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ABSTRACT:' This paper presents a correspondence 
method to determining optical flow where the primitive mo- 
tion tokens to be matched between consecutive time frames 
are regions. The computation of optical flow consists of 
three stages: region extraction, region matching, and op- 
tical flow smoothing. For region eztraction, in each image 
frame the regions are extracted either from the sign of the 
V2G, * I bandpass operator, or by thresholding the out- 
put of morphological image transformations for peak/valley 
detection, For region matching, a general correspondence 
approach is applied to region tokens by using an afinity 
measure based on region features. Optical flow is then iden- 
tified as the spatial vector displacements among centroids 
of corresponding regions. The computation is completed 
by smoothing the initial optical flow, where the sparse ve- 
locity data are either smoothed with a vector median filter 
or interpolated to obtain dense velocity estimates by using 
a motion-coherence regularization. 

The proposed region-based method for optical flow is 
simple, computationally efficient, and (as our experiments 
on real images indicate) more robust than iterative gradient 
methods, especially for medium-range motion. 

1 Introduction 
Motion analysis is a major task of computer vision systems. 
It deals with the general problems of recovering the 3-D mo- 
tion and structure of visible surfaces given a discrete-time 
sequence I(s,y,t) of 2-D intensity images. An earlier and 
some recent reviews on this topic include [1,2,3]. When 
objects are being imaged through a camera (or a human 
retina) moving relative to the objects, the apparent motion 
of brightness patterns is called optical flow. I t  is represented 
by a vector field ( ; v , , q , ) ,  where v,,u,, denote velocities in 
5, y direction. The optical flow is an ambiguous concept and 
is not generally equal to the true 2-D velocity field except 
for some special cases. Nevertheless, due to its accessibil- 
ity and the rich information it contains for recovering the 
motion of 3-D rigid bodies, the detection of optical flow 
is very important in motion analysis. For instance, there 
are many approaches to 3-D motion and structure recovery 
which assume that 2-D velocity data (sparse or dense) have 
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been obtained in advance; examples include [4,5,6,7]. 
The major approaches to  computing optical flow (or 

velocity fields) can be classified as either using gradient 
models or Correspondence of motion tokens. The gradient 
models are based on some relationships among the image 
spatial and temporal derivatives. For example, Horn and 
Schunck (51 used the optical flow constraint 
z;vz 8 1  + ar  ~ v , ,  = -%, whereas in [8] the constraint 9 = 0 
was proposed. Although gradient models are analytically 
more tractable, lead to iterative local image operations and 
can provide spatially dense velocity estimates, they are 
computationally intensive, apply only to  short-range mo- 
tion, and are highly susceptible to noise. By contrast, the 
correspondence methods are more immune to noise and can 
be also applied to medium- or long-range motion. They 
are based on matching and tracking over time simple to- 
kens (sets of elementary image features) in one frame with 
their counterparts on the same object in subsequent time 
frames. Their main difficulty lies in solving the motion 
correspondence problem. When correspondence is solved 
the sparse velocity estimates a t  tokens are equated to  the 
spatial displacement vectors between corresponding tokens. 
Aggarwal e t  al. [Q] discussed several procedures to  solve the 
motion correspondence problem based on both ikonic and 
structural representations of image parts. 

