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Abstract. 3D human motion capture by real-time monocular vision
without using markers can be achieved by registering a 3D articulated
model on a video. Registration consists in iteratively optimizing the match
between primitives extracted from the model and the images with respect
to the model position and joint angles. We extend a previous color-based
registration algorithm with a more precise edge-based registration step.
We present an experimental analysis of the residual error vs. the compu-
tation time and we discuss the balance between both approaches.

Keywords: 3D motion capture, monocular vision, 3D / 2D registration,
region matching, edges matching.

1 Introduction

Research in motion capture by computer vision has been motivated by many tar-
get applications: human-computer interfaces, animation, interaction with virtual
environments, video surveillance, games, etc. We focus on 3D human motion cap-
ture in real-time without markers [8]. This is a difficult problem because of the
ambiguities resulting of the lack of depth information, partial occlusion of human
body parts, high number of degrees of freedom, variations in the proportions of
the human body and different clothing of each person [14].

In this work, we extend a previous work for 3D human motion capture by
registering a 3D articulated human body model on video sequences using a
color-based step followed by an edge-based step [7]. In this work we shall exper-
imentally characterize the contribution of color and edge information to model
matching. We present a detailed analysis of the precision and processing time
achieved by the color-based registration and the edge-based registration steps.

This paper is organized as follows. First, in section 2, we describe previous works
related to 3D human motion capture by computer vision. In section 3, we intro-
duce our 2 steps approach based on matching color regions and the edges. Then,
our performance characterization experiments and the results obtained are pre-
sented in section 4. Finally, in section 5, we conclude and discuss how a balance
can be found between both steps while facing limited computation resource.
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2 Previous Work for 3D Human Motion Capture

Previous works rely on various appearance features such as color [10], [6], [7],
edge [6], [7], [15], shape [1], [11], and motion [15], [9]. They can be divided into
two main approaches: model-based and model-free approaches [14].

The model-based approaches use a 3D model of a human body and a matching
cost function to find the 3D pose that best matches input images. Estimating
the 3D pose from monocular images, is achieved by searching for the pose that
minimizes some matching cost function [8]; some other works use human body
part detectors to assemble the 3D pose using physical and proximity constraints
[3]. Temporal coherence can be enforced with particle filters that allow multi-
ple hypotheses matching [6], [15]. Some works use motion priors [16] to guide
tracking within a motion model previously learned [16], or to learn a mapping
between the pose space and a low-dimensional latent space in which the tracking
occurs [13].

Model-free approaches do not use any 3D explicit human body model. Instead,
they try to infer directly 3D poses from images. The learning-based approaches
rely on training data to learn a function that maps the image observation to the
3D pose space [1]. Example-based approaches avoid this learning by saving in
a database a collection of examples of 3D poses with their corresponding image
descriptors and by searching this database and interpolating candidate poses for
a 3D pose similar to the input image [11].

3 Our Approach for 3D Human Motion Capture

Our method consists in registering a 3D articulated model of upper human
body on video sequences [8], [10]. Our 3D human model (figure 2a) has 3 global
position parameters and 20 joint angles of the upper-body part (chest, arms,
forearms, hands, neck and head). A 3D human pose is represented by a vector
of parameters of the joint angles.

For each captured image frame, we extract color regions and edges. A col-
ored silhouette and occluding edges are also computed for each candidate pose
of the model. Our registration process consists in searching for the best match-
ing correspondence between these primitives. We iteratively optimize registra-
tion using a color region-based criterion and then an edge-based registration
(fig. 1) [7].

3.1 3D Human Model Calibration and Pose Initialization

To registering the 3D upper-body human model on a video sequence requires
calibrating the body model to make it similar to the actor captured in the video.
This is done by adjusting manually the 20 joint angles of the 3D model taking as
reference the pose of the human in the first image and the dimensions (length,
width and height) of each body part of the 3D model by watching the overlapping
between each body part of the projected model and the human in the captured
image (figure 2b).
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Fig. 1. Our prototype for 3D human motion capture. The images are respectively:
the captured image, the segmented image, the edges in the foreground and finally the
projection of the registered 3D human body model.

