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Abstract—Hyperspectral unmixing is one of the most impor-
tant techniques in remote sensing image analysis. In recent
years, nonnegative matrix factorization (NMF) method is widely
used in hyperspectral unmixing. In order to solve the non-
convex problem of NMF method, a number of constraints have
been introduced into NMF models, including sparsity, manifold,
smoothness, et al. However, these constraints ignore an important
property of hyperspectral image, i.e., the spectral responses
in a homogeneous region are similar at each pixel but vary
in different homogeneous regions. In this paper. We introduce
a novel region based structure preserving NMF (R-NMF) to
explore consistent data distribution in the same region while
discriminating different data structures across regions in the
unmixed data. In this method, a graph cut algorithm is first
applied to segment the hyperspectral image to small homogeneous
regions. Then two constraints are applied to the unmixing model,
which preserve the structural consistency within region while
discriminating the differences between regions. Results on both
synthetic and real data have validated the effectiveness of this
method, and shown that it has outperformed several state-of-the-
art unmixing approaches.

Index Terms—Hyperspectral Unmixing, Nonnegative Matrix
Factorization, Homogeneous Region.

I. INTRODUCTION

With rapid development of imaging instruments, hyperspec-

tral imagery has been widely used in environmental mon-

itoring, agriculture, and mining [1], [2], [3], [4]. Pixels in

remote sensing hyperspectral imagery are normally composed

of mixed spectral responses from multiple ground objects

due to the low spatial resolution of the data. Therefore,

hyperspectral unmixing has become an important technique

to decompose mixed pixels into a collection of spectral signa-

tures, i.e., endmembers, and their corresponding proportions,

i.e., abundances [5], [6].

Many unmixing methods are based on the linear mixing

model which treats each pixel as a linear combination of

endmembers and assume there is no interference between

them [7], [8]. These methods can be divided into three

main categories: geometry based, sparse regression based, and

statistics based.
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Geometry based methods explore the geometric relationship

between candidate endmembers and often treat them in a

projected space. Classic methods in this category include N-

FINDR [9], pixel purity index (PPI) [10], and vertex com-

ponent analysis (VCA) [11]. The drawback of these methods

is that they assume pure pixels present in the image which

is not always the case. On the contrary, simplex identification

via split augmented Lagrangian (SISAL) method [12] does not

have this assumption. It enforces the endmembers to form a

convex hull containing all pixels in the image data, and then

estimate the endmembers and abundance using a sequence of

augmented Lagrangian optimizations.

Sparse regression methods reconstruct the hyperspectral

image as a sparse linear combination of few endmembers out

of a pool of candidates [13], [14]. The sparsity constraint can

be applied to the spectral dimension so that only those with

high variances of material reflectance need to be selected [15].

It also can deal with the problem when the signatures in the

library and in the real data are mismatched [16]. On top of the

modelling in the spectral domain, spatial regularization term

can be incorporated into the sparse model, for example, via

total variation [17], or spectral constraint with regularization

term defined based on prior knowledge of endmembers [18].

Statistical unmixing methods include independent com-

ponents analysis (ICA) [19], [20], normal compositional

model [21] and nonnegative matrix factorization (NMF) [22].

NMF decomposes image data into nonnegative endmember

and abundance matrices. However, NMF is a non-convex

problem which does not have unique solution and is strongly

influenced by the initialization step. In order to overcome

this drawback, various constraints have been introduced to

regularize NMF method according to different considerations

on the property of hyperspectral image. Wang and Du [23]

set signature dissimilarity as the constraint on endmembers.

Liu et al [24] proposed that weights can be assigned to local

neighborhood to enhance the unmixing performance. Sparsity

has also been used as a spatial constraint in NMF method,

which allows each pixel be decomposed into one or few

endmembers [25], [26]. Some methods combine spectral and

spatial constraints, for example, to force the smoothness of

both endmembers and abundance [27], to introduce abundance

separation and smoothness [28], to maintain the manifold

structure of raw image and unmixed data [29], or to main-

tain structure information by clustering [30]. Recently, Yuan

proposed an NMF method [31] which is similar to sparse

regression method and needs a library of signatures. In this

method, a projection-based nonnegative matrix factorization
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algorithm is implemented by importing spectra library into

the NMF framework, with the endmember signatures being

adaptively generated from the spectral library. Li et al [32], on

the other hand, developed a robust collaborative NMF method

to reduce the number of overestimated endmembers during the

unmixing process. Prior knowledge has also been considered

in NMF based method to enhance the unmixing performance

by introducing known endmember into the model [33], [34].

