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Region-Based Spatial Preprocessing for Endmember
Extraction and Spectral Unmixing

Gabriel Martin and Antonio Plaza, Senior Member, IEEE

Abstract—Linear spectral unmixing is an important task in
remotely sensed hyperspectral data exploitation. This approach
first identifies a collection of spectrally pure constituent spectra,
called endmembers, and then expresses the measured spectrum
of each mixed pixel as a combination of endmembers weighted
by fractions or abundances that indicate the proportion of each
endmember in the pixel. Over the last decade, several algorithms
have been developed for automatic extraction of spectral end-
members from hyperspectral data, with many of them relying
exclusively on the spectral information. In this letter, we develop
a novel unsupervised spatial preprocessing (SPP) module which
adopts a region-based approach for the characterization of each
endmember class prior to endmember identification using spectral
information. The proposed approach can be combined with any
spectral-based endmember extraction technique. Our method is
validated using both synthetic scenes constructed using fractals
and a real hyperspectral data set collected by NASA’s Airborne
Visible Infrared Imaging Spectrometer over the Cuprite Mining
District in Nevada and further compared with previous efforts
in the same direction such as the spatial-spectral endmember
extraction, automatic morphological endmember extraction, or
SPP methods.

Index Terms—Endmember extraction, hyperspectral imaging,
spatial-spectral analysis, spectral unmixing.

I. INTRODUCTION

HE availability of hyperspectral instruments with a

number of spectral bands that exceed the number of
spectral mixture components, such as NASA Jet Propulsion
Laboratory’s Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [1], has allowed one to cast the unmixing problem in
terms of an overdetermined system of equations in which, given
a set of pure spectral signatures (called endmembers), the actual
unmixing to determine abundance fractions can be defined in
terms of a numerical inversion process [2].

Several algorithms have been developed over the last decade
for automatic or semiautomatic extraction of spectral endmem-
bers directly from the input scene. Classic techniques include
the orthogonal subspace projection (OSP) [3], N-FINDR [4],
or vertex component analysis (VCA) [5], among many others
[6]-[8], but only a few techniques have included the spatial
information. For instance, extended morphological operations
have been used as a baseline to develop an automatic morpho-
logical endmember extraction algorithm [9] for spatial-spectral
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endmember extraction (SSEE). Another spatial-spectral ap-
proach includes spatial averaging of spectrally similar endmem-
ber candidates found via singular value decomposition, called
SSEE algorithm [10]. Recently, a spatial preprocessing (SPP)
algorithm [8] has been proposed, which estimates, for each
pixel vector in the scene, a spatially derived factor that is used to
weigh the importance of the spectral information associated to
each pixel in terms of its spatial context. The SPP is intended as
a preprocessing module that can be used in combination with
an existing spectral-based endmember extraction algorithm.
All the aforementioned spatial-spectral approaches include, at
some point, a spatial window (of fixed or variable size) which
is translated over the spatial domain of the scene in order
to analyze contextual information around each image pixel.
This strategy is feasible when spectral variation is smooth and
relatively constant over the image, but in order to better model
natural scenes with step discontinuities and multiscale features
and regions, techniques that are able to model such regions in a
spatially adaptive fashion are needed [11].

In this letter, we develop a novel region-based SPP (RBSPP)
strategy which uses spatial information as a guide to exploit
spectral information more effectively by adequately exploiting
spatial context in adaptive fashion. Our proposed approach first
adaptively searches for the most spectrally pure regions (under-
stood as groups of several contiguous pixel vectors with similar
spectral content) by using a hybrid procedure that combines
unsupervised clustering and OSP concepts. This process is then
followed by a spectral-based endmember extraction process
conducted using only the pixels located in such regions.

The remainder of this letter is organized as follows.
Section II describes the proposed RBSPP approach. Section III
describes our experiments with hyperspectral data simulated
using fractals. Section IV describes our experiments with a real
hyperspectral data set collected by AVIRIS over the Cuprite
Mining District in Nevada. Section V concludes with some
remarks and hints at plausible future research.