Fig. 2. 3D human model calibration step: a general design of our 3D human upper-
body model with the 20 degrees (a), the 3D model projection superposed with the
human in order to adjust the parameters of the model in the calibration and pose
initialization steps (b)

3.2 Region-Based Registration

The human silhouette is detected by comparing the captured image with a refer-
ence image of the background. This silhouette (foreground) is segmented in two
color classes (skin and clothes color). Color samples are extracted automatically
from the first captured image. A skin color sample is taken in the face region
found with Adaboost face detector [17]. A clothes sample is taken under the face.
We model each sample using a simple gaussian model in a HSV color space. For
each image, we project the 3D model [18] (using OpenGL API) according to the
pose described in the vector of parameters. The 3D model is projected by render-
ing the skin and clothes colors. The matching between the 3D model projection
and the segmented image is evaluated using a non-overlapping ratio:

F (q) =

m
∏

c=1

(

|Ac ∪ Bc(q)| − |Ac ∩ Bc(q)|

|Ac ∪ Bc(q)|

)
1

m

. (1)

where q is the vector of parameters describing a candidate 3D pose, m is the
number of color classes, Ac is the set of pixels with the c color class in the
segmented image, Bc(q) is the set of pixels with the c color in the projection of
the 3D model and |X| represent the number of pixels in X.

This cost function is minimized using a downhill simplex algorithm [12] under
biomechanical constraints. Further details can be found in [10].
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Fig. 3. Limited precision of the region-based registration. The images are respectively:
the captured image, the segmented image, the projection of the registered 3D human
body model and finally the projection of the 3D model superposed with the segmented
image. The pose of the 3D model differs from the pose of the actor because the region-
based registration is not precise.

It is important to note that for convergence towards a position approximately
correct, this method initially requires only a partial overlapping between colored
regions. However, it is not precise because the number of pixels in the border
regions is few compared to the number of pixels inside the region (fig. 3).

3.3 Edge-Based Registration

We propose a further edge-based registration step to improve the precision. It
works by matching edges of the captured image and occluding edges of the 3D
model [9], [15]. The initial 3D pose of this step is the final state output by the
region-based registration. Edges in the input video image are extracted with a
Deriche filter [4] in the foreground region of the image. Then, a chamfer algorithm
[2] allows computing a map of the distance between each pixel of the image and
the nearest edge.

The occluding edges of the 3D model are the lines of the surface where the
observation direction is tangent to the surface [5]. These occluding edges can
easily and efficiently be extracted with the OpenGL API by rendering the sur-
face mesh with culling based on the normal orientation. First, the back facing
triangles and their edges are rendered with some foreground color while the front
facing triangles are eliminated, then the inside of front facing triangles is ren-
dered with background color while the back facing triangles are eliminated, so
only the occluding edges remain highlighted in the image. Then the mean dis-
tance between the projected occluding edges of the model and the edges in the
input video image is computed by masking the previous distance map with the
projected binary image of the 3D model occluding edges:

Dc =
1

Np

∑

i

IDT (pi) . (2)

where Dc is the mean edge distance, IDT is the distance transform image, pi are
the pixels in the projected occluding edges of the 3D model. We minimize this
function with the downhill simplex algorithm [12] as previously in the region-
based registration step.

Our registration process basically consists in using downhill simplex opti-
mization algorithm [12] to minimize the non-overlapping ratio and the mean
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edge distance. The downhill simplex method has the advantage that it requires
computing only values of the function to be optimized rather than its derivates.
We use a measure of the size of the simplex (defined by the ratio between the
highest and lowest value of the simplex) as a convergence criterion.

4 The Optimization Process

Iterative optimization in a high dimensional space usually requires a large vari-
able number of iterations to converge. Because we are interested in real-time
motion capture, we have to limit the computation time and thus, the number of
iterations per image. Unfortunately, limiting the number of iterations decreases
the precision of the registration process (fig. 4). For this reason, we experimen-
tally analyzed the performance (precision and process time) of our registration
process by varying the number of iterations of both registration step (region-
based and edge-based), searching for an optimal balance between the precision
and processing time in both registration steps (region-based and edge-based).

Fig. 4. Effect of a limited number of iterations on the residual error (ordinates). The
abscissa is the image number in the video sequence. The left chart corresponds to the
non-overlapping ratio minimized by region-based registration. The right chart corre-
sponds to the mean edge distance minimized by edge-based registration. Black lines
are the residual error at convergence while the gray line is limited to 30 iterations. A
limited number of iterations decrease both the precision and robustness of registration.

We aim at real time tracking, so the available computation time for each
captured image must be shared between the two steps of the registration process.

