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A b s t r a c t .  This paper addresses the problem of object tracking in a se- 
quence of monocular images. The use of regions as primitives for tracking 
enables to directly handle consistent object-level entities. A motion-based 
segmentation process based on normal flows and first order motion models 
provide instantaneous measurements. Shape, position and motion of each 
region present in such segmented images are estimated with a recursive al- 
gorithm along the sequence. Occlusion situations can be handled. We have 
carried out experiments on sequences of real images depicting complex out- 
door scenes. 

1 I n t r o d u c t i o n  

Digitized time-ordered image sequences provide an actually rich support to analyze and 
interpret temporal events in a scene. Obviously the interpretation of dynamic scenes has 
to rely somehow on the analysis of displacements perceived in the image plane. During 
the 80's, most of the works have focused on the two-frame problem, that is recovering the 
structure and motion of the objects present in the scene either from the opticM flow field 
derived between time t and time t -t- 1, or from the matching of distinguished features 
(points, contour segments, ...) previously extracted from two successive images. 

Both approaches usually suffer from different shortcomings, like intrinsic ambiguities, 
and above all numerical instability in case of noisy data. It  is obvious that performance 
can be improved by considering a more distant time interval between the two considered 
frames (by analogy with an appropriate stereo baseline). But matching problems become 
then overwhelming. Therefore, an attractive solution is to take into account more than 
two frames and to perform tracking over time using recursive temporal filtering [1]. 
Tracking thus represents one of the central issues in dynamic scene analysis. 

First investigations were concerned with tracking of points, [2], and contour segments, 
[3, 4]. However the use of vertices or edges lead to a sparse set of trajectories and can 
make the procedure sensitive to occlusion. The interpretation process requires to group 
these features into consistent entities. This task can be more easily achieved when work- 
ing with a limited class of a priori known objects [5]. It  appears that the ability of 
directly tracking complete and coherent entities should enable to more efficiently solve 
for occlusion problems, and also should make the further scene interpretation step easier. 
This paper addresses this issue. Solving it requires to deal with a dense spatio-temporal 
information. We have developed a new tracking method which takes into account regions 
as features and relies on 2D motion models. 

* This work is supported by MRT (French Ministry of Research and Technology) in 
the context of the EUREKA European project PROMETHEUS, under PSA-contract 
VY/85241753/14/Z10. 
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2 R e g i o n  M o d e l i n g ,  E x t r a c t i o n  a n d  M e a s u r e m e n t  

We want to establish and maintain the successive positions of an object in a sequence of 
images. Regions are used as primitives for the tracking algorithm. Throughout this paper 
we will use the word, "regions", to refer to connected components of points issued from 
a motion-based segmentation step. The region can be interpreted as the silhouette of the 
projection of an object in the scene, in relative motion with respect to the camera. 

Previous approaches, [6], to the "region-tracking" issue generally reduce to the track- 
ing of the center of gravity of regions. The problem of these methods is their inability 
to capture complex motion of objects in the image plane. Since the center of gravity of 
a region in the image does not correspond to the same physical point throughout the 
sequence, its motion does not accurately characterize the motion of the concerned region. 

We proceed as follows. First the segmentation of each image is performed using a 
motion-based segmentation algorithm previously developed in our lab. Second the cor- 
respondence between the predicted regions and the observations supplied by the seg- 
mentation process is established. At last a recursive filter refines the prediction, and its 
uncertainty, to obtain the estimates of the region location and shape in the image. A new 
prediction is then generated for the next image. 

2.1 T h e  Mot ion  Based  S e g m e n t a t i o n  A l g o r i t h m  

The algorithm is fully described in [7]. The motion-based segmentation method ensures 
stable motion-based partitions owing to a statistical regularization approach. This ap- 
proach does not require neither explicit 3D measurements, nor the estimation of optic flow 
fields. It mainly relies on the spatio-temporal variations of the intensity function while 
making use of 2D first-order motion models. It also manages to link those partitions in 
time, but of course to a short-term extent. 

When a moving object is occluded for a while by another object of the scene and 
reappears, the motion-based segmentation process may not maintain the same label for 
the corresponding region over time. The same problem arises when trajectories of objects 
cross each other. Labels before occlusion may disappear and leave place to new labels 
corresponding to reappearing regions after occlusion. Consequently, tracking regions over 
long periods of time requires a filtering procedure to be steady. A truly trajectory rep- 
resentation and determination is required. The segmentation process will provide only 
instantaneous measurements. In order to work with regions, the concept of region must 
be defined in some mathematical sense. We describe hereafter the region descriptor used 
throughout this paper. 

