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Abstract 
Alzheimer’s disease (AD) is a genetically complex disease for which roughly 30 genes have been 

identified via genome-wide association studies. We attempted to identify rare variants (minor allele 

frequency <0.01) associated with AD in a region-based, whole genome sequencing (WGS) association 

study (GSAS) of two independent AD family datasets (NIMH/NIA; 2247 individuals; 605 families). 

Employing a sliding window approach across the genome, we identified several regions that achieved p-

values < 10
-6

, using the burden test or the SKAT statistic. The genomic region around the dystobrevin 

beta (DTNB) gene was identified with the burden test and replicated in case/control samples from the 

ADSP study (pmeta= 4.74×10
-8

). SKAT analysis revealed region-based association around the discs large 

homolog 2 (DLG2) gene and replicated in case/control samples from the ADSP study (pmeta=1×10
-6

). Here, 

in a region-based GSAS of AD we identified two novel AD genes, DLG2 and DTNB, based on association 

with rare variants.  

Introduction 
Alzheimer’s disease (AD) is a heterogeneous, genetically complex neurodegenerative disorder

1
. 

Genome-wide association studies (GWAS) have identified common variants in roughly 30 genes 

associated with AD
2,3

. GWAS heritability is estimated to be 24-33%
4,5

 - less than a half of the heritability 

calculated from twin studies
1
. Identification of rare variants associated with AD may help explain the 

missing heritability, and lead to new biological insights
6
. Several rare variant loci previously associated 

with AD
7
, including TREM2

8
, have been identified with whole-exome sequencing (WES) studies

9
. 

Identification of association signals that are driven by rare variants remains cumbersome due to low 

power and relatively small sample sizes. Hence, aggregation methods, such as burden tests
10,11

 and 

variance component tests (SKAT)
12,13

, have been developed to jointly test regions of rare variants for 

association. Combining variant data increases the association signal and reduces the number of 

statistical tests. While burden tests are most powerful for signals with consistent effect directions, SKAT 

is more powerful for signals with different effect directions or when the fraction of causal variants is 

small.  Previously, aggregated gene-based association analyses have been successful in identifying novel 

exome-wide significant associations with sporadic AD
14

.  

Recently, a general framework for exact region-based association testing in family-based designs has 

been developed
15

. Using the proposed region-based testing framework, we performed a GSAS 

combining two AD family-based cohorts (605 families; 1509 affecteds; 738 unaffecteds) focusing on rare 

variants. For replication, we used case/control subjects from NIA ADSP, which included WGS data from a 

Non-Hispanic White (NHW) subcohort (983 cases; 686 controls), an African American (AA) subcohort 

(450 cases; 501 controls), and a Hispanic (HISP) subcohort (486 cases; 613 controls).   

Using a p-value cutoff of 5×10
-6

, the burden test and SKAT identified several genomic regions showing 

association with AD risk. A region identified by the burden test in the DTNB gene (p=7×10
-8

) was 

replicated in the NHW samples. SKAT analysis revealed an association with variants encompassing a 

region around DLG2 (p=4×10
-6

), which replicated in the NHW and the AA samples.    

Results 
In a region-based whole-genome sequencing association study (GSAS) focusing on rare genomic 

variants, we combined two AD family-based cohorts, the NIMH Alzheimer’s disease genetics initiative 
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study (NIMH) and the family component of the NIA ADSP sample. The combined sample consisted of 

1509 affected and 738 unaffected siblings in families of predominantly European ancestry 

(Supplementary Table 1, Methods).  8,011,126 variants passed strict quality control and allele frequency 

(AF) filter of ≤1% (gnomAD
16

). We grouped rare variants into consecutive regions/windows of ten 

variants and performed a sliding-window rare variant WGS scan over the whole genome (801,124 

windows). We employed a recently developed framework for exact regional-based analysis within 

FBAT
15

 to analyze these sets of rare variants using both the Burden test and SKAT. These tests are able 

to detect different configurations of disease regions - dense regions with the same effect directions 

(Burden test) or less dense signals with varying effect directions (SKAT).  