While most unmixing methods are operated at pixel level,

some researchers explored region based unmixing. David et

al [35] proposed to segment a hyperspectral image into super-

pixels and then estimate the endmembers on each superpixel.

The results show that region based operation has led to better

performance than methods implemented on pixels. Gabriel and

Antonio [36] proposed an unsupervised spatial preprocessing

module which adopts a region selection approach using or-

thogonal projections. After region selection, an automatic end-

member extraction approach is used to extract endmembers.

Eches et al [37] proposed a Bayesian based unmixing method

which incorporates spatial correlations between partitioned

regions into consideration. These methods show that regions

play an important role in the unmixing problem because

they allow reduced influence from noises in hyperspectral

images by exploring the spatial information of neighbouring

pixels [35].

We assume there is strong semantic relationship of regions

in a hyperspectral image. This is mainly due to the fact that

the same land covers tend to appear in a local neighborhood,

for example, buildings, roads, forests etc.. We define those

regions mainly containing the same endmembers as homoge-

neous regions. Therefore it is reasonable to assume consistent

abundances in these homogeneous regions, in particular when

one or very few endmembers present at a pixel. On the other

hand, the same endmembers may appear in many regions,

for example, soils and trees may appear in many locations

on an image and form mixed pixels with other endmembers.

Their contribution to each region shall be distinctive, which

forms the reason for discriminating the contribution from

endmembers across regions.

Inspired by the advantages of exploring regional-wise data

distribution, we propose a novel region based NMF (R-NMF)

method for hyperspectral unmixing. This method aims at

enforcing consistent abundances within homogeneous regions

while discriminating the contribution from endmembers across

regions. R-NMF consists of several steps. First, a graph cut

algorithm is employed to segment a hyperspectral image

into small homogeneous regions. Then two constraints are

added to a sparse NMF model. The first constraint is to

make the abundance within homogeneous regions be similar.

The second one is a structure preserving constraint which

defines the relationship between homogeneous regions so as

to discriminate their differences. We adopt the k-nearest and

the k-farthest neighbours to preserve the structural information

between homogeneous regions.

The rest of this paper is organized as follows. Section II

describes the background on linear mixture model and L1/2-

NMF method. Section III makes detailed description on the

proposed method, including homogeneous region segmenta-

tion approach and region based NMF. Section IV presents the

experimental results on both synthetic and remote sensing data.

Finally, conclusions are drawn in Section V.

II. RELATED WORK ON NMF-BASED HYPERSPECTRAL

UNMIXING

In this section, we describe the basic linear mixture model

for hyperspectral unmixing and its sparsity constrained exten-

sion L1/2-NMF. These form the basis of the proposed method.

A. Linear Mixture Model

In linear mixture model, each pixel can be considered as the

linear combination of several endmembers. Let the number of

wavelength-indexed bands in an image be H and the number

of endmembers be P . A pixel y in a hyperspectral image Y

is an H × 1 column vector whose entries correspond to the

reflectance of object in different bands. Let M be an H × P
endmember matrix (m1, . . . ,mj , . . . ,mP ), where mj is an

H × 1 column vector representing the spectral signature of

the jth endmember. Then y can be approximated by a linear

combination of endmembers

y = Mr+ e (1)

where r is a P ×1 column vector for endmember abundances,

and e is the additive Gaussian white noise.

Let N be the number of pixels in image Y, the matrix form

of the linear mixture model can be defined as

Y = MR+E (2)

where R is a P × N abundance matrix which contains the

proportion of each endmember at each pixel. E is an H ×N
matrix representing the additive noise.

B. L1/2 Regularized NMF

The goal of hyperspectral unmixing is to estimate the

endmember matrix M and the abundance matrix R given a

hyperspectral image Y. Apparently, both M and R shall be

nonnegative because spectral responses of endmembers and

their proportion at each pixel can not be smaller than zero.