II. RBSPP

The proposed preprocessing method exploits the intuitive
idea that transition areas between two or more different land-
cover classes are more likely to contain mixed pixels. Thus, it
is reasonable to assume that pure signatures are less likely to be
found in transition areas and more likely to be present in well-
defined spatially homogeneous regions. With the aforemen-
tioned design principle in mind, our preprocessing approach
incorporates the following properties [12].

1) The inclusion of spatial information is performed in the

form of an adaptive and fully automated preprocessing
module which uses a region-based approach to reduce
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the sensitivity of the method to different spatial window
shapes and sizes [8]-[10].

2) At the preprocessing level, spatial information is used as
a guide to exploit spectral information more effectively
by directing the endmember searching process to image
areas which are both spatially homogeneous and spec-
trally pure, as opposed to previous developments which
mainly accounted for the spatially homogeneous nature
of the regions instead of their spectral purity [8].

3) The integration of spatial and spectral information is
performed at the preprocessing level, and hence, it does
not require any modifications in the endmember extrac-
tion stage conducted afterward. This feature is available
in the methodology proposed in [8] but not in other
spatial—spectral developments [9], [10].

In the following sections, we describe in more detail the

individual stages sequentially applied by the proposed method.

A. Estimation of the Number of Endmembers

Two different methods have been used in this letter to esti-
mate the number of endmembers p in the original hyperspectral
image: the HySime method [13] and the virtual dimensionality
(VD) concept [14]. The former does not have any input pa-
rameters, while the latter is a Neyman—Pearson detector based
on a prescribed parameter Pr (i.e., false-alarm probability).
In spite of different criticisms to these methods, these are the
two most widely used approaches for estimating the number of
endmembers available in the literature.

B. Unsupervised Clustering and Segmentation

Clustering aims at grouping pixels in feature space, so that
pixels belonging to the same cluster are spectrally similar. In
this letter, we have used three different clustering algorithms.

1) The first one is the ISODATA algorithm [15]. It starts
with a random initial partition of the set of available
pixel vectors in the original hyperspectral image into ¢
candidate clusters. It then iteratively optimizes this initial
partition using least squares [15]. A relevant issue for
this algorithm is how to set the number of clusters ¢
in advance. Specifically, in order for the algorithm to
automatically determine the value of ¢, we can define
a minimum number of clusters c¢.,;, and a maximum
number of clusters ¢, based on the information about
the considered image (i.e., how many groups of materials
with similar spectra are present).

2) The second one is the k-means algorithm [16]. Its goal
is to determine a set of ¢ points, called centers, so as
to minimize the mean squared distance from each pixel
vector to its nearest center. The algorithm is based on
the observation that the optimal placement of a center is
at the centroid of the associated cluster. It starts with a
random initial placement. At each stage, the algorithm
moves every center point to the centroid of the set of
pixel vectors for which the center is a nearest neighbor
according to the spectral angle (SA) [17] and then updates
the neighborhood by recomputing the SA from each pixel
vector to its nearest center. These steps are repeated until
the algorithm converges to a point that is a minimum for
the distortion [16].
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3) The third one is the hierarchical segmentation (HSEG)
algorithm [18]. It is a segmentation technique based
on an iterative hierarchical stepwise optimization region
growing method. Furthermore, it allows merging of non-
adjacent regions by means of spectral clustering. The al-
gorithm starts by labeling each pixel as a separate region.
It then calculates a dissimilarity criterion (in our case,
the SA) between all pairs of spatially adjacent regions.
Then, it finds the smallest distance value dist_val and
sets thres_val equal to it, merging all pairs of spatially
adjacent regions with dist_val = thres_val. If a pa-
rameter spectral_wght > 0.0, the algorithm merges all
pairs of spatially nonadjacent regions with dist_val <
spectral_wght X thres_val and iterates until ¢ clusters
are obtained [18]. In order to reduce computational de-
mands, a recursive divide-and-conquer approximation of
HSEG (RHSEG) has been used [19].

In all cases, the output is a set of spectral clusters, each made
up of one or more spatially connected regions. This set can also
be seen as a set of r connected regions {R;};_;.