2.2 T h e  Region  Desc r i p to r  

The region representation 

We need a model to represent regions. The representation of a region is not intended 
to capture the exact boundary. It should give a description of the shape and location 
that supports the task of tracking even in presence of partial occlusion. 

We choose to represent regions with some of its boundary points. The contour is 
sampled in such a way that it preserves shape information of the silhouette. We must 
select points that best capture the global shape of the region. This is achieved through 
a polygonal approximation of the region. A good approximation should be "close" to 
the original shape and have the minimum number of vertices. We use the approach 
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developed by Wall and Danielson in [8]. A criterion controls the closeness of the shape 
and the polygon. 

The region can be approximated accurately by this set of vertices. This representation 
offers the property of being flexible enough to follow the deformations of the tracked sil- 
houette. Furthermore this representation results in a compact description which decreases 
the amount of data required to represent the boundary, and it yields easily tractable mod- 
els to describe the dynamic evolution of the region. 

Our region tracking algorithm requires the matching of the prediction and an ob- 
servation. The matching is achieved more easily when dealing with convex hull. Among 
the boundary points approximating the silhouette of the region, we retain only those 
which are also the vertices of the convex hull of the considered set of points. It must 
be pointed out that these polygonal approximations only play a role as "internal items" 
in the tracking algorithm to ease the correspondence step between prediction and ob- 
servation. It does not restrict the type of objects to be handled as shown in the results 
reported further. 

T h e  reg ion  de sc r i p to r  

This descriptor is intended to represent the silhouette of the tracked region, all along 
the sequence. We represent the tracked region with the same number of points during 
successive time intervals of variable size. At the beginning of the interval we determine 
in the segmented image the number of points, n, necessary to represent the concerned 
region. We maintain this number fixed as long as the distance, defined in 2.3, between 
the predicted region and the observation extracted from the segmentation is not too 
important. The moment the distance becomes too large, the region descriptor is reset to 
an initial value equal to the observation. This announces the beginning of a new interval. 

We can represent the region descriptor with a vector of dimension 2n. This vector is 
the juxtaposition of the coordinates (z~, Yl) of the vertices of the polygonal approximation 
of the region : [xl, Yl, z2, Y2,-.., z , ,  yn] T. 

2.3 T h e  M e a s u r e m e n t  Vec tor  

M e a s u r e m e n t  def in i t ion  

We need a measurement of the tracked region, in each image, in order to update 
the prediction generated by the filter. The measurement is derived from the segmented 
image. For a given region we would like a measurement vector that depicts this region 
with the same number of points as the region descriptor. This number remains constant 
throughout an interval of frames. The shape of the tracked region may change. The 
region may be occluded. Thus the convex hull of the segmented region does not provide 
enough information. We will generate a more complete measurement vector related to the 
segmented region. The idea is illustrated in Fig. 1. If the segmentation algorithm provides 
us with only a partial view of the region, the "remaining part" can be inferred as follows. 
Let us assume that the prediction is composed of n points, and that the boundary of the 
region obtained by the segmentation is represented by m points, (if the silhouette of the 
observation is occluded we have m ~ n). We will move the polygon corresponding to the 
prediction in order to globally match it with the convex hull of the observation composed 
of m points. We finally select the n points of the correctly superimposed polygon onto 
the observation, as the measurement vector. The measurement coincides indeed with the 
segmented region, and if the object is partially occluded, the measurement still gives an 
equivalent complete view of the silhouette of the region. 
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Consequently this approach does not require the usual matching of specific features 
which is often a difficult issue. Indeed the measurement algorithm works on the region 
taken as a whole. 

(i) 

Fig. 1. The measurement algorithm : (1) Observation obtained by the segmentation (grey re- 
gion), and prediction (solid line) ; (2) Convex hull of the observation ; (3) Matching of polygons ; 
(4) Effective measurement : vertices of the grey region. 

Measurement algorithm 

If we represent the convex hull of the silhouette obtained by the segmentation and the 
prediction vector as two polygons, the problem of superimposing the observation and the 
prediction reduces here to the problem of matching two convex polygons with possibly 
different number of vertices. 

