters are

characterized by Ti0/Te0 = 5 and ωpe/ωce = 2, with vthe/c =
√

Te0/mec2 = 0.14. The

Harris sheet is superposed on a slightly cooler background with Teb/Te0 = 0.76 and uniform

density nb = 0.076, 0.23, or 0.68n0 (n0 is the peak Harris density). This yields an upstream

βe∞ ∼ 2µ0nbTeb/B
2

0
of ∼ 0.01, 0.03, or 0.09 . The proton mass ratio runs employ a grid of

5120× 5120 cells and ∼ 1010 numerical particles of each species.

For all sets of parameters, electric fields parallel to the magnetic field heat the inflow

electron fluid according to known equations of state and produce electron pressure anisotropy

with p‖ ≫ p⊥ [14, 15]. For sufficiently strong guide magnetic fields, the electron orbits remain
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FIG. 2: Classification of simulation runs of varying upstream βe∞ and guide field Bg/B0 at

mi/me = 1836. Symbols indicate the structure and length of the electron diffusion region. Runs

marked in blue appear in Fig. 1, and numbers refer to regimes described below. Along the dashed

curve, K ∼ 2.5.

magnetized in the outflow and pressure anisotropy with p‖ ≫ p⊥ develops in the exhaust, as

in the example in Fig. 1(a). A measure of the electron pressure anisotropy is how closely it

approaches the firehose instability threshold, p‖ − p⊥ = B2/µ0. The normalized anisotropy

µ0(p‖ − p⊥)/B
2 corresponding to Fig. 1(a) is plotted in Fig. 1(b), and it reaches >∼ 0.7 (the

value 1 is the firehose threshold) along the center of the exhaust.

When the firehose condition is approached, we discover the regime that includes a system-

length magnetized electron current layer. Although pressure anisotropy does not lead to

magnetic dissipation on its own, the pressure tensor divergence breaks the electron frozen-in

condition:

E+ ue ×B ∼ − 1

ene
∇ · [(p‖ − p⊥)b̂b̂], (1)

and drives a current J⊥ ∼ (p‖−p⊥)B× (b̂ · ∇b̂)/B2. The current flows across the magnetic

field above the local E×B velocity in a narrow layer embedded in the exhaust [see Fig. 1(c)].

Following Refs. [16, 17], the firehose threshold may be expected to hold outside any quasi-1D

current sheet with a normal component of magnetic field.

Adiabatic invariance of µ = v2⊥/2B requires ρe/RB ≪ 1 [3], where ρe is the electron

Larmor radius and RB = |b̂ · ∇b̂|−1 is the magnetic field line radius of curvature. For weak

guide fields, this condition breaks in the center of the reconnection exhaust, and pitch angle

mixing due to non-adiabatic particle orbits renders the exhaust pressure nearly isotropic [see

the example in Fig. 1(d-f)].

The level of effective pitch angle diffusion is controlled by the ratio of RB to the thermal
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electron Larmor radius, which we find must be based on the total energy (rather than

only the perpendicular energy) for unmagnetized or marginally magnetized electrons. The

electrons are observed to be in a fully magnetized regime when K >∼ 2.5, where

K2 ≡ min

(

RB

ρeff

)

, (2)

ρeff =
√
meTeff/eB, Teff = Tr(Pe)/(3ne) is defined through the trace of the electron pressure

tensor Pe, and the minimum is taken along all relevant field lines. K thus generalizes

the parameter κ =
√

RB,min/ρe,max introduced in Ref. [3]. As reconnection develops, ρeff

becomes larger if the electrons gain energy. The energization is parametrized by eΦ‖, which

is the maximum energy gained by electrons from the parallel electric field, and it has been

shown to scale as Φ‖ ∝ β
−1/2
e∞ in low βe∞ anti-parallel reconnection [17, 18]. Because the

electrons reach higher energies at low βe∞, a stronger guide field is required to maintain a

magnetized electron exhaust. Figure 2 classifies simulation runs at three values of βe∞ all

at the proton mass ratio, and we find K ∼ 2.5 along the boundary.

To relate the regimes of Fig. 2 to previous studies, Fig. 3 presents the results of a com-

prehensive scan in me/me and Bg/B0 at a fixed βe∞ ∼ 0.03. Here, we identify four regimes

based on the characteristics of the electron pressure and current profile. For weak or mod-

erate guide fields, simulations with the same value of (Bg/B0)
√

mi/me tend to be in the

same regime. This follows if we assume that the electron orbits near the X line are similar

for a fixed ratio ρeg/di of the electron gyroradius in the guide field ρeg ∝ 1/Bg and the ion

scale di ∝
√
mi relevant to kinetic reconnection.

The table summarizes the traits of each regime:

Regime Inner Anisotropic Embedded K

Jets Exhaust Layer

1 Y N N K <∼ 1

2 N N N 1 <∼ K <∼ 2.5

3 N Y Y 2.5 <∼ K

4 N Y N 2.5 <∼ K

An example of the out-of-plane current Jy from each regime is plotted on the right in Fig. 4

from simulations at the proton mass ratio mi/me = 1836 for various guide fields Bg/B0

(marked in blue in Fig. 3). The plots on the left in Fig. 4 are from runs with mi/me = 400,
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and they illustrate the differences at a reduced mass ratio. More detailed characteristics of

each regime are as follows:

(1) In the anti-parallel regime at zero or low guide field, an unmagnetized electron jet

flowing at nearly the electron thermal speed develops in the inner electron diffusion region

[9, 13, 19, 20]. Note that the inner jets persist to much higher guide fields at reduced mass

ratios. They form when the magnetic field is weak enough to allow thermal electrons to

follow meandering orbits [21], which requires K <∼ 1 [3]. The meandering motion leads to

rather complicated local electron velocity distributions [22], but gross momentum balance

of the current layer is regulated by the upstream pressure anisotropy [17, 22, 23].