We used 6 video sequences showing various gestures with occlusions (e.g. arms
crossed), fast movements, including in the depth direction (fig.5) and a person
possibly not exactly facing the camera. These 160 x 120 pixels video sequences
were captured using a Logitech QuickCam Pro 5000 webcam. The computation
time varies with the number of iterations, the central processor (CPU) and the
graphics card (GPU). Table 1 shows the computation time on two platforms1

with varying number of iterations shared in our two-steps registration process.

1 Experiments were run on a CPU Intel Pentium 4 3.6 GHz and a GPU NVIDIA
Quadro FX 1400 (platform 1) and a CPU Intel Pentium M 1.4 GHz and a GPU
NVIDIA GeForce 4200 Go (platform 2).
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Fig. 5. The video sequences used in our experiments. The video sequence 1 (top left),
the video sequence 2 (top center), the video sequence 3 (top right), the video sequence 4
(bottom left), the video sequence 5 (bottom center) and the video sequence 6 (bottom
right) contains respectively 290 frames, 1497 frames, 1433 frames, 887 frames, 1032
frames and 551 frames. The first three sequences include various types of gesture.
The sequence 4 includes principally gestures when arms are crossing each other. In
the sequence 5, the person is not facing directly the camera. The sequence 6 includes
movements in which the person is turning around himself.

Table 1. Computation time in milliseconds (average and standard deviation) with
respect to the number of iterations shared in our two-step registration process on two
platforms. In these experiments, 50% of the total number of iterations is given to
each step.

Number of Avg. Time Std. Dev. Time Avg. Time Std. Dev. Time
iterations Platform 1 (ms) Platform 2 (ms) Platform 2 (ms) Platform 2 (ms)

40 22.34 ±6.58 88.18 ±9.16
100 35.61 ±6.68 137.24 ±16.07
200 57.99 ±6.84 223.30 ±27.51
300 78.69 ±6.90 300.13 ±32.74
400 97.25 ±7.12 370.06 ±35.81
500 100.59 ±9.80 436.21 ±48.72

Table 2 shows the computation time of our 3D motion capture prototype2

for images with higher definition. From these experiments, we found that the
performance of the registration process with respect to the non overlapping ratio
and the mean edge distance is similar for images with larger number of pixels
(higher resolutions) since our approach does not require much accuracy in the
segmentation and edge extraction.

4.1 Edge-Based Registration Precision Experiments

We recall that the region-based registration is used to initialize the registration
process because is more robust, then, the edge-based registration is used to

2 Computation times on a CPU Intel Pentium 4 3.0 GHz and a GPU NVIDIA GeForce
9600 GT.
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Table 2. Average computation time in milliseconds for images with higher resolution.
The image processing part includes background subtraction algorithm, color segmen-
tation, edges extraction and distance transform computation. We show also the com-
putation time of each matching cost function (non overlapping ratio and mean edge
distance).

Image Avg. Time (ms) Avg. Time (ms) Avg. Time (ms)
Resolution Image processing Non Overlapping Mean Edge

Ratio Distance

160 x 120 92.45 1.05 0.97
256 x 256 323.53 1.89 1.86
326 x 240 381.19 2.08 2.09
480 x 480 1187.92 3.09 3.05
512 x 512 1353.84 3.74 3.82
640 x 480 1581.86 5.29 5.58

improve the precision. In order to verify the increase of the precision given by
the edge-based registration step with respect to the region-based registration,
we experimentally compared the residual edge distance achieved by each step of
the registration process (region-based and edge-based). Here, we iterated until
convergence. Our results (fig. 6) show that the edge-based registration step allows
correcting, for some images, incorrect region-based registrations that appear as
peaks in the residual distance between edges. The figure 7 illustrates an example
of such a correction.

Fig. 6. Residual distance between edges achieved by the region-based registration (gray
line) and the edge-based registration (black line)

4.2 Difficulties Encountered in Edge-Based Registration

After limiting the maximum number of iterations in the edge-based registra-
tion step, we encountered some difficulties related to the high instability and
imprecision in the results. This is because the edges extracted from the image
are not necessarily matched with the correct model edges by registration pro-
cess, so the registration process is trapped in some local optimum. This issue
can be limited by initializing the edge-based registration step using the usually
smaller simplex after final iteration of the region-based registration step. Thus,
the edge-based registration will start to search in a reduced search-space starting
from the solution achieved by the previous step (region-based) avoiding being
trapped in some local incorrect minimum. We can see the experimental results
of the solution proposed in the figure 8.
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Fig. 7. Incorrect region-based registration corrected by the edge-based registration.
The images are respectively: the captured image, the projection of the 3D model su-
perposed with the segmented image that shows an incorrect region-based registration,
the 3D model occluding edges that shows the correction by the edge-based registration
and finally the 3D model projection showing the corrected 3D pose.