Matching is achieved by moving a polygon and finding the best translation and rota- 
tion to superimpose it on the other one. We did not include scaling in the transformation, 
otherwise in the case of occlusion the minimization process will scale the prediction to 
achieve a best matching with the occluded observation. A distance is defined on the space 
of shapes, [9], and we seek the geometrical transformation that minimizes the distance 
between the two polygons. If PI and P2 are two polygons, T the transform applied on 
the polygon P2, we minimize f with respect to T: 

f (T)  - m(P1,T(P2)) - Z d(MI'T(P2))~ & E d(T(M2),P1) 2 
MI EPI M2EP2 

(1) 

The function f is continuous, differentiable. It is also convex with respect to the two 
parameters of the translation. Thus conjugate-gradient methods can be used to solve the 
optimization problem. 

3 T h e  R e g i o n - B a s e d  T r a c k i n g  A l g o r i t h m  

A previous version of the region-tracking algorithm, where each vertex of the region could 
evolve independently from the others, with constant acceleration, is proposed in [10]. The 
measurement is generated by the algorithm described in Sect. 2.3. A Kalman filter gives 
estimates of the position of each vertex. Though the model used to describe the evolution 
of the region is not very accurate, we nevertheless have good results with the method. 
We propose hereafter a more realistic model to describe the evolution of the region. More 
details can be found in [10]. 
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Our approach has some similarities with the one proposed in [11]. The authors con- 
straint the target motion in the image plane to be a 2D affine transform. An overde- 
termined system allows to compute the motion parameters. However, the region repre- 
sentation and the segmentation step are quite different and less efficient. Besides their 
approach does not take into account the problems of possible occlusion, or junction of tra- 
jectories. We propose an approach with a complete model for the prediction and update 
of the object geometry and kinematics. 

We make use of two models : a geometric model and a motion model, (Fig. 2). The 
geometric filter and the motion filter estimate shape, position and motion of the region 
from the observations produced by the segmentation. The two filters interact : the esti- 
mation of the motion parameters enables the prediction of the geometry of the region in 
the next frame. The shape of the region obtained by the segmentation is compared with 
the prediction. The parameters of the region geometry are updated. A new prediction of 
the shape and location of the region in the next frame is then calculated. 

When there is no occlusion the segmentation process assigns a same label over time 
to a region ; thus the correspondence between prediction labels and observation labels is 
easy. If trajectories of regions cross each other, new labels corresponding to reappearing 
regions after occlusion will be created while labels before occlusion will disappear. In this 
case more complex methods must be derived to estimate the complete trajectories of the 
objects. 
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motion filter geometric filter 

Fig. 2. The complete region-based tracking filter 

3.1 The  G e o m e t r i c  F i l t e r  

We assume that each region R, in the image at time t + 1 is the result of an affine 
transformation of the region R, in the image at time t. Hence every point (z(t), y(t)) E R 
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at time t will be located at (~(t + 1), y(t + 1)) at time t + 1, with : 

( y ) ( t + a , = ~ ( t ) ( y ) ( t ) + b ( t )  (2) 

The affine transform has already been used to model small transformation between two 
images, [11]. The matrix ~(t) and the vector h(t) can be derived from the parameters of 
the affine model of the velocity field, calculated in the segmentation algorithm, for each 
region moving in the image. Let M(t) and u(t)  be the parameters of the affine model of 
the velocity within the region R. We have : 

Even if 2nd order terms generally result from the projection in the image of a rigid 
motion, they are sufficiently small to be neglected in such a context of tracking, which 
does not involve accurate reconstruction of 3D motion from 2D motion. Affine models 
of the velocity field have already been proposed in [12] and [13]. The following relations 
apply : 

�9 (t) = X2 + M(t) and ~(t) = _b(t) (3) 

For the n vertices (zl, yl),. . . ,  (zn, Yn) of the region descriptor we obtain the following 
system model : 

i (t + 1) = " . i (t) q- b(t)  -I- (t) 

X n  ' X n  

un 0 u .  

where/2 is the 2 x 2 identity matrix. ~(t) and h(t)  have been defined above in (3). (i = 
[~ ,  ff~]T is a two dimensional, zero mean Gaussian noise vector. We choose a simplified 
model of the noise eovariance matrix. We will assume that : 

r  = 

where 12. is the 2n • 2n identity matrix. This assumption enables us to break the filter 
of dimension 2n into n filters of dimension 2. 

The matrix ~(t) and the vector h(t)  accounts for the displacements of all the points 
within the region, between t and t + 1. Therefore the equation captures the global de- 
formation of the region. Even though each vertex is tracked independently, the system 
model provides a "region-level" representation of the evolution of the points. 

For each tracked vertex the measurement is given by the position of the vertex in the 
segmented image. The measurement process generates the measurement as explained in 
Sect. 2.3. 