Because of this property, nonnegative matrix factorization

(NMF) [38], [39], which decomposes a matrix into nonnega-

tive matrices, becomes a natural solution to hyperspectral un-

mixing. It estimates the endmember matrix M and abundance

matrix R simultaneously to reconstruct the high dimensional

data matrix Y. To cope with the non-convexity of the original

NMF method and model the sparsity of abundance, an L1/2

regularizer has been introduced as a sparsity constraint which

leads to L1/2-NMF [25]. The objective function of L1/2-NMF

is

obj(M,R) =
1

2
‖Y −MR‖2F + λ‖R‖ 1

2

(3)

where ‖ · ‖F represents the Frobenius norm, and

‖R‖1/2 =

P∑

p=1

N∑

n=1

R1/2
pn (4)
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A solution for minimizing this object function is the

multiplied iterative algorithm [39], [22]. When applied to

Equation (3), the multiplicative rule is given by the following

two equations:

M←M. ∗YRT ./MRRT (5)

R← R. ∗MTY./(MTMR+
λ

2
R−

1

2 ) (6)

where (.)T is the transpose of the matrix, .∗ and ./ denote

element-wise multiplication and division, respectively.

III. APPROACH

In this section, we first introduce the homogeneous region

segmentation method and then describe the proposed R-NMF

method in detail. At last some implementation issues are

discussed.

A. Homogeneous Region Segmentation Approach

The first step in our method is to segment hyperspectral

image into a set of homogeneous regions. This is an unsu-

pervised segmentation problem and can be implemented by

an efficient graph-based method [40]. In this method, each

pixel in a hyperspectral image can be represented as a vertex

vi ∈ V , i = 1, . . . , N . An edge E(vi, vj) connects a vertex vi
with its neighbour vj , and the weight of the edge is related to

the distance between the connected vertices.

An iterative algorithm segments the image to Q segments

{G1, ..., GQ}. At beginning of the iteration, each pixel is

treated as a separate region. Then the algorithm merges the

pixels to form homogeneous regions according to pairwise

region comparison. Two criteria are used for the merging:

the maximum internal difference (MID) of a region and the

minimum connecting weight (MCW) between regions. The

maximum internal difference is the largest weight in the

minimum spanning tree MST (G) [41] of a homogeneous

region G, which is defined as follows

MID(G) = maxω(vi, vj) +
ρ

|G| ∀vi ∈ G, vj ∈ G

(vi, vj) ∈MST (G)
(7)

where ρ is a parameter that controls the contribution of small

regions. To calculate the weight of an edge, the spectral angle

distance (SAD) is used, such that

ω(vi, vj) = arccos

(
yT
i yj

‖yi‖‖yj‖

)
(8)

The minimum connecting weight between homogeneous

regions G1 and G2 can be calculated by

MCW (G1, G2) = minω(vi, vj) ∀vi ∈ G1, vj ∈ G2

(vi, vj) ∈ E
(9)

With the calculated maximum internal difference and

minimum connecting weight between homogeneous regions,

whether two homogeneous regions should be merged or not

can be determined as follows: if the maximum internal dif-

ferences from both homogeneous regions are larger than the

minimum connecting weight between two regions, these two

regions shall be merged. Otherwise, they shall remain sepa-

rated. The merging process can be iterated until no changes on

the regions happen. Finally, a threshold T is used to control

the minimal size of the homogeneous region. Regions smaller

than this threshold is merged to the nearest region. This is an

effective way to reduce the influence of small regions created

due to noises in the image.

B. Region Based NMF

In this subsection, we describe the region based NMF ap-

proach. It consists of two main process: structure consistency

in homogeneous region and structure preservation between

homogeneous regions. To describe this approach, we define

cq as the mean value of spectral responses of region Gq , and

αq as the representation in the space spanned by cq of region

Gq . Variable αq can be considered as the mean abundance of

the homogeneous region.

1) Structure Consistency in Homogeneous Region: After

Q homogeneous regions G = {G1, ..., GQ} are generated,

we calculate the mean value of spectral responses cq of

each region Gq . For each homogeneous region, the spectral

responses of pixels in the region shall be similar. Based on

the manifold learning theory [42], the raw spectral responses

can be treated as high dimensional data and the abundance

is considered as the mapped low dimensional data. It means

that in the homogeneous region, the abundance of each pixel

should be similar to each other. Therefore, we set a constraint

between the mean abundance αq and the estimated abundance

at each pixel rn of region Gq . The object function is defined

as follows

obj(M,R) =
1

2
‖Y −MR‖2F +

Q∑

q=1

∑

n∈Gq

‖rnλ2
q‖1/2

+µ

Q∑

q=1

∑

n∈Gq

‖rn − αq‖22

(10)

where the second term controls the sparsity of abundance in

each homogeneous region. λq is a parameter that controls the

contribution of the sparsity term, which is defined by Qian et

al [25] as

λq =
1√
H

∑

h

√
N − ‖rqh‖1/‖rqh‖2√

N − 1
(11)

where rqh denotes the q-th homogeneous region of the h-th

band in the hyperspectral imagery. H and N are the total

numbers of bands and pixels, respectively. µ is a parameter

that controls the contribution from the structure consistency

term in Equation (10). The larger µ is, the higher similarity

of abundance in homogeneous regions.

