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ABSTRACT: 
 

Automatic extraction of building changes is important for many applications like disaster monitoring and city planning. Although a 

lot of research work is available based on 2D as well as 3D data, an improvement in accuracy and efficiency is still needed. The 

introducing of digital surface models (DSMs) to building change detection has strongly improved the resulting accuracy. In this 

paper, a post-classification approach is proposed for building change detection using satellite stereo imagery. Firstly, DSMs are 

generated from satellite stereo imagery and further refined by using a segmentation result obtained from the Sobel gradients of the 

panchromatic image. Besides the refined DSMs, the panchromatic image and the pansharpened multispectral image are used as input 

features for mean-shift segmentation. The DSM is used to calculate the nDSM, out of which the initial building candidate regions are 

extracted. The candidate mask is further refined by morphological filtering and by excluding shadow regions. Following this, all 

segments that overlap with a building candidate region are determined. A building oriented segments merging procedure is 

introduced to generate a final building rooftop mask. As the last step, object based change detection is performed by directly 

comparing the building rooftops extracted from the pre- and after-event imagery and by fusing the change indicators with the roof-

top region map. A quantitative and qualitative assessment of the proposed approach is provided by using WorldView-2 satellite data 

from Istanbul, Turkey. 

 

 

1. INTRODUCTION 

High and very high resolution remote sensing data consisting of 

satellite observations of land surface offer new opportunities for 

timely and accurate change detection, which could be used for 

understanding the relationships and interactions between human 

and natural phenomena in order to promote a better decision 

making. Various change detection technologies based on 

satellite imagery have been extensively studied and applied. 

(Singh, 1989; Petit et al., 2001; Coppin et al., 2004; Lu et al., 

2004; Liu et al., 2014). Classical 2D image processing 

techniques are laborious due to the higher amount of features 

required to locate buildings. This problem can be avoided when 

3D information is available.  

 

Besides LiDAR, 3D information can be derived from satellite 

stereo imagery, which exhibit a larger field of view and are 

available at a lower cost per km2 with respect to aerial imagery. 

In recent years, 3D change detection has gained considerable 

attention as it could distinguish the changes that are not clear in 

2D imagery, and it can also avoid some mis-detection caused by 

differences of the compared images in sensor geometry models 

and photometric properties (Qin et al., 2016). As one of the 

important 3D change detection approaches, post-classification 

methods compare the resulting labels from classification/objects 

detection results, which avoid direct comparison of spectral or 

height information. In addition, post-classification methods are 

able to provide a type change matrix and reuse historic land-

use/land-cover results. However, accuracy of these methods 

mostly depends on the mono-temporal classification /object 

detection results. Therefore, in the context of rooftop change 

detection, the rooftop detection approach is of crucial 

importance to improve the final result.  

 

Although many rooftop/building extraction approaches have 

been proposed for stereo imagery and still an improvement in 

robustness and efficiency is required, especially for buildings 

with complex shapes. An image based method usually starts 

with pixel based classification. Through clustering/segmentation 

the accuracy of the classification can be improved. In this paper, 

an improved segmentation approach is proposed to enhance the 

quality of the Digital Surface Model (DSM) and to generate a 

region map for rooftop extraction. In the second procedure, the 

region map is used to extract the accurate rooftop masks, which 

are further adopted in post-classification and region-based 

change detection approaches. In section 3, the proposed method 

has been tested on WorldView-2 data which were captured over 

Istanbul, Turkey. Discussions and conclusions are presented in 

Section 4 and Section 5. 

 

2. METHODOLOGY 

To improve the accuracy of building extraction and change 

detection, a region-based building rooftop extraction and change 

detection approach is proposed. Firstly the region map is 

prepared based on a two-step segmentation approach. In the 

second step the region map is adopted to assist the building 

rooftop extraction and change detection procedure. 