Since we restricted our analysis to rare variants (i.e. AF <0.01) and given our modest sample size in the 

family-discovery cohort, we have used a relatively liberal p-value threshold p<5×10
-6

 to identify 

“suggestive associations” by burden test or SKAT. A stricter Bonferroni-corrected significance threshold 

would be p=6.24×10
-8

.  Seven loci exhibited suggestive evidence for association with AD risk (Figure 1, 

Supplementary Figure 1, Table 1). For replication analysis, we selected the unrelated, multiethnic WGS 

AD subset from the NIA ADSP dataset (Methods). This dataset consists of three subpopulations: NHW 

(n=1669), AA (n=951), HISP (n=1099) (Sample sizes after quality control; Supplementary Table 1). A 

region located downstream to DTNB, with a Burden p-value of 7×10
-8

 in the discovery dataset, showed a 

burden p-value of 0.0324 in ADSP NHW (Table 1 and Supplementary Table 2). Another region, located in 

an intron of DLG2 with a SKAT p-value of 4×10
-6

 in the discovery family-based dataset, showed 

replication with a significant SKAT p-value of 0.0143 in the ADSP NHW dataset and a SKAT p-value of 

0.053 in the ADSP AA dataset (Table 1 and Supplementary Table 3).  

Both DLG2 and DTNB are highly expressed in the brain based on RNA-data from three different sources: 

Internally generated Human Protein Atlas (HPA) RNA-seq data, RNA-seq data from the Genotype-Tissue 

Expression (GTEx) project, and CAGE data from the FANTOM5 project, as well as the consensus dataset 

for each gene derived from the Human Protein Atlas
17

 (Supplementary figures 2 and 3). In the  

Alzheimer's Disease Dataset analysis
18

 (GSE48350) from the GEO database
19

 expression of DLG2 and 

DTNB is significantly decreased in AD compared to control subjects (Supplementary table 4). 

Network analysis revealed a network of 33 proteins interacting with DLG2 and DTNB that were enriched 

for neuronal synaptic functions (Supplementary Figure 4). Functional enrichment of the subnetwork of 

proteins directly interacting with DLG2 and DTNB revealed 694 enriched GO process/ pathway terms 

(Supplementary table 5). The most enriched part of the network was for proteins interacting with DLG2 

that are connected to neurexins and neuroligins, as well as trafficking of AMPA receptors. DLG2 also 

interacted with 4 proteins (NOS1, ERBB4, DLGAP2, NRXN3) previously associated with AD risk
20

, and 4 

proteins (GRIN1, GRIN2A, GRIN2B, GAPDH) associated with AD in the KEGG Alzheimer’s pathway. DLG2 

and DTNB also share protein-protein or co-expression interactions through KIF1B, MLC1, and SH3D19.  

Discussion 
Here, we describe a comprehensive region-based analysis of Alzheimer’s disease using WGS datasets. 

We specifically searched for novel AD association signals driven by regions of rare variants in a large 

family-based cohort. To account for different disease region specifications, we employed both the 

burden test and SKAT.  This yielded seven regions of suggestive evidence (p<5×10
-6

) for association with 

AD risk in the family datasets. These results were followed up with replication analysis in independent 
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case-control samples of different ethnicities. Two loci, DTNB and DLG2, showed consistent evidence of 

replication in at least one of the subpopulations (i.e. NHW). The DLG2 region was also confirmed in the 

African American sample.  

DLG2 encodes a member of the membrane-associated guanylate kinase family, also known as post-

synaptic density protein, PSD-93. Down-regulation of synaptic scaffolding proteins, including DLG2, has 

been described as an early event in AD
21

. DLG2 has been proposed as a potential target for AD based on 

an integrated metabolomics-genetics-imaging systems approach in Agora (URLs); agonism of DLG2 is 

predicted to reduce disease progression. An expression dataset of AD in the GEO database revealed 

reduced expression of DLG2 in AD versus controls. A common variant in DLG2, rs683250, was previously 

associated with increases of shape asymmetry in controls as compared demented populations
22

. This 

same variant is in linkage disequilibrium (LD, D’=1) with all rare variants of the DLG2 region found to be 

associated with AD here. DLG2 variant, rs286043 (AF=0.03), which exhibited suggestive evidence for 

association with AD risk in IGAP (p=5e-06), is in LD with 4 out of 10 variants from our DLG2 AD-

associated region, suggesting possible allelic heterogeneity. DLG2 has previously been associated with 

schizophrenia
23

 and autism
24,25

. Along these lines, DLG2 deficiency in mice has been reported to lead to 

reduced sociability and increased repetitive behavior along with aberrant synaptic transmission in the 

dorsal striatum
26

. 

β-Dystrobrevin (DTNB) is associated with neurons in the cortex, hippocampus, and cerebellum, and has 

also been reported to be enriched in the post-synaptic density
27

. Kinesin superfamily motor proteins 

(KIF) are responsible for anterograde protein transport within the axon of various cellular cargoes, 

including synaptic and structural proteins
28

. Dysregulated KIF expression has also been associated with 

early AD pathology
29

, and β-Dystrobrevin interacts directly with kinesin heavy chain in the brain
30

. 