To solve Equation (10), we rewrite the objective function in

column form as follows

obj(M, rq(n)) =
1

2
‖yq(n)−Mrq(n)‖22 + ‖rq(n)λ2

q‖1/2
+ µ‖rq(n)− αq‖22

(12)
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where yq(n) and rq(n) are the n-th spectral signature and

corresponding estimated abundance vector in homogeneous

region Gq , respectively. αq is the mapped representation of

cq in the new P-dimension space. The first two terms are the

same as L1/2-NMF. The third term is the consistency term.

It minimizes the difference between rq(n) and αq , making

the estimated abundance in the homogeneous region similar.

Method to estimate αq will be described in Section III-B2.

Please note that the estimation of M remains the same as the

L1/2-NMF solution via Equation (5), we only describe how

rq(n) should be updated. According to the gradient descent

algorithm, rq(n) can be updated as follows

rq(n)←rq(n)− η(−MT (yq(n)−Mrq(n))+

λq

2
rq(n)

−
1

2 + 2µ(rq(n)− αq))
(13)

Let

η =
M

MTMrq(n) +
λq

2
rq(n)−

1

2 + 2µrq(n)
(14)

the above step becomes

rq(n)←rq(n). ∗ (MTyq(n) + 2µαq)./(M
TMrq(n)

+
λq

2
rq(n)

−
1

2 + 2µrq(n))
(15)

2) Structure Preservation between Homogeneous Regions:

Structure preserving aims to properly preserve the local affinity

of data distribution before and after matrix factorization and

at the same time avoid the distortion caused by distant data

points. The latter property is also called distant repulsion [43].

The effect of structured discrimination is illustrated in Fig. 1.

Fig. 1(a) shows the distribution of two materials, Fig. 1(b) is an

example of the distribution of estimated abundance when only

local affinity property is considered. This reduces to the MRS-

NMF [29] method. It can be clearly seen that the local affinity

may result in overlaps (data in the red rectangle) between

different materials. Conversely, Fig. 1(c) indicates that only

modelling the repulsion correlations without paying attention

to the local affinity property leads to loose clusters, i.e., the

data is highly dispersed. For homogeneous region generated

from hyperspectral images, local affinity property means that

the abundance of the same material in different regions should

be similar. Meanwhile, distant repulsion property forces the

abundance of different materials, such as grass and tree, be

different.

In the proposed R-NMF method, graph regularization is

used to preserve the structural information. The local affinity

of graph vertices which represent the reflectance at different

data points can be defined as follows

min
α

1

2

Q∑

i=1

Q∑

j=1

Wn
ij‖αi − αj‖2 (16)

where Wn is a weight matrix constructed from the pairwise

distance between two regions Gi and Gj . In reality, this can

be simplified by only considering the k nearest neighbours of

αi instead of the whole dataset. The entries of Wn are define

as follows

Wn
ij = exp−‖ci − cj‖2

σ
(17)

where ci and cj are the mean spectral responses of ho-

mogeneous regions Gi and Gj , respectively. By simplifying

Equation (16), we get

1

2

Q∑

i,j=1

‖αi − αj‖Wn
ij =

Q∑

i=1

αT
i αiDii −

Q∑

i,j=1

αT
i αjW

n
ij

= Tr(RDnRT )− Tr(RWnRT )

= Tr(RLnRT )
(18)

where Tr() is the trace of the matrix, Ln and Dn are the

Laplacian matrix and the diagonal matrix defined as follows

Ln = Dn −Wn (19)

Dn
ii =

∑

j

Wn
ij (20)

The distant repulsion is defined as follows

min
α

1

2

Q∑

i=1

Q∑

j=1

W
f
ijexp(−‖αi − αj‖2) (21)

where W
f
ij is calculated by

W
f
ij = ‖ci − cj‖2 (22)

where cj is the mean spectral response of homogeneous region

that is among the k farthest neighbors of region correspond

to ci. Equation (21) tells that if ci and cj are different from

each other, this property will be preserved in αi and αj .