C. Region Selection Using Orthogonal Projections

The main goal of this stage is to select, out of the set of r
regions {R;},_, resulting from the previous stage, a subset of
{R }j_, regions which are spectrally distinct, with r > c. For
this purpose, we first select a representative spectral signature
for each connected region (in this letter, the mean spectrum M,
withl =1,2,...,r). Then, we apply the OSP algorithm to find
a set of ¢ spatially representative regions with associated spectra
which are both spectrally pure and orthogonal between them.
The OSP starts by identifying the first region as the one with
the associated mean spectrum with higher intensity as follows:

= MM/ 5. 1
R, arg{mlaxl_zl ! l} (D

Once an initial region has been identified, the preprocessing
algorithm assigns U; = [M] and applies an orthogonal sub-
space projector [3] to the mean spectra of all r regions, thus
calculating the second region as the one with the associated
mean spectrum with maximum projection value as follows:

R, = arg {mlax {(PélMl)T (PélMl)] } ;
with PG =T-U; (UTU)'UT (@

where I is the identity matrix and [ = 1,2,...,r. The algo-
rithm then assigns Us = [M;My] and repeats the procedure
iteratively so that a new connected region is obtained at each
iteration as follows:

R; =arg {mlax [(Pélel)T (Pélel)} } 7

. -1
with P, =I-U; ; (U, U;4) U, ()
The procedure is terminated when j = c, i.e., once a predefined

number of ¢ spatially connected regions {R,; }5?:1 have been
identified from the initial set of [ regions {R;},_;.
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Fig. 1. Synthetic images used in experiments, where spatial patterns were
generated using fractals.

D. Automatic Endmember Extraction

Once the SPP has been completed, a spectral-based endmem-
ber extraction algorithm is applied to the set of pixels associated
to the ¢ spatially connected regions {R;;}$_, retained after the
preprocessing in order to select p endmembers. In this letter,
three well-known algorithms have been considered to perform
such automatic endmember extraction: OSP [3], N-FINDR [4],
and VCA [5]. The reasons for our selection are as follows:
1) These algorithms are representative of a class of convex
geometry-based techniques which have been quite successful
in endmember extraction literature [6]-[8]; 2) they are fully
automated; and 3) they do not require any input parameters
other than the desired number of endmembers to be extracted p.

III. EXPERIMENTS WITH SYNTHETIC DATA
A. Construction of Synthetic Scenes

A database of five 100 x 100-pixel synthetic hyperspectral
scenes has been created using fractals to generate distinct
spatial patterns often found in nature. In this letter, we used
fractals to simulate linear mixtures of a set of endmember
signatures randomly selected from a spectral library compiled
by the U.S. Geological Survey (USGS)! and made up of a
total of 420 signatures. Fig. 1 shows the five fractal images
used in the simulations. These images are further divided into a
number of clusters using the k-means algorithm [16], where the
number of clusters extracted from the five fractal images was
always larger than the number of endmember signatures, fixed
in our experiments to p =9, and the abundance proportions
in the regions associated to each cluster have been set so that
the pixels that are closer to the border of the region are more
heavily mixed while the pixels located at the center of the
region are more spectrally pure in nature. For this purpose, a
Gaussian filter is applied, where the width of the Gaussian is
carefully adjusted according to the width of each region. Zero-
mean Gaussian noise was added to the synthetic scenes in dif-
ferent signal-to-noise ratios (SNRs)—from 30:1 to 110:1—to
simulate contributions from ambient and instrumental sources,
following the procedure described in [3]. Fig. 2 shows the
spectra of the USGS signatures used in the simulation of one of

Thttp://speclab.cr.usgs.gov/spectral 1ib06
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Fig. 2. (Top) USGS library signatures and (bottom) fractional abundance dis-
tributions considered for generating the simulated hyperspectral scene labeled
as “Fractal 1” in experiments.

the synthetic scenes® (labeled as “Fractal 1” in Fig. 1). The fully
constrained [2] abundance maps associated to each reference
USGS signature in the construction of the aforementioned
synthetic scene are also shown in Fig. 2.