This paper presents a correspondence approach to de- 
termining optical flow where the simple tokens are regions. 
[Alternatively, the tokens could be intensity points, whose 
matching could be accomplished via correlation, or lines 
(e.g., edges represented by zero-crossing contours [lo]).] We 
agree with Ullman's conclusions [ll] who, based on per- 
ceptual experiments, views the gray-level matching as in- 
sufficient to solve the correspondence problem. Further, 
we view the region matching as more robust than edge 
matching, because noise perturbs the coherence of a region 
less than its boundaries (edges). This was demonstrated 
by Nishihara [12] who solved the correspondence problem 
for binocular stereo by cross-correlating the binary regions 
(sign areas) bounded from the zero-crossing contours of the 
band-pass filtered images V2G, * I. (V2 is the operator 
& + $, and G,(z,y) = 2ru2 .) Our proposed es- 
timation of optical flow consists of three stages: 1) Region 
eztraction, where the image sequence I(., y, t )  is either con- 
volved with V2G, and regions are identified as the sign rep- 
resentation of these convolutions, or the image sequence un- 
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dergoes morphological transformations [13,14,15] that ex- 
tract peaks/valleys and regions are identified as binarized 
versions of these peak/valley signals. 2) Region matching, 
where Ullman’s general correspondence theory is applied 
to region tokens by using an afinity measure for match- 
ing. Optical flow is then identified as the spatial displace- 
ments among centroids of corresponding regions. 3) Optical 
Pow smoothing, where the sparse velocity data are either 
smoothed with a vector median filter or interpolated.to ob- 
tain dense velocity estimates by using a motion-coherence 
regularization method developed in [16]. 

2 Region Extraction 
The first step in our region-based approach to determining 
optical flow is to  find the region tokens in consecutive image 
frames. We define as “regions” connected sets of pixels 
(z ,y) ,  which are subsets of the spatial image domain and 
correspond to subparts of the moving object(s). We have 
experimented with two different methods to extract regions: 

(A)  Sign representation of V’G, * I :  The Marr-Hildreth 
[17] edge detection operator V’G, * I is applied first. For 
each image frame, the set of image pixels a t  which this edge 
signal has a positive sign identifies the collection of positive 
regions, and its set complement yields the negative regions. 
There is a trade-off in selecting a value for the scale param- 
eter (T. For large (T, the regions are large, and their number 
per frame is small. To achieve dense optical flow, small 
values of B are preferred. On the other hand, to  achieve a 
matching that is more robust and less susceptible to  noise, 
a larger (T is preferred. In our experiments we implemented 
the V’G, operator as the difference of two Gaussians, one 
(the excitatory) with B = 1 and another (the inhibitory) 
with (T = 3; the size of the convolution kernel was 11 pixels 
in each direction. Figs. IC and 2c,d show examples of ex- 
tracted regions. The region extraction process is completed 
by labeling connected components, where at  each time tk, 
each positive (or negative) region has been identified as a 
4-connected component of the binary image representing 
the positive (or negative) sign of V2G, * I(z, y, tk).  

(B) Binarized Peak/Vall e y Detect ion Trans format ions : 
If I is the intensity image a t  some time frame, two trans- 
formations [13,14,15] that can extract its peaks and valleys, 
respectively, are: 

Peak(1) = I -  ( I O B )  2 0 
Valley(1) = ( I O B )  - I  2 O ’ 

where IOB and 1.B are, respectively, the morphological 
opening and closing [14,15] of I by a structuring element 
B (a window of pixels). We produce binary peak regions 
by thresholding a t  level T, i.e., by setting all pixels (z,y) 
a t  which [Peak(I)](z,y) 2 T equal to  1 and 0 elsewhere. 
Similarly, the binary valley regions result from thresholding 
the valley signal Valley(1) a t  T (an adjustable level). The 
shape and size of B controls the shape and maximum size 
of extracted regions. 

In general, the regions extracted via morphological peak- 
valley detectors yield a more faithful representation of the 
binary shapes of various features in the image, than the 
regions extracted via the V’G, * I process which tends to  
blur the regions’ boundaries. 

3 Region Matching 
The matching algorithm proposed herein is guided by U11- 
man’s general correspondence principles and attempts to 
match correspondence tokens via an affinity measure. The 
two aspects with respect to  which our algorithm is different 
are the nature of the correspondence tokens (i.e., we use re- 
gions as tokens as opposed to line segments) and the large 
set of features for each token that affect the affinity mea- 
sure. Specifically, let Ri and Rj be two regions extracted at 
two consecutive time frames (at t = t k ,  t k + l ) ,  and let 6 ,  E‘j 

denote their centroids. For each region to be considered as 
a legitimate correspondence token, its area A(Ri )  must be 
larger than Amin. An alternative approach (that we tried 
with similar performance) is to morphologically open all re- 
gions by a structuring element C whose area is Amin. This 
cleans the regions by eliminating all regions inside which 
C does not fit. The affinity measure between Ri and R ,  
depends on the following features: 

1) Distance between centroids: 
2) Signs (positive or negative) of regions if they resulted 

from the V’G, * I approach, or their peak vs. valley iden- 
tities if the regions resulted from the morphological feature 
detection process. 