Combining Equations (18) and (21), αi can be obtained by

minimizing following equation

f(M,A) =
1

2
‖cq −Mαq‖2F

+

Q∑

q=1

λq‖αq‖1/2 +
γ1
2
Tr(ALnAT )

+
γ2
4

Q∑

ij

W
f
ijexp(−‖αi − αj‖2)

(23)

where the first and the second terms form the sparsity regu-

larized NMF model, and the third and the fourth terms are the

structure preservation terms.

To optimize the function, we define

C = [c1, c2, ..., cQ] (24)

A = [α1α2, ..., αQ] (25)

Λ =




λ1 0 ... 0
0 λ2 ... 0
0 0 ... 0
0 0 ... λQ


 (26)

Then the Equation (23) can be rewritten as follows:

f(M,A) =
1

2
‖C−MA‖2F

+ ‖AΛ2‖1/2 +
γ1
2
Tr(ALnAT )

+
γ2
4

n∑

ij

W
f
ijexp(−‖αi − αj‖2)

(27)
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(a) Original data (b) Local affinity (c) Distant repulsion

Fig. 1. Illustration of structured information after abundance estimation.

We follow the method by Li et al [43] to solve Equa-

tion (27). Define a Lagrangian function as follows

L =
1

2
‖C−MA‖2F

+ ‖AΛ2‖1/2 +
γ1
2
Tr(ALnAT )

+
γ2
4

n∑

ij

W
f
ijexp(−‖αi − αj‖2)

+ Tr(ΨMT ) + Tr(ΦAT )

(28)

Taking the derivative of abundance matrix A, we get

∂L
∂A

= −MTC+MTMA+ γ1AL+
1

2
A−

1

2Λ + Φ (29)

where

L = Ln − ηL̃f

η = γ2/γ1

Ln matrix is the Laplacian matrix of the k-nearest neighbours.

L̃f is defined as follows

L̃f = D̃f − W̃f (30)

where
˜

W
f
ij = W

f
ijexp(−‖αi − αj‖2)

D̃
f
ii =

∑

j

W̃r
ij

Using the Karush-Kuhn-Tucker (KKT) conditions ΦpqApq =
0. We get the following equation

(−MTC+MTMA+
1

2
A−

1

2Λ + γ1AL)pqApq = 0 (31)

Following the method by Li et al [43], let L = L+ − L−,

where L+

ij = (|Lij |+Lij)/2 and L−

ij = (|Lij | −Lij)/2, Apq

can be updated as follows

Apq ← Apq. ∗
(MTC+ γ1AL−)pq

(MTMA+ 1

2
A−

1

2Λ + γ1AL+)pq
(32)

C. Implementation Issues

In all NMF based methods, we initialize endmember matrix

M by the VCA method [11] and then calculate matrix R by

the FCLS method [44]. On synthetic data, since the number of

endmembers are known when generating dataset, we simply

used the same number as the endmember number in our

model. On real world data, we set the number of endmembers

as a fixed value following several studies on the real world

datasets [45]. Although the number of endmembers is an

important parameter, how it can be optimally determined is

beyond the scope of our paper. Relevant solutions can be

found, for example, in [46], [47].

There are two stopping criteria in our implementation. The

first one is the maximum iteration number which is set to 3000.

The second one is the gradient difference of the objective

function between the current and the previous iterations:

|obj(Mi,Ri)| ≤ ǫ|obj(Mi−1,Ri−1)| (33)

where ǫ is set to 10−4 in the experiments. Once either of these

criteria is met, the optimisation process terminates.

The procedure of our homogeneous region regularized NMF

method is described below

Algorithm 1: Unmixing procedure

Data: Hyperspectral image Y, parameters λ and µ
Initialize endmember matrix M and abundance matrix R

Generate Q homogeneous regions, construct Wn and W f

while not converge do
1. Update A by equation (32)

2. Update M by equation (5).

3. Update R by equation (15).
end

Output M and R

IV. EXPERIMENTS

A series of experiments were developed to evaluate the

performance of the proposed region based NMF (R-NMF)

method. We also compared it against several baseline un-

mixing methods, including VCA [11], super pixel based

VCA (S-VCA) [35], L1/2-NMF [25], manifold regularized
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NMF (MRS-NMF) [29] and Double constrained NMF (D-

NMF) [30].