B. Performance Analysis

Before describing our experiments, it is first important to
address the parameter values used for the different clustering
methods considered. The parameter c,,;, of ISODATA was set
empirically to p, which is the number of endmembers estimated
by a consensus between VD and HySime, while the parameter
Cmax Was set to 2p, which is a value that generates an explicit
oversegmentation in order to let the algorithm automatically
decide about the number of classes. In the case of k-means
and RHSEG, we explicitly set ¢ = p. For RHSEG, we also set
spectral_wght = 0.2, which results in a good tradeoff between
spatial and spectral information [18].

Two different metrics have been used to compare the perfor-
mances of endmember extraction algorithms in the synthetic
fractal scenes. The first metric is the SA [17] between each
extracted endmember and the set of available USGS ground-
truth spectral signatures. The second metric used in this work
is the root-mean-square error (rmse) between the original and
a reconstructed version of the hyperspectral scene [8]. Table I
shows the average SA scores (in degrees) between the reference
USGS mineral spectra and their corresponding endmember
pixels produced by several endmember extraction algorithms,
across the five synthetic scenes in Fig. 1. As a result, each
value reported in Table I corresponds to the average SA ob-
tained after processing the five considered scenes with the same
SNR (five different SNR values, ranging from 30:1 to 110:1,
are reported in the table). In our experiments, three different
clustering methods (ISODATA, k-means, and RHSEG) are used
to implement the clustering stage in RBSPP. As shown in
Table I, the combination of the proposed RBSPP method with
the spectral-based algorithms does not always provide the best
results in terms of SA. The SA is probably not the best tool
for measuring spectral similarities when the differences are

Zhttp://www.umbc.edu/rssipl/people/aplaza/fractals.zip
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TABLE 1
AVERAGE SPECTRAL SIMILARITY SCORES (IN DEGREES) BETWEEN THE
USGS MINERAL SPECTRA AND THEIR CORRESPONDING ENDMEMBER
PIXELS PRODUCED BY SEVERAL ENDMEMBER EXTRACTION
ALGORITHMS ACROSS THE FIVE SYNTHETIC SCENES IN FIG. 1
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TABLE III
SPECTRAL SIMILARITY SCORES (IN DEGREES) BETWEEN USGS
MINERAL SPECTRA AND THEIR CORRESPONDING ENDMEMBERS
EXTRACTED BY SEVERAL ALGORITHMS FROM
THE AVIRIS CUPRITE SCENE

Algorithm [SNR=30:1 SNR=50:1 SNR=70:1 SNR=90:1  SNR=110:1 Alunite Budding. Calcite Kaolinite Muscovite

NFINDR 3030 0463 0353 0358 0361 Algorithm GDS84 GDS85 WS272  KGa-1  GDS107 | Mean
OSP 2.118 0452 0.349 0.361 0.345 N-FINDR 4.81  4.29 7.60 9.92 5.05 6.33
VCA 2.187 0520 0367 0.433 0435 OSP 4.81 4.16 9.532 10.76  5.29 6.91
SPP+N-FINDR 2293 0.778 0.701 0.604 0.603 VCA 6.91 5.38 9.53 9.65 6.47 7.59
SPP+OSP 2342 0.622 0536 0.529 0529 SPP+N-FINDR 772 427 9.34 11.26 5.69 7.66
SPP+VCA 2271 0.455 0.327 0.319 0.347 SPP+OSP 6.06 4.27 8.43 12.28 4.64 7.14
RBSPP*+N-FINDR | 2.174 0.874 0.676 0.786 0.804 SPP+VCA 14.11 8.49 11.94 13.86 5.61 |10.80
RBSPP"+0OSP 2226 0.764 1.020 1.088 1.034 RBSPP+NTINDR | 7.22  5.71 5.59 10.43  5.08 6.81
RBSPP +VCA 1.033 0.685 0.678 0.809 0714 RBSPP+OSP 6.86 4.16 10.05 11.14 5.70 7.58
RBSPPT4N-FINDR| 2220 0.648 0.708 0.618 0.690 RBSPP+VCA 6.86 4.34 831 1019 542 |7.02
RBSPPT +0OSP 2275 0.588 0.724 0.605 0.567 AMEE 4.81  4.17 5.87 874  4.61 | 5.64
RBSPPT +vCA 1307 0.973 0.890 0761 0512 SSEE 481 416 8.48 10.73 4.63 6.57
RBSPPS +N-FINDR| 2.272 0.982 0.845 0.677 0.895