Dystrobrevin-binding protein 1, also known as dysbindin, has been reported to be associated with 

schizophrenia
31,32

. Thus, both novel AD gene candidates identified in this study have been associated 

with post-synaptic function and schizophrenia.  

Our approach utilized two region-based tests (burden and SKAT) in a family-based design, in which the 

joint distribution of rare variants is not estimated, but rather obtained by the haplotype algorithm for 

FBAT, which is robust against population structure and admixture, and allows for construction of exact 

or simulation-based p-values. Previously, we performed region-based rare variant testing, but with 

different region definitions, and using only burden tests with empirical estimation of the variant 

correlations and asymptotic p-values
20

. While this is the largest combined family-based AD-specific WGS 

dataset available, larger datasets will be needed to confirm our findings in future studies. We also note 

that by utilizing a window size of 10 consecutive variants, we could have missed sparsely distributed 

signals. Since the number of possible haplotypes increases exponentially with the number of variants 

tested, larger window sizes were computationally infeasible.  

In summary, we identified two novel loci associated with AD, based on association with rare variants in 

DLG2 and DTNB in a family-based AD WGS sample using methods that are robust to population 

structure. We further showed replication in an independent multi-ethnic AD WGS dataset with 

unrelated cases and controls. These findings demonstrate the usefulness of WGS in capturing non-

exonic, rare variant signals. Both novel AD-associated genes identified here encode post-synaptic 

density proteins and have been implicated for roles in schizophrenia. 
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Methods 

Study populations 

Discovery family-based dataset 

Our discovery dataset consisted of two WGS family-based cohorts: the National Institute of Mental 

Health (NIMH) family AD cohort
33

 and families from the National Institute of Aging Alzheimer’s Disease 

Sequencing Project
34

 (NIA ADSP). Whole-genome sequencing and variant calling in NIMH are described 

elsewhere
35

. Variant calls for the families from the NIA ADSP cohort were obtained from the National 

Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) under accession 

number: NG00067. Both cohorts consisted of multiplex AD families with affected and unaffected siblings 

(Supplementary table 1). A subject was considered to be affected if he/she was included in one of the 

following categories: “Definite AD”, ”Probable AD” or ”Possible AD”. Unaffected subjects had either no 

dementia, suspected dementia (46 subjects), or non-AD dementia (10 subjects). It is important to note 

that NIA ADSP families by design did not include individuals with two APOE-ε4 alleles. After standard 

quality control, both cohorts were merged together. 

NIA ADSP case-control dataset 

WGS variant calls for the NIA ADSP replication case-control dataset were obtained from the NIAGADS 

under accession number: NG00067 and consisted of the ADSP Discovery-Extension Case-Control WGS 

dataset
34

 and the ADNI Case-Control WGS dataset. Samples were remapped to GRCh38 and jointly called 

with the families from the NIA ADSP cohort. Full details can be found on NIAGADS 

(https://dss.niagads.org/datasets/ng00067/) and elsewhere
36

. Briefly, a subject was considered affected, 

if he/she met the NINCDS-ADRDA criteria for possible, probable, or definite AD, had documented age at 

onset or age at death (for pathologically verified cases), and APOE genotyping. All controls were 60 or 

more years old and were free of dementia. 
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Quality control 

Briefly, we have excluded individuals based on genotyping rate, inbreeding coefficient, and family 

mismatches using identity by descent (IBD) sharing coefficients. After sample-based quality control, we 

have combined two WGS family-based cohorts NIMH (1,393 individuals in 446 families) and 854 

individuals (families from NIA ADSP; 159 families). In the merged dataset we excluded multiallelic 

variants, monomorphic variants, singletons (i.e. variants with only one alternative allele across the 

dataset and variants seen only in one family), indels, and variants which had one missing allele among 2 

alleles in an individual. The remaining variants were filtered based on Mendel errors, genotyping rate 

(95%), Hardy-Weinberg equilibrium (p<1e-08), calling quality in TOPMed, which is a large WGS database 

with >100,000 individuals sequenced jointly, and allele frequency in gnomAD (AF<= 1% in either whole 

gnomAD or nonFinnish European sample). 

WGS regional-based analysis 

We have performed a whole genome scan for our combined family-based AD dataset using a newly 

developed exact framework in FBAT for region-based association testing
15

. We grouped rare variants in 

consecutive sets of ten. For each set of rare variants, we considered the burden test and the SKAT test 

using Affection Status minus offset as phenotype. We selected an offset of 0.15 which approximately 

corresponds to the population prevalence of AD. We have used FBAT
37

, R
38

, snakemake
39

 and bash 

commands to implement and run the described analyses. 