Two evaluation criteria are used: spectral angle distance

(SAD) and root mean squared error (RMSE). The SAD is used

to compare the similarity of the p-th endmember signature Mp

and its estimation M̂p, which is defined as

SADp = arccos

(
MT

p M̂p

‖Mp‖‖M̂p‖

)

The RMSE is used to evaluate the the abundance estimation,

which is defined as

RMSEp =

(
1

N
| Rp − R̂p |2

) 1

2

where R̂p is the reference abundance matrix for the pth end-

member.
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Fig. 2. Example endmember spectra used in synthetic data.

A. Synthetic Data

We first evaluate and analyze the proposed method on

synthetic data. Six spectral signatures were chosen from the

USGS digital spectral library [48] to generate the synthetic

data, which are shown in Fig. 2. Similar to [49], there were 5

steps to generate this synthetic data.

1) Generate an image which contains z2 × z2 pixels and

divide it into z × z regions.

2) In each region the same type of ground cover is initial-

ized with one of the endmembers chosen randomly.

3) A (z+1)×(z+1) low pass filter is applied to the image

to generate mixed data.

4) For each pixel whose abundance is larger than 0.8, the

abundance at the pixel is replaced with a mixture of all

endmembers with equal abundances.

5) Zero-mean Gaussian noise is added to the synthetic data.

The signal to noise ratio(SNR) is defined as

SNR = 10 log10
E[yTy]

E[eT e]
(34)

where y and e are the observation and noise at a pixel.

E[·] denotes the expectation operator.

Fig. 3(a) displays the synthetic data of band 100 with SNR

of 25dB and Figs. 3(b)-(f) show the abundance maps of five

endmembers.

Fig. 4. Convergence curve of R-NMF.

1) Experiment 1 (Convergence Analysis): It is difficult to

prove the convergence of the proposed algorithm. We did

it in an alternative way by plotting the convergence curve

of the proposed algorithm in Fig. 4. It can be seen that at

the beginning, tolerance of the object function is quite large.

The error drops quickly with the optimization iterations, and

changes slowly when the iteration number passes 100.

2) Experiment 2 (Parameters): In our method, the bias

ρ and the minimum region size T in section III-A are

important parameters for homogeneous region segmentation.

Fig. 5 displays the segmentation results with different T from

10 to 200. It can be seen that when the size T is small,

the segmentation results is very trivial, but when T is too

large, different materials may be assigned to the same region.

Therefore, we set T = 50 in the experiment. We also display

the segmentation results with different σ values in Fig. 6.

The figure shows that this parameter has less impact to the

segmentation results, so we set σ = 0.01.

µ in Equation (10) is a parameter that controls the sim-

ilarity between estimated abundance and the abundance in

homogeneous regions. To evaluate µ, we calculated λq using

Equation (11) and changed µ from 0.1 to 1. From Fig. 7, we

can see that for SAD criterion the optimal value of µ is 0.3

while for RMSE it is 0.4.We set µ as 0.3 in our experiments.

γ1 and γ2 are parameters that control the influence of

the constraints on consistency of same material and diversity

of different materials in the same homogeneous region. We

changed γ1 and γ2 from 0.05 to 1 with an interval of 0.05.

Fig. 8 shows that the performance is better when γ1 = 0.1 and

γ2 = 0.15. Therefore, we set γ1 = 0.1 and γ2 = 0.15 in our

experiments.

3) Experiment 3 (Comparison of Different Methods): In

this experiment, we compare the proposed R-NMF method

with several baseline methods. We set SNR = 25 and the

total number of endmembers P = 6. The code for each

method was run for 10 times and then the means and standard

deviations of SAD and RMSE were calculated. Fig. 9 shows

the experimental results. The bars and error lines stand for

the mean SAD and RMSE and their standard deviations,

respectively. From the figure, we can see that the performance

of our proposed method is better than its counterparts.

From Fig. 9 we can see that the performance of SAD

and RMSE of all NMF based methods are better than those

from VCA. This verifies that NMF based method is effective
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Synthetic data. (a) Synthetic data of band 100. (b)-(g) Abundance maps.