RBSPPS +OSP 3332 0910 0.860 0.800 0.941 to implement RBSPP provided very similar results in terms of
RBSPPS +vCA 1301 0.818 0.936 0.686 1083 performance and computational complexity, in the following,
AMEE 2.670 1260 0.969 1.193 1252 : s nlic

SSEE o or 0376 070 vers we use only the ISODATA algorithm for simplicity.

>kImplemenled with ISODATA. TImplemented with k-means. §Implemented with RHSEG.

TABLE 1II
AVERAGE ERROR SCORES AFTER RECONSTRUCTING THE FIVE
SYNTHETIC SCENES IN FIG. 1 USING THE ENDMEMBERS
EXTRACTED BY SEVERAL METHODS

Algorithm SNR=30:1 _SNR=50:1 _SNR=70:1 _ SNR=90:1 SNR=I10:1
N-FINDR 0356 0039 0.009 0.007 0.008
OSP 0359 0039 0010 0.008 0.008
VCA 0369 0044 0017 0.021 0018
SPP+N-FINDR 0359 0045 0017 0016 0016
SPP+OSP 0368 0048 0016 0015 0015
SPP+VCA 0368 0.040 0011 0.009 0.009
RBSPP" +N-FINDR | 0.358 0.049 0.028 0.026 0028
RBSPP"+OSP 0359 0.055 0072 0.054 0.054
RBSPP" +VCA 0308 0048 0033 0.043 0.028
RBSPPT +N-FINDR| ~ 0.360 0042 0018 0018 0.022
RBSPPT +0SP 0.361 0.042 0019 0023 0017
RBSPPT +vCA 0320 0070 0034 0.070 0.029
RBSPPS +N-FINDR|  0.372 0078 0023 0023 0024
RBSPPS +0SP 0388 0087 0.025 0.029 0.027
RBSPPS +VCA 0340 0066 0.040 0.035 0.046
AMEE 0627 0484 0463 0473 0484
SSEE 0358 0.135 0035 0.066 0.026

“Implemented with ISODATA. i Implemented with k-means. §]mplememed with RHSEG.

just in a few—but diagnostic—wavelengths (e.g., the spectra
of Muscovite and Pyrophilite in Fig. 2). However, the results
obtained by RBSPP are always comparable to those provided
by other methods (regardless of the clustering algorithm used).
The best overall results in Table I are found by RBSPP +
VCA. This is because VCA is the only considered endmember
extraction algorithm that performs noise characterization in the
data before conducting the endmember search. Since RBSPP
discards those pixels which are contained in mixed regions,
the noise characterization process conducted by VCA is more
efficient for endmember extraction purposes because it is per-
formed only with those pixels located in spectrally pure regions.

On the other hand, Table II shows the rmse scores (measured
across the five synthetic scenes in Fig. 1) after reconstructing
the scenes using the endmembers extracted by several methods.
Again, each value reported in the table corresponds to the rmse
obtained after reconstructing five different scenes but simulated
with the same SNR. Table II indicates that spectral-based
methods generally provide the best overall results (lower rmse
values), while RBSPP can produce comparable results when
the SNR decreases. Since the three clustering methods used

IV. EXPERIMENTS WITH REAL DATA

In this experiment, we use the well-known AVIRIS Cuprite
data set, available online in reflectance units® after atmospheric
correction. This scene has been widely used to validate the
performance of endmember extraction algorithms. The portion
used in experiments corresponds to a 350 x 350-pixel subset
of the sector labeled as f970619t01p02_r02_sc03.a.rfl in the
online data. The scene comprises 224 spectral bands between
0.4 and 2.5 pm, with a full width at half maximum of 10 nm
and a spatial resolution of 20 m per pixel. Prior to the analy-
sis, several bands were removed due to water absorption and
low SNR in those bands, leaving a total of 192 reflectance
channels to be used in the experiments. The Cuprite site is
well understood mineralogically [20]. A few selected spectra
from the USGS library, corresponding to highly representative
minerals in the Cuprite Mining District, are used in this work to
substantiate endmember purity.