Fig. 8. Residual distance between edges on a video sequence. The abscissas is the
number of iterations of the edge-based registration step (other iterations are devoted
to the region-based registration step). The black line is the residual error with final
simplex at step 1 (region) used as initial simplex at step 2 (edges). The gray line is
the residual error using a large initial simplex. The residual distance between edges by
reducing the size of the simplex (black line) is smaller because it can avoid more local
wrong minimums.

4.3 Performance Experiments in Our Registration Process

In order to analyze the performance of our approach, we considered, for each
experiment, the residual values of each evaluation function and also the number
of failures (mistrackings) with varying numbers of iterations in the registration
process.

We were interested in analyzing the performance from 1 to 500 iterations be-
cause the computation time is below 100 milliseconds (see table 1), thus allowing
tracking at 10 Hz or more. In each experiment, we sampled the residual value of
the non-overlapping ratio and the residual value of the mean edge distance. We
considered only the mean residual for all the images in a video sequence. A way
of measuring the robustness in each registration step is to count the number of
failures for each experiment. We consider as failures or mistrackings the residual
values above a defined threshold (a “peak”) for each evaluation function. In this
way, if the residual value is relatively large, we consider that the solution output
by the optimization algorithm is a “bad” registration. We show the experiments
results for the video sequence 2 in the next figures (fig. 9, 10, 11 and 12).
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Fig. 9. Mean residual of the non-overlapping ratio (z-axis) with respect to the number
of iterations of the region-based registration (x-axis) and the number of iterations of the
edge-based registration (y-axis) achieved on video sequence 2. Experiments on video
sequences 1, 3, 4, 5 and 6 showed similar results.

Fig. 10. Mean residual of the mean edge distance (z-axis) with respect to the number
of iterations of the region-based registration (x-axis) and the number of iterations of the
edge-based registration (y-axis) achieved on video sequence 2. Experiments on video
sequences 1, 3, 4, 5 and 6 showed similar results.
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Fig. 11. Number of failures of the non-overlapping ratio (z-axis) with relation to the
number of iterations of the region-based registration (x-axis) and the number of itera-
tions of the edge-based registration (y-axis) obtained on the video sequence 2. Experi-
ments on video sequences 1, 3, 4, 5 and 6 showed similar results.

Fig. 12. Number of failures of the mean edge distance (z-axis) with relation to the num-
ber of iterations of the region-based registration (x-axis) and the number of iterations
of the edge-based registration (y-axis) obtained on the video sequence 2. Experiments
on video sequences 1, 3, 4, 5 and 6 showed similar results.

5 Conclusions

We have presented a 3D human motion capture algorithm by monocular vi-
sion in real-time, based on registering a 3D articulated model on color regions
and then an edge distance criterion. Through experimental results (the surfaces
3D displayed above), we can understand the performance of the region-based
and edge-based registration steps. From figure 9 and 10 we can see how the
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region-based registration step reaches to convergence faster that the edge-based
registration step. The figures 11 and 12 show the instability of the edge-based
registration step compared to the stability of the region-based registration step.
So we need to combine the robustness and stability of the region-based registra-
tion and the precision of the edge-based registration.

In order to have the best performance in real-time for our approach, we de-
cided to give priority to the stability of the registration when the number of
iterations is below 200 (found experimentally from figure 11), thus, in this case,
all the total iterations will be executed by the region based step. However, when
the total number of iterations is above 200, the number of failures in region-based
step registration is relatively small (figure 11), thus, we can take advantage of the
precision achieved by the edge based step (figure 6 and 7) by sharing in the same
proportion the total number of iterations between each step (50% of iterations
for region-based step and 50% of iterations for edge-based step). Although the
performance variation (fig. 9, 10, 11 and 12) was similar for all tested videos, the
video sequence 6 (fig. 5) presented the highest number of failures (mistrackings)
due to the ambiguity caused by the limited depth information in monocular im-
ages. Our future work aims at estimate the gradient of the edge distance in order
to use a gradient descent optimization algorithm to improve the precision of our
approach.
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