Replication 

Replication significance level was set to 0.0143 (0.1 divided by 7 independent loci). Regions/windows 

with P<=0.05 were also reported as replicated. We have used the SKAT package to perform Burden and 

SKAT-O tests on the same sets of rare variants in the case-control replication cohorts. As covariates, we 

used sequencing center, age, sex, and principal components (to account for population structure). 

Principal components were calculated based on rare variants using the Jaccard index
40

. We have also 

performed meta-analysis among datasets with similar ethnical background using the Fisher’s combined 

probability test. 

RNA-Seq and microarray analysis 

We explored DLG2 and DTNB genes’ expression based on the Human Protein Atlas (HPA) RNA-seq data 

(https://www.proteinatlas.org) and tested for differential expression of synaptic and immune related 

genes including DLG2 and DTNB genes between normal controls (N=173, aged 20-99 yrs) and AD cases 

(N=80) in the brain regions including hippocampus, entorhinal cortex, superior frontal cortex, and post-

central gyrus using microarray dataset GSE48350, which is available from the Gene Expression Omnibus 

Web site (http://www.ncbi.nlm.nih.gov/geo/). Differential expression was tested using the “GEO2R” 

tool.  

Network construction 

We used Cytoscape 3.8.0 and the StringDB protein-protein interaction resource
41

 using only identified 

protein-protein interactions. Using a background that agglomerates protein-protein interaction 

datasets, we seeded the network with DLG2 and DTNB and identified direct associations between 

proteins and DLG2 and DTNB in a global network (supplementary table 5). Results were combined using 

the Genemania server (Utilizing significantly co-expressed genes across several experimental datasets)
42
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to further capture functional relationships and to build a combined protein-protein/gene co-expression 

network. 

Functional enrichment 

Functional enrichment within the network was performed using the remote StringDB server linked to 

Cytoscape “String App Enrichment function”
43

, producing enrichments using the hypergeometric test, 

with P-values corrected for multiple testing using the method of Benjamini and Hochberg in known 

molecular pathways and GO terms as described in Frenceschini et al.
44

 

 

Figures 
Figure 1: Manhattan plots of sets of rare variants in the whole genome scan of the family-based discovery dataset using the 

burden and SKAT test. Dashed line corresponds to suggestive threshold of 5×10
-6

. 
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Tables 

 

Table 1: Top regions based on the burden or SKAT test with p<=5e-06 in the discovery family-based dataset using whole genome scan 

First SNV in the 
region 

(chr:pos:ref:alt) 

Last SNV in the 
region (chr:pos:ref:alt) 

Nearest 
protein-coding 

gene 

Discovery dataset (NIMH 
+ NIA families) 

Replication dataset 
NHW ADSP 

Meta-analysis of family-
based discovery and 

NHW ADSP replication 
datasets 

Replication dataset 
AA ADSP 

Replication dataset 
HISP ADSP 

P-value nsim P-value 

Number 
of SNVs 

in the 
region 

Fisher chi-
squared 

test 
statistic 

P-value P-value 

Number 
of SNVs 

in the 
region 

P-value 

Number 
of SNVs 

in the 
region 

Burden test 
            2:25703040:G:A 2:25707419:T:G DTNB 7.00E-08 1.00E+08 0.032 5 39.808 4.74E-08 0.390 9 0.353 8 

2:79854141:T:G 2:79856252:C:T CTNNA2 8.10E-07 1.00E+08 0.799 6 28.500 9.88E-06 0.774 8 0.785 7 

3:181942653:A:G 3:181946475:G:A SOX2 2.40E-06 1.00E+07 0.317 6 28.177 1.15E-05 0.619 9 0.163 8 

22:35048628:G:C 22:35053269:C:T ISX 4.40E-06 1.00E+07 0.766 8 25.201 4.58E-05 0.827 9 0.014 10 

Variance component (SKAT) test 

           
11:83498255:A:G 11:83500398:T:G DLG2 4E-06 1.00E+07 0.014 5 33.352 1E-06 0.053 8 0.893 9 

2:25703040:G:A 2:25707419:T:G DTNB 1.4E-06 1.00E+08 0.054 5 32.737 1.4E-06 0.409 9 0.455 8 

7:82268137:T:C 7:82271095:A:T CACNA2D1 8E-07 1.00E+07 0.591 5 29.131 7.4E-06 0.278 8 0.090 8 

7:81141368:T:G 7:81143780:C:T SEMA3C 3.6E-06 1.00E+07 0.251 5 27.832 1.4E-05 0.046 9 0.694 10 

 

SNV - single nucleotide variant, NHW - non Hispanic white, AA - African-American, HISP - Hispanic
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