2.1 Segmentation 

2.1.1 Workflow: As the quality of the DSM has a large 

impact on the results of further steps, as shown in Figure 1, in 

the first step, the DSM quality has to be analyzed and improved 

before adopting it for segmentation. In the mean-shift 

segmentation procedure the pansharpened multispectral data 

and the improved DSMs are used as input. 
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Figure 1. Workflow of the segmentation  

2.1.2 Gradient based segmentation 

As a first step for the gradient based segmentation, noise in the 

panchromatic image is reduced with a median filter. 

Subsequently the image contrast is adjusted to provide a better 

distinction between buildings and their surroundings. Figure 2 

shows an example of the prepared panchromatic image (Figure 

2a) and the prepared segments (Figure 2d) based on the lines 

extracted by Sobel gradient (Figure 2c).  

 

 
Figure 2: (a) Original panchromatic image; (b) Sobel gradient in 

horizontal and vertical direction; (c) Sobel lines (d) Original 

segment. 

 

2.1.3 DSM refinement 
The initial region map presented in Figure 2 (d) is an obvious 

over-segmentation result. Thus a region merging procedure is 

necessary. Several procedures are adopted for this purpose. 

Some small sized regions are mainly located at object 

boundaries. Therefore, these small segments with a size below a 

predefined threshold are assigned a “no data” – value, zero for 

instance. In the first step, the small sized regions that are 

encapsulated by other regions are merged to their neighbours. If 

more than one neighbour is available, the label of the most 

similar segment is selected (Tian et al., 2013).  

 

The DSM can then be refined by using the resulted region map. 

However, one of the possible remaining problems after merging 

is under-segmentation, which is introduced mainly by similar 

textures between building roofs and streets. Thus, an error 

check is performed to avoid introducing inaccurate height 

values for some large regions. In this approach the average 

height over the segments are compared to the original height of 

these pixels. If the mean standard error between this average 

height and the original height is above a threshold T, the 

segment is not used for the refined DSM. Instead the original 

height values are kept in the refined DSM.  

 

As shown in Figure 3. Figure 3 (a) is the original DSM that is 

characterized with unsharpened edges. Figure 3(b) is the refined 

DSM by directly taking the average height for all regions. 

Figure 3(c) is the refined DSMs with restriction check.  

 

Figure 3. (a) Original DSM. (b) Refined DSM with average 

over boundaries. (c) Refined DSM result. (d,e,f) Height profiles 

of a,b,c. 

2.1.4 Region map preparation 
In this section the principal component analysis (PCA), is 

performed on the pan-sharpened image. The components and 

the refined DSMs are used in the mean-shift segmentation 

procedure (Comaniciu and Meer, 2002). After that all segments 

that are smaller than a predefined size are merged to their 

neighbour region with the most similar height. Furthermore, 

encapsulated areas are merged, as they are assumed to be part of 

the segment that surrounds them. Figure 4 shows the significant 

reduction of noise in the segmentation result after these two 

steps. 

 

 
Figure 4: (a) Segmentation result. (b) Segmentation after 

merging small areas. (c) Segmentation after merging based on 

encapsulation. 

 

2.2 Building mask generation and change detection 

The workflow of the second part of the proposed approach is 

shown in Figure 5. At first the initial building candidate 

segments are determined, after that a building oriented merging 

is performed. As the last step change detection can be 

performed based on the building masks derived from the pre- 

and after-event datasets. 
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Figure 5. Workflow of rooftop extraction and change detection. 

 

2.2.1 Initial building candidate selection 
This step tries to find possible building locations with the help 

of the refined DSM. Therefore, the DSM is normalized with a 

morphological reconstruction function (Arefi and Hahn, 2005) 

to get the normalized DSM (nDSM). In the nDSM all pixels of 

ground regions have a value of less than about two meters, 

while objects like buildings have relative height values in 

reference to the ground. However, it is quite difficult to give a 

proper threshold value in this step. A higher threshold value 

leads to possible miss detections. When using a lower threshold, 

some buildings may be wrongly connected together due to 

limited DSM quality. Therefore, a low threshold value is used. 

After that shadows are adopted in this step to further separate 

the buildings. As shown in Figure 6, the buildings which are 

displayed in Figure 6 (a) as one mask are well separated in 

Figure 6 (b). After erosion, they are successfully split as six 

regions.  