(a) (b) (c) (d)

Fig. 5. Segmentation results. (a) Synthetic data of band 100. (b) Segmentation of band 100 with T = 10. (c) Segmentation of band 100 with T = 50. (e)
Segmentation of band 100 with T = 200.

(a) (b) (c) (d)

Fig. 6. Segmentation results. (a) Synthetic data of band 100. (b) Segmentation of band 100 with σ = 0.1. (c) Segmentation of band 100 with σ = 0.01. (e)
Segmentation of band 100 with σ = 0.001.
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Fig. 7. Results under different values of µ. (a) Mean SAD. (b) Mean RMSE.

when initialized with VCA-FCLS method. The performance

of MRS-NMF is marginally better than L1/2-NMF because

it includes the manifold information between pixels in hy-

perspectral data and abundance matrix. The result of D-NMF

is better than MRS-NMF because it has a clustering process

which could maintain the structural information during the

unmixing. For the proposed R-NMF method, the performance

is better than all other methods. This is because we set

consistency constraint in homogeneous regions and preserve

the structural information between regions. Fig. 10 shows the

comparison of the estimated spectral signatures by R-NMF

(dashed lines) and the reference signatures extracted from the

library (solid lines).

4) Experiment 4 (Robustness to Noise): In this experiment,

different levels of SNR were applied to the synthetic data

to verify the robustness of our method. We set SNR as

15dB, 25dB, 35dB, 45dB and infinity (noise free), respectively.

Fig. 11 shows the SAD and RMSE results from different

methods. It can be seen that when the value of SNR becomes

large, the mean values of both SAD and RMSE become

small. Therefore, noises have strong influences on the unmix-

ing results. Fig. 11(a) shows that our method significantly

outperforms all other methods on endmember estimation.

Meanwhile, Fig. 11(b) also shows that the RMSE of our

method is better than others no matter how the noise level

changes. Our algorithm clearly is more robust to the influence

of noise.
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Fig. 9. Performance of different algorithms. (a) Mean SAD. (b) Mean RMSE.
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Fig. 11. The results of different SNRs. (a) Mean SAD; (b) Mean RMSE.

B. Remote Sensing Data

Three real-world datasets were used to evaluate the pro-

posed R-NMF method: Jasper, Urban and Washington DC

data sets. There are different numbers of endmembers in each

dataset. We got the reference ground truth of endmembers

following the method of Qian et al [50]. To match the

reference spectra with the estimated spectra, we calculated

the correlation between the spectral responses and then assign

the estimated endmember to the nearest reference endmember.

Note that there is no ground truth on the abundance of each

endmember for these data, so it is difficult to give quantitative

evaluation on the abundance. Therefore we only display the

abundance map of each endmember.

1) Jasper Ridge Dataset: The Jasper Ridge dataset contains

224 bands covering the wavelengths from 380nm to 2500nm,

with a 10 nm spectral resolution. The size of a single band

image is 512× 614. In the experiments, we crop the original

image to a subimage of 100× 100 pixels from location (105,

269) [45]. Fig. 12 displays the 50th, 90th, and 130th bands

of the subimage that has been used in the experiments. We

removed the low SNR and water-vapor absorption bands (1-3,

108-112, 154-166 and 220-224), which yielded 198 bands out

of the original 224. 4 types of endmembers were analyzed in

the experiments, i.e. soil, water, tree and road.

In the experiment, we calculated the mean SAD values

and the variances of these 4 endmembers. The results in

Table I show that the proposed method has significantly

outperformed VCA, S-VCA, L1/2-NMF, MRS-NMF, and D-

NMF methods. There are large homogeneous regions in this

data set, our method better uses the spatial information of these
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TABLE I
RESULTS OF DIFFERENT METHODS ON JASPER DATASET.

Method VCA S-VCA L1/2-NMF MRS-NMF D-NMF R-NMF

Tree 0.1320 ± 0.0297 0.1332 ± 0.0205 0.0494 ± 0.0030 0.0546 ± 0.0028 0.0501 ± 0.0025 0.0299 ± 0.0031

Water 0.1822 ± 0.0357 0.1592 ± 0.0253 0.1680 ± 0.0090 0.1716 ± 0.0089 0.1707 ± 0.0088 0.1550 ± 0.0085