(2) Above a certain guide field, inner electron jets do not form. As pointed out in Ref. [9],

the guide field prevents electrons from meandering about the magnetic field reversal. We

find this regime in the range 1 <∼ K <∼ 2.5 characterized by chaotic electron orbits. In

both the simulations of Ref. [9] and our simulations, guide fields of Bg
<∼ 0.1B0 deflect the

inner electron jets at the proton mass ratio [see Fig.4(e)]. In this weak guide field regime,

the non-adiabatic electron orbits in the outflow render the exhaust electron pressure nearly

isotropic.

(3) A window opens at 2.5 <∼ K where the electrons are magnetized, yet the guide field

is weak enough for the pressure anisotropy to approach the firehose condition. The new

regime has a layer of anisotropy reaching µ0(p‖ − p⊥)/B
2 > 0.7, which drives a current

J⊥ ∼ (p‖ − p⊥)B× (b̂ · ∇b̂)/B2 across the magnetic field [see Fig. 4(d)]. These current

layers are <∼ 10de wide, with a length of >∼ 15di that is limited by the simulation domain

size. Interestingly, they do not appear to be unstable to secondary island formation in our

2D simulations, likely because field-aligned current filaments cannot form in 2D. In addition,

electron pressure anisotropy with p‖ > p⊥ may suppress secondary tearing. Although the

current layer is shorter in the run at mi/me = 400 in Fig. 4(c), we classify it as marginally

in regime (3) because the electrons are magnetized and electron pressure anisotropy greatly

enhances the local current density.

Unlike the inner unmagnetized jets of regime (1), the embedded layers can be described

within a fluid framework. In fact, they are reproduced in fluid simulations by including

the equations of state for the anisotropic electron pressure [5]. The fluid code allows larger

simulation domains than currently feasible in kinetic simulation, and an example of an

embedded layer ∼ 25di long in a larger domain of 48di × 24di is plotted in Fig. 4(i). Note
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FIG. 3: Classification of simulation runs of varying mass ratio mi/me and guide field Bg/B0 at

βe∞ = 0.03. Symbols reflect the electron current structure in each of four regimes. (1) Inner

electron jets (<∼ 100de long) and unmagnetized exhaust at K <∼ 1. (2) No inner jets and an

unmagnetized exhaust at 1 <∼ K <∼ 2.5. (3) Magnetized current layer (>∼ 15di long) at 2.5 <∼ K.

(4) Magnetized exhaust without current layer. Runs marked in blue appear in Fig. 4.

that the fluid code employs mi/me = 400, but it is comparatively insensitive to the mass

ratio because the equations of state ensure that electron pressure anisotropy develops.

The long diffusion regions may be important in the magnetosphere, where the component

of guide field is rarely weak enough to fully justify taking the anti-parallel limit. It likely

explains the > 60di long diffusion region observed by Cluster [8] in a plasma with βe∞ ∼ 0.1

and a guide field of Bg ∼ 0.15B0 [parameters close to those in Figs. 1(a-c)] . As noted in

Ref. [9] and confirmed here, at mi/me = 1836 the inner jet of the anti-parallel regime (1) is

too short (∼ 1di) and a guide field of Bg ∼ 0.15B0 prevents this type of jet from forming.

We find, however, that the 15% guide field is strong enough for the Cluster event to be in

regime (3) characterized by a magnetized layer embedded in the exhaust.

(4) The electron orbits are magnetized, and they are not qualitatively different from

those of regime (3). At high values of Bg, however, the electron pressure cannot compete

with the tension of the guide field to approach the firehose condition. An embedded current

layer does not form, and the current tends to peak only near the pair of diagonally opposed

7



B
g
/B

0

0.8    

(a)
PIC     m

i
/m

e
 = 400

0.4

(c)

0.1

(e)

−5 0 5 

0

(g)

−1

1(b)
PIC     m

i
/m

e
 = 1836

−1

1(d)

−1

1(f)

−5 0 5 

−1

1(h)
z/d

i

−15 −10 −5 0 5 10 15

−2

2

 

 

 −0.5

J
y
/

J
0
 

 1.8

x/d
i

z/d
i

x/d
i

(i)

Fluid

FIG. 4: Jy/J0 with guide fields Bg/B0 of (a,b) 0.8, (c,d) 0.4, (e,f) 0.1, and (g,h) 0 at time

tωci = 22.5 from PIC runs with mass ratios of mi/me = 400 and 1836 and βe∞ = 0.03. (i) Jy/J0

at time tωci = 106 from a larger (48di × 24di) two-fluid simulation based on the HiFi code [24]

including the electron pressure anisotropy, initially in a force-free configuration with βe∞ = 0.03

and Bg/B0 = 0.28.

separator field lines where the density is enhanced. For our βe∞ ∼ 0.03 runs, this occurs at

Bg/B0 ∼ 0.57.

In summary, a new series of kinetic simulations demonstrate that currents and magnetic

fields that develop during reconnection fall into different regimes depending on the guide

field strength, the electron βe∞, and the implemented mass ratio. These results underscore

the complexity of direct comparison of spacecraft data to simulation, which often must

employ some unrealistic parameters and rely on extrapolation. Notably, a new regime with

an extended embedded electron diffusion region is present in our simulations for an interval

of guide fields that becomes wider as mi/me increases and is most significant in our runs at

the real proton-to-electron ratio.
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