 
Figure 6. (a) Initial building candidate areas. (b) Building 

candidate areas after exclusion of shadow regions. (c) Building 

candidate areas after erosion. 

 

2.2.2 Building oriented region merging 
After the building locations have been labelled, these regions 

are dilated to recover the original region size. Then, the 

segments which are overlapped by these masks are selected as 

building candidate segments. All the segments with a size below 

a defined threshold are merged to their best fitting neighbours in 

terms of height and intensity. After the merging procedure, 

building detection is performed. In order to get the final 

building footprint map, a local threshold method is proposed. 

Instead of using a uniform threshold value for the whole test 

region, a minimum building height 𝑇𝑇ℎ,𝑗𝑗  is automatically selected 

for each building candidate region (1 .. j) separately. For that, 

the average height 𝜇𝜇𝐻𝐻𝑗𝑗 and the standard deviation 𝜎𝜎(𝐻𝐻𝑗𝑗) are 

calculated from the nDSM for those areas that overlay the 

segments of the candidate region.  𝜔𝜔 is thereby a weight to 

adjust the threshold. Based on this, the local threshold is defined 

that distinguishes between buildings and background.  

 𝑇𝑇ℎ,𝑗𝑗 = 𝜇𝜇𝐻𝐻𝑗𝑗 −  𝜔𝜔 ∗ 𝜎𝜎(𝐻𝐻𝑗𝑗)                            (1) 

 

This provides benefits especially when the previous separation 

procedures failed, and if there is more than one building within 

one building candidate region left, as is shown in Figure 7. In 

such cases it is possible to separate large regions into single 

building areas, as shown in Figure 7 (d). Therefore it is needed, 

that the areas between the buildings exhibit a lower average 

height than the buildings themselves (see Figure 7(c)). 

 

 
Figure 7. (a) Building candidate area. (b) Segments after 

merging. (c) Average height of the Segments. (d) Building 

footprint after applying the local threshold. 

 

2.2.3 Change detection 
After the building footprints are derived from the pre- and post-

event data, building changes can be detected by comparing them 

on the object and pixel level. Each building footprint in the later 

scene that has a low overlap rate with one of the earlier scene, is 

supposed to be a new object. Therefore a minimum rate needs to 

be defined as the threshold in highlighting the changed object. 

 

The other possibility to detect newly built buildings is to fuse 

the building footprint from the post-event data and the change 

indicator derived with the pixel-based change detection 

approach. In this approach, an existing pixel-based 3D change 

detection approach was used which was proposed by Tian et al 

(2015). Thereby, the building change probability of each pixel 

is determined by using a belief function model. After that the 

average change probability of each building mask can be 

calculated. Building masks with a higher probability to be 

changes remain in the change detection results.  

 

3. EXPERIMENT 

3.1 Data sets 

Two test sites (a, b) were chosen for the experiments. Both are 

located in a mixed industrial and residential area in the east of 

Istanbul. This area is dynamic and fast changing, which makes 

it a good test region for change detection. In Figure 8, the 

images (a1, b1) are shown, which were captured on the 24th of 

August 2011 and (a2, b2) at the 7th of July 2012. They have a 
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size of 350 × 400 m (a) and 500 × 500 m (b), respectively. All 

images are acquired by the WorldView-2 satellite, which has 

one panchromatic band and eight multispectral bands. The 

multispectral bands are covering a spectral range from 400nm to 

1050nm and with a spatial resolution of 1.84m (Padwick et al., 

2010). Also along track panchromatic stereo data have been 

acquired in the same orbit. 

 

The DSM was calculated from this panchromatic stereo data 

and has originally 1 meter resolution (Tian et al., 2013). The 

DSMs have been resampled to 0.5 meter resolution in order to 

have the same resolution as panchromatic images. After 

pansharpening the resolution of the multispectral image could 

be improved to 0.5m, the same as the resolution of the 

panchromatic image. 

 

Figure 8. Study sites: (a1, b1) are the pre-event images. (a2, b2) 

are the after-event change images.  