Table III tabulates the SA scores (in degrees) obtained after
comparing the USGS library spectra of alunite, buddingtonite,
calcite, kaolinite, and muscovite, with the corresponding end-
members extracted by different algorithms from the AVIRIS
Cuprite scene. In all cases, the input parameters of the differ-
ent endmember extraction methods tested have been carefully
optimized so that the best performance for each method is
reported. It should be noted that Table III only displays the
smallest SA scores of all endmembers with respect to each
USGS signature for each algorithm. For reference, the mean
SA values across all five USGS signatures are also reported.
The number of endmembers to be extracted was set to p = 19
in all experiments after the consensus reached between HySime
[13] and the VD concept [14], implemented using Pr = 1073
as the input false-alarm probability. As shown in Table III, the
use of RBSPP often improved the results achieved by other
preprocessing methods such as SPP.

Fig. 3 shows the error maps obtained after reconstructing
the AVIRIS Cuprite scene using p = 19 endmembers extracted
by different methods. Fig. 3 shows that the application of
RBSPP as preprocessing generally results in similar error maps
across different endmember extraction algorithms, while the

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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N-FINDR (0.090) VCA (0.081)

SPP+N-FINDR (0.043) SPP+OSP (0.165) SPP+VCA (0.100)

RBSPP+N-FINDR (0.100) RBSPP+OSP (0.079) RBSPP+VCA (0.073)

AMEE (0.265)

SSEE (0.101)

Fig. 3. Errors measured for various endmember extraction algorithms after
reconstructing the AVIRIS Cuprite scene.

TABLE 1V
PROCESSING TIMES (IN SECONDS) MEASURED IN A DESKTOP PC WITH
INTEL CORE i7 920 CPU AT 2.67 GHz WITH 4 GB OF RAM

Algorithm Spatial preprocessing | Endmember extraction | Total processing time
N-FINDR - 466.08 466.08
OSsP - 136.09 136.09
VCA - 31.12 31.12
SPP+N-FINDR 50.06 466.08 516.14
SPP+OSP 50.06 136.09 186.15
SPP+VCA 50.06 31.12 81.18
RBSPP+N-FINDR 96.51 17.72 114.23
RBSPP+OSP 96.51 571 102.22
RBSPP+VCA 96.51 5.89 102.40
AMEE - 76.06 76.06
SSEE - 1051.23 1051.23

use of SPP results in more variations in terms of reconstruction
accuracy, depending on the endmember selection method. For
example, the results from OSP and SPP + OSP show regions
with large errors in the upper right corner of the image, which
are related to an incorrect or missing endmember. Using RBSPP
+ OSP, these errors can be avoided.

To conclude this section, we note that RBSPP is more com-
putationally expensive than SPP. However, since the RBSPP
acts as a pixel selection module that discards those areas of
the scene which do not exhibit spatial correlation, it has the
potential to significantly reduce the time needed by spectral-
based algorithms to conduct the endmember searching process
(see Table IV).

V. CONCLUSION AND FUTURE RESEARCH

In this letter, we have presented a new RBSPP technique
which can be combined with classic endmember extraction and
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spectral unmixing algorithms. Our experimental results have
been discussed (using both simulated and real hyperspectral
data) in terms of three criteria: 1) the spectral similarity to pure
spectra; 2) the capacity to produce an accurate reconstruction
of the original hyperspectral image; and 3) the computational
complexity of the considered algorithms. After analyzing these
criteria, we conclude that the proposed region-based prepro-
cessing can assist in the selection of spectral endmembers
which are more relevant in spatial sense without increasing the
computational complexity. In the future, we will work toward
its parallel implementation.
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