ADij = A(Ri)  - 
4%). 
Further, we set l l&jl l  = +CO if either the z- or y-component 
of dij exceeds L pixels, and we set ADi, = +CO if / A D i j /  > 
P * A(&,),  where 0 < P < 1. Clearly, the fixed numbers 
Amin, L, and P are control parameters for the correspon- 
dence process. Specifically, Amin controls the robustness of 
a region to be considered as a legitimate correspondence 
token; i.e., all regions whose area 5 Ami, are viewed as ei- 
ther noise or unreliable tokens and hence are not matched. 
L controls the range of correspondence. Region Ri may 
be matched with Rj only if the centroid of Rj lies inside a 
square window of (2L+ 1) x (2L+ 1) pixels centered a t  the 
centroid of Ri, and their V’G, * I signs or their peak/valley 
identities are the same. P determines the maximum per- 
centage of area difference between two regions above which 
a match is impossible. In our experiments the control pa- 
rameters were set to Amin = 9 (pixels), L = 15 (pixels), 
and P = 0.3. 

The above criteria may result in a situation where, if 
there are no candidates, there is no match for a particular 
region. If there are some matching candidates, however, 
the region that has the closest average intensity is selected 
to be the correct match. This rule is conceptually related 
to the optical flow constraint = 0 in [5]. Figs. le,f and 
2e,f show examples of optical flow detected when the mo- 

lldij = c‘i - Z j l l .  

3) Area difference between regions: 

4) Difference between average intensities. 
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tion was translation along the z-axis or rotation. In these 
experiments velocity estimates were obtained up to 10-15 
pixels in z and y directions. 

Clearly, each successful match of two regions in two con- 
secutive image frames yields a spatial displacement vector 
(d,,d,) among the two region centroids. Estimating the 
velocity of a region's centroid by bringing it into corre- 
spondence with another region's centroid is not an arbi- 
trary choice. The classical mechanics theory dictates that, 
with respect to an external force or torque, the motion of 
a rigid body can be represented by the motion of its cen- 
troid. Thus, we implicitly assume that each region is a 
small patch of a rigid body. We do not assume, however, 
that over a whole region the velocity remains constant. We 
simply estimate it only at  the centroid. Finally, the average 
velocity is equal to (v,,vy) = (dz ,dy) / ( tk+l  - tk). Hence- 
forth, we assume a uniform sampling of image frames in 
time and set tk+l- tk = 1, which amounts to equating pixel 
displacements with velocities. 

4 Smoothing the Optical Flow 

4.1 Vector Median Filtering 
Although most of the region matches appear to be accu- 
rate and robust, there may be a few mismatches. We view 
the latter as noise on the estimated optical flow. Then 
a question naturally arises of how to  smooth the optical 
flow. We exclude the smoothing via linear filtering (e.g., 
local averaging) because linear smoothing filters have the 
well-known tendency to blur and shift sharp discontinu- 
ities in signals. In the case of optical flow these sharp 
discontinuities may indicate object boundaries and, hence, 
must be preserved. Therefore, we choose median filtering 
to smooth optical flow, because, median filters are nonlin- 
ear smoothers that can eliminate outliers from the original 
data while preserving abrupt discontinuities (e.g., edges) in 
the signal. Median filtering has been applied extensively 
to scalar real-valued signals. Here we define a vector me- 
dian filter to operate on the vector-valued optical flow. Let 
v7. = (v,,i, vY,i), i = 1 , 2 , .  . . , n ,  be the estimated velocities a t  
various centroids around and including a centroid Z. Due to 
the relative sparseness of centroids, the estimates are found 
by searching inside windows centered at  c' and whose size 
increases (but does not exceed twice the maximum window 
of Section 3) until n velocity estimates are found. Then the 
output smoothed velocity at  I? is 