3.2 Results and evaluation 

3.2.1 Building rooftop extraction 
 

In the original generated DSMs, the boundaries of objects are 

usually very blurry due to occlusions near the building 

boundaries leading to no-data areas close to buildings, which 

have been filled using interpolation. After the line based 

refinement, the boundaries of some buildings are sharper than 

before. 

 

For the building candidate detection procedure, a threshold of 4 

meter is set to select the high-level pixels. After the pre-

processing procedure, as described in the methodology part, all 

segments within a candidate region are kept and then tried to 

merge. Thereby, at first all areas with a size smaller than 70 

pixels (17.5 m2) are merged to their nearest neighbours, if the 

height difference between them is smaller than two meters. 

After that, merging is performed for all segments by using the 

multi feature merging procedure. Eq. (1) with 𝜔𝜔 = 1.5 is used 

to Eq. (1) to calculate the local threshold. All segments with an 

average height higher than the threshold are forming the 

building and are transferred into the building footprint.  

 

The obtained building rooftop masks have been overlaid with 

the building reference map and are shown in Figure 9. It shows 

only the rooftop mask from the post-event data. In this result the 

majority of the large size buildings are green which represent 

true positive, while especially small buildings are often blue. 

This trend is also represented in Table 1. In Table 1, the result is 

evaluated for different building sizes. While only few buildings 

with a size smaller than 125 m2 are detected, almost all 

buildings larger than 375 m2 are detected. Very few false 

positive objects were thereby recognized. As Figure 9 shows, 

most detected building boundaries match well with the 

manually labelled reference data. The statistics are presented in 

Table 2, where the number of pixels for each of the classes can 

be seen, for all four test regions. The true positive, true 

negative, false positive, false negative detection rates and the 

Kappa Index of Agreement (KIA) (Tian et al., 2013) are 

calculated.  

 

 

 
Figure 9. Detected building rooftop result on the post-event 

dataset (Green: True positive; Red: False positive; Blue: False 

negative).  

 

 

 

 

building size < 125 

[m2] 

125[m2] < building 

size < 250[m2] 

250[m2] < building 

size <  375[m2] 

building size >= 

375[m2] 

Over all 

True 
False 

negative 
True  

False 

negative 
True 

False 

negative 
True 

False 

negative 

False 

positive 

a1 1 20 21 10 11 4 19 0 0 

a2 7 24 20 9 11 2 9 0 1 

b1 4 17 19 17 9 2 15 4 2 

b2 9 30 18 9 8 1 11 2 2 

Table 1.  Object based evaluation of the building footprints. 

 

 True positive False negative False positive True negative KIA 

a1 65434 30476 8218 455872 0.73 

a2 68818 24781 9385 457016 0.77 

b1 59355 46066 11198 883381 0.64 

b2 70056 32301 11282 885871 0.74 

Table 2. Pixel based building footprint evaluation. 
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3.2.2 Change detection 
 

 
Figure 10. Change detection results, (a) and (b) are the region 

based change probability maps, (c) and (d) are the change 

detection results overlaid on the change reference mask (Green 

True positive; Red: False positive; Blue: False negative). 

 

Figure 10(a) and 10(b) are the change detection results from 

post-classification approach, where the two building footprints 

of one scene are compared with each other. All Segments with 

an overlap ratio lower than 0.7 are considered to be newly built 

buildings. The change detection results are overlaid on the 

change reference data. The region/ pixel based building mask 

evaluation approaches are further used to evaluate the change 

detection results. It can be seen that again the most of the larger 

new buildings are detected, while especially smaller ones are 

missing. However, there is also a big number of false alarms 

(red objects) that is leading to smaller KIA values (0.51 for test 

site a and 0.65 for Test site b, see Table 3). Better results are 

achieved with the second change detection approach (M2-a and 

M2-b). As can be seen in Figure 10(c), much fewer false 

positive are observed. The KIA values have been improved to 

0.66 and 0.71, respectively. The region based evaluation results 

are displayed in Table 4. 

 

Table 3. Pixel based evaluation of change detection results for 

the two test sites. 