The following system describes the dynamic evolution of each vertex (zl, yi) of the 
region descriptor of the tracked region. Let _s(t) = [zl, yi] T be the state vector, and rn(t) 
the measurement vector which contains the coordinates of the measured vertex, 

_s(t + 1) = ~(t)s_(t) + h(t)  + i(t)  
re(t) _s(t) + .(t) (4) 

if(t) and ~(t) are two sequences of zero-mean Gaussian white noise, b(t) is interpreted 
as a deterministic input. ~(t) is the matrix of the affine transform. We assume that the 
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above linear dynamic system is sufficiently accurate to model the motion of the region 
in the image. We want to estimate the vector _s(t) from the measurement ra(t). The 
Kalman filter [14] provides the optimal linear estimate of the unknown state vector from 
the measurements, in the sense that it minimizes the mean square estimation error and 
by choosing the optimal weight matrix gives a minimum unbiased variance estimate. We 
use a standard Kalman filter to generate recursive estimates _~(t). 

The first measurement is taken as the initial value of the estimate, Hence we have 
_~(0) = m(0). The covariance matrix of the initial estimate is set to a diagonal matrix 
with very large coefficients. This expresses our lack of confidence in this first value. 

3.2 T h e  K i n e m a t i c  F i l t e r  

The attributes of the kinematic model are the six parameters of the 1st order approxima- 
tion of the velocity field. These variables are determined with a least-squares regression 
method. Therefore these instantaneous measurements are corrupted by noise and we 
need a recursive estimator to convert observation data into accurate estimates. We use 
a Kalman filter to perform this task. We work with the equivalent decomposition : 

1 ( div + hypl hyp2 - rot 

This formulation has the advantage that the variables div, rot, hypl and hyp2 correspond 
to four particular vector fields that can be easily interpretated, [7]. 

The measurement is given by the least square estimates of the six variables. We have 
observed on many sequences that the correlation coefficients between the six estimates are 
negligible. For this reason, we have decided to decouple the six variables. The advantage 
is that we work with six separate filters. 

In the absencei in the general case, of any explicit simple analytical function describing 
the evolution of the variables, we use a Taylor-series expansion of each function about 
t. After having experimented with different approximations, it appears that using the 
first three terms performs a good tradeoff between the complexity of the filter and the 
accuracy of the estimates. Let _0(t) = [~(t), &(t), ~(t)] T be the state vector, where ~ is 
any of the six variables : a, b, div, rot, hypl and hyp2. z(t) is the measurement variable. 
We derive the following linear dynamic system : 

z(t) C(t)O(t)_ +rl(t) with A =  0001 C = [ 1  0 0] Q = a ~  L~  

~(t) and 77(t) are two sequences of zero-mean Gaussian white noises of covariance 
matrix Q, and variance cr~ respectively. 

3.3 Resu l t s  

We present in Fig. 3 the results of an experiment done on a sequence of real images. The 
polygons representing the tracked regions are superimposed onto the original pictures 
at time tl,  tg, and t12. The corresponding segmented pictures at the same instants are 
presented on the right. The scene takes place at a crossroad. A white van is comming 
from the left of the picture and going to the right (Fig. 3a). A black car is driving behind 
the van so closely that the segmentation is enable to split the two objects (Fig. 3d). A 
white car is comming from the opposite side and going left. The algorithm accurately 
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tracks the white car, even at the end of the sequence where the car almost disappears 
behind the van (Fig. 3e and f). Since the segmentation process delivers a single global 
region for the van and the black car (Fig. 3d), the filter follows this global region. Thus 
the tracked region does not correspond exactly to the boundary of the van. This example 
illustrates the good performanee of the region-based tracking in the presence of occlusion. 
An improved version of the method, where the kinematics parameters are estimated using 
a multiresolution approach is being tested. More experiments are presented in [10]. 

4 C o n c l u s i o n  

This paper has explored an original approach to the issue of tracking objects in a se- 
quence of monocular images. We have presented a new region-based tracking method 
which delivers dense trajectory maps. It  allows to directly handle entities at an "object- 
level". It exploits the output  of a motion-based segmentation. This algorithm relies on 
two interacting filters : a geometric filter which predicts and updates the region position 
and shape, and a motion filter which gives a recursive estimation of the motion param- 
eters of the region. Experiments have been carried out on real images to validate the 
performance of  the method. The promising results obtained indicate the strength of the 
"region approach" to the problem of tracking objects in sequences of images. 
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Fig.  3. Left : original images at time tl, t~, tl~ with tracked regions. Right : segmented images 
at the same instants 