med;{v7.} = (medi{v,,i}, medi{v,,i}) . 
The scalar medians medi{v,,i} are computed by sorting the 
n values u , , ~  and picking the middle value. (If n is even, 
the median is set equal to the average of the two middle 
values.) The parameter n (set equal to 17 in our experi- 
ments) controls the degree of smoothing. Figs. lg,2g show 
that this vector median filtering is effective in smoothing 
the optical flow. 

4.2 Interpolation by Motion-Coherence 
So far, the optical flow is being estimated at  most region 
centroids but not at  every pixel. However, there are many 
approaches to recovery of 3-D motion and 3-D structure 
that require a dense optical flow field. Our region-based 
approach can be extended to  yield dense velocity estimates 
by using interpolation. As a by-product of the interpola- 
tion process, we can also achieve smoothing. In [8], many 
interpolation approaches have been reviewed in the context 
of regularization of ill-posed problems. In a similar spirit, 
Yuille and Grzywacz [16] proposed a motion-coherence reg- 
ularization procedure to smooth motion fields. Their result 
can _also be viewed as an interpolation process. Specifically, 
let Vi be the velocity estimates a t  centroids c7: by using our 
region-based method. Let also 7' denote any vector on the 
image plane and let .'(q be the velocity to be provided via 
the regularization process. Yuille and Grzywacz find the 
unknown .'(q by minimizing the functional 

00 

E = ]I.'(<) - fillz + A /  C,IID"V'~~~ , 

where D2"G = VZm.', DZm+'.' = V(VZmG),  and the index 
i runs over all centroids in the image whose velocities have 
been estimated. Their solution, obtained by calculus of 
variations, has the form: 

i m=O 

where the f i  are solutions of 

The error functional E contains an approximation-error 
term and a deviation-from-smoothness term. If we choose 
X < 1, we emphasize more-the agreement of the solution 
.'(q with the given data Vi rather than its smoothness. 
The solution can be seen as an interpolation formula that 
convolves the given velocities at  the centroids with prop- 
erly scaled Gaussian functions. The parameter D should 
vary in proportion with the desired zone of influence of this 
smoothing/interpolation process. Fig. I h  shows the result 
of applying the above interpolation to the raw optical flow 
data of Fig. If. 

5 Discussion 
We have developed a region-based method for determining 
the optical flow. This method solves first a motion corre- 
spondence problem by matching region tokens via an affin- 
ity measure that depends on certain region features. Fpr 
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each image frame, the regions are extracted either from the 
sign of the V2G, * I bandpass operator, or by threshold- 
ing the output of morphological image transformations for 
peak/valley detection. Optical flow is then identified as 
the spatial displacement vectors between centroids of cor- 
responding regions. Finally, the relatively sparse optical 
flow data are either smoothed using a vector median filter 
or interpolated to produce dense velocity fields by using a 
motion-coherence regularization method. Our experiments 
indicate that the median smoothing almost always improves 
the original optical flow data by eliminating outliers while 
preserving abrupt discontinuities in the optical flow (that 
may indicate object boundaries). Smoothing via interpo- 
lation gives good dense results only if the whole original 
image is in motion. Otherwise, it forces a nonzero velocity 
on parts of the image that were originally not moving. 

Our experiments on real images further indicate that 
this region-based method for optical flow is robust, com- 
putationally efficient, and more immune to noise than gra- 
dient methods, especially for medium-range motion. For 
example, Fig. 2h shows the optical flow estimated by the 
approach in [5], and Fig. 2g shows the optical flow estimated 
by our region-based method and smoothed via median fil- 
tering. (Displacements of up to 10 pixels were involved.) 
Clearly, there is a superiority of the region-based method 
over the gradient method, due to the robustness of the cor- 
respondence approach and the efficacy of regions as tokens 
to match. 
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