 

 
True 

positive 

False 

negative 

False 

positive 

True 

negative 
KIA 

M1-a 6485 4653 7211 541651 0.51 

M1-b 12136 6032 6415 975417 0.65 

M2–a 6485 4653 1993 546869 0.66 

M2–b 12136 6032 3840 977992 0.71 

 

Table 4. Region based evaluation of change detection results for 

the two test sites. 

 

 
True 

positive 

False 

negative 

False 

positive 

M1-a 6 3 8 

M1-b 5 9 2 

M2–a 6 3 0 

M2–b 5 9 2 

 

4. DISCUSSION 

The DSM refinement method is leading especially to a better 

distinction of buildings that are standing close together. Further, 

single objects are getting a more homogeneous height value. 

Although the improvements are limited, they are bringing 

benefits for the following segmentation and are by this 

improving the final results. Segmentation without the 

refinement would be also possible, but the results would be 

more vulnerable to errors. 

 

Over-segmentation could be handled with merging, under-

segmentation would be more difficult to refine. Therefore, the 

first segmentation results are over-segmented and then refined 

with a merging procedure. For this, it is important to have a first 

segmentation that match well with the object boundaries. For 

boundaries that are not well recognizable in some of the images, 

multiple input features are used. Although this leads to longer 

processing times, sometimes it is necessary for accurate results. 

To reduce over-segmentation effects, merging is performed for 

the whole image, although just the building areas are of interest. 

 

In this approach, all segments with a height larger than the local 

height based threshold are assumed to be buildings. Thus, it is 

possible to detect and separate multiple buildings within one 

candidate area. However, sometimes there are parts of the 

buildings missing, like is shown in the red marked area in 

Figure 10. This is due to height differences within buildings and 

due to the already discussed cases of over-segmentation in 

buildings, which cannot be fully eliminated. Other approaches, 

like (Lee et al. 2003) and (Tian and Reinartz, 2013) propose to 

use Hough lines to extract accurate building shapes. Hough 

lines are thereby representing the main directions in an image. 

In case of having just one, or a few quadrangle buildings within 

one candidate area, this might truly increase the accuracy of the 

building footprints. Having many buildings in one candidate 

area, might however decrease the accuracy. 

 

Additional to these method based errors, some buildings could 

not be detected due to errors in the underlying data. Especially 

the inaccuracy of the DSM is causing some missing buildings, 

as objects need to have a certain height in order to be 

determined as a building. Overall, it can be stated that it is 

possible with this method to detect the majority of the big 

buildings, while small buildings are not well recognized. Due to 

the use of the previous segmentation, the shapes of the building 

footprints are close to those of the real buildings. Sometimes 

however, small parts of the buildings are missing, which 

influences the final result accuracy. 

 

5. CONCLUSION 

For urban planning, map updates, insurance, hazard prevention 

and real estate monitoring it is important to have actual data 

about all buildings in an area. Especially in urban areas, where 

the façades, the structures and alignment of buildings change 

fast, it is important to update data efficiently and reliably; 

therefore, there is a growing interest in the development of tools 

and sensors used for the detection of buildings – with reduced 

working times and reasonable costs (Gamba and Houshmand, 

2000). 

 

In this paper, an efficiently automatic building rooftop 

extraction and building change detection approach is shown and 

accurate results can be achieved based on WorldView-2 stereo 

data. It was shown that the results are very dependent on the 

DSMs quality. Better results would be achieved when more 
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accurate DSMs are available. Together with a further improved 

method this could lead to better usability of the automatic 

building footprints and change detection results. As lot of 

buildings/changes are correctly extracted with the proposed 

approach, it can be used to get a fast overview over an area. For 

especially smaller buildings are sometimes missing and the 

building boundaries are not always accurate, it should however 

be used in a semi-automatic way together with visual inspection 

to update maps or databases. In this research, fusing of the 

rooftop mask and the decision probability map has delivered the 

change detection results with higher accuracy. However, if there 

would be already one building footprint available, for instance 

some GIS cadastral data etc., the post-classification approach 

could be even more efficient, to detect change objects. Further 

comparison with existing approaches will be performed.  
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