Soil 0.1967 ± 0.0534 0.0699 ± 0.0367 0.0725 ± 0.0019 0.0672 ± 0.0019 0.0606 ± 0.0018 0.0427 ± 0.0022

road 0.0901 ± 0.0008 0.0935 ± 0.0010 0.0565 ± 0.0027 0.0499 ± 0.0021 0.0437 ± 0.0020 0.0386 ± 0.0023

Mean 0.1503 ± 0.0314 0.1136 ± 0.0209 0.0866 ± 0.0041 0.0858 ± 0.0039 0.0813 ± 0.0038 0.0665 ± 0.0040
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Fig. 13. Endmembers of Jasper estimated by R-NMF. Solid lines denote the reference endmembers and dashed lines denote the estimated endmembers. (a)
Tree. (b) Water. (c) Soil. (d) Road.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. Abundance map of Jasper data set.(a)-(d) Reference abundance map of each endmember: (a) Soil; (b) Water; (c) Tree; (d) Road. (e)-(h) Estimated
abundance map of each endmember: (e) Soil; (f) Water; (g) Tree; (h) Road.

homogeneous region. Fig. 13 shows the estimated endmember

signatures with the references. Fig. 14 shows the reference

abundance maps and estimated abundance maps respectively.

From these figures, it can be seen that our method produced

abundance map and endmember signatures very close to the

references.

2) Urban HYDICE Dataset: We also ran experiments on

the widely used Urban image. This image was obtained

by the HYDICE sensor [25]. The image depicts the scene

displayed in Fig. 17 and is of size 307 × 307. This image is

composed of 210 spectral channels with spectral resolution

of 10nm acquired in the 400nm to 2500nm region. After

low SNR bands had been removed (channels 1−4, 76, 87,

101−111, 136−153,and 198−210), 162 bands remained for

the experiments, i.e., H = 162.

In the experiments, we set the number of endmembers as 4,

including road, grass, asphalt and tree. Table II shows the mean

SAD of endmember estimations with different methods. From

this table, we can see that the performance of our proposed R-

NMF is better than other methods. Fig. 18 shows the estimated

endmember signatures and their references. It can be seen that

the output of R-NMF method is very close to the references.

Fig. 19(a)-(d) show the abundance maps of four endmembers

compare to the reference abundance map in Fig. 19(e)-(h). The

results are quite reasonable comparing with references.

3) Washington DC Mall Dataset: The last experiments

were conducted on Washington DC Mall dataset captured by

Urban Hyperspectral Digital Imagery Collection Experiment

(HYDICE) sensor. Due to the large size, we crop the original

image to a sub-image with size of 150 × 150. After low-SNR

bands are removed (channels 103−106, 138−148, 207−210),

191 bands remain. The sub-image is displayed in Fig. 20.

Following Jia and Qian [27], we set five endmembers in the

image: tree, grass, water, roof, and street.

In the experiment, we calculated the mean SAD values and

their variances of 5 endmembers. The results in Table III show

that the proposed method R-NMF has outperformed VCA,

L1/2-NMF, MRS-GNMF and D-NMF methods. Fig. 16(a)-(e)

show the abundance maps of five endmembers compared to

the reference abundance map in Fig. 16(f)-(j). Fig. 15 shows
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Fig. 15. Endmembers of Washington DC estimated by R-NMF. Solid lines denote the reference endmembers and dashed lines denote the estimated
endmembers. (a) Tree. (b) Grass. (c) Water. (d) Roof. (e) Street.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 16. Abundance map of Jasper data set. (a)-(e) Reference abundance map of each endmembers: (a) Tree; (b) Grass; (c) Water; (d) Roof; (e) Street. (f)-(j)
Estimated abundance map of each endmembers: (f) Tree; (g) Grass; (h) Water; (i) Roof; (j) Street.

the estimated endmembers and the reference ones. The result

is also close to the references.

V. CONCLUSION

In this paper, a region based structure preserving NMF

(R-NMF) method has been introduced for hyperspectral un-

mixing. This method first divides hyperspectral image into

homogeneous regions using a graph cut method. By imposing

constraints on consistency and structure information in homo-

geneous regions, R-NMF preserves the similarity and dissim-

ilarity of raw data in homogeneous regions after abundance

estimation. A series of experiments on both synthetic and

real data show that the proposed method has achieved better

performance than several baseline methods including VCA, S-

VCA, L1/2-NMF, MRS-NMF and D-NMF. In the future, we

will develop an adaptive constraint which could process the

unmixing problem according to different properties of different

regions.
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