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Abstract 
 

In this paper the author introduces a new type of calculus called by “Region 
Calculus” which could be considered as a generalization of the classical Newton 
Calculus. The generalization is done by improving the „distance‟ concept used in 
Newton Calculus for measuring the amount of increment/decrement of x-values 
(and y-values). Besides that, Region Calculus is developed based upon the region 
concerned, not just based upon a particular region R (set of Real numbers). 
Another new branch of mathematics called by “Object Geometry” is also 
introduced as a prerequisite for developing the branch of Region Calculus.   
 
Mathematics Subject Classifications: 26A06, 26A12 
 

Keywords: Chain Region.  Partitioned Region.  Extended region.  Calculus space.  
Complete region. Positive object. Negative object. Onteger. Object linear 
continuum line.    
 

 

1.  Introduction 
 
It has been justified in [3] with several examples that many of the simple results, 
formula, equalities, identities, rules etc. of elementary algebra are not valid in 
general in a group, ring, field, module, linear space, algebra over a field, 
associative algebra over a field, division algebra, or in any existing algebraic 
structure alone, by their respective definitions and by virtue of their respective  
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properties, but are well valid in the algebraic structure „region‟[3]. These very 
simple observations may apparently seem to be surprising today in this century, 
but it is fact as established in details in [3]. The minimum platform required for 
practicing elementary algebra is region, not any division algebra or any other 
algebraic structure. In [4] a new type of numbers is discovered called by 
„compound numbers‟ which is a very fruitful generalized notion of the concept of 
„complex numbers‟. Two new numbers e and w are discovered in [4] as 
„imaginary‟ for the set C of complex numbers, analogous to the concept of the 
number i which is „imaginary‟ for the set R of real numbers. Consequently a new 
topic „compound algebra‟ is opened as a generalization of „complex algebra‟. 
Besides that, a new type of number theory called by “Theory of A-numbers” is 
introduced in [4] corresponding to any complete region A. These new numbers 
will surely enrich various branches of mathematics viz. Calculus, Algebra, 
Geometry, etc., to name a few only out of many.  
 
The new algebraic structure „Region‟ encourages to initiate another new direction 
in mathematics which is the development of a new calculus. In this paper a new 
type of calculus is developed called by „Region Calculus‟, which is a 
generalization of the classical Newton Calculus. The key concept of this new 
calculus is that it uses the measure of the distance between two points (say, on real 
axis) using a metric. We know that there exist an infinite number of metric spaces 
over the set R of real numbers. It is justified here that while developing a new 
calculus, it must be based over a region as a minimum platform (not a division 
algebra). Without a region, no calculus can be developed. No calculus can be 
developed just over a Division Algebra by virtue of its definition and 
independently owned properties alone. In 17th century the Newton Calculus was 
developed mainly over the set R. But it is justified in this work that the Newton 
Calculus actually happened to have developed over a particular region RR, not 
over the set R or not over the division algebra R. The work in this paper is sequel 
to the works [3,4]. It is established in this paper that without region no calculus 
can be developed. The rich properties of division algebra is not sufficient to fully 
cooperate the development of a calculus. After the development of different 
algebraic structures viz. groups, rings, modules, fields, linear spaces, algebra over 
a field, associative algebra over a field, Division Algebras,  the development of 
Newton Calculus has been getting viewed by the world to be  based upon the 
division algebra R (instead of the set R of real numbers, as a set alone cannot offer 
operations of addition, subtraction, multiplication, division, etc). But in this paper 
we say that it is even not so, just by virtue of the definition and so rich properties 
of division algebra. It will be mistake to say that the Newton Calculus took 
development over a division algebra R by virtue of the definition and properties of 
the algebraic structure division algebra. It is now unearthed that the Newton 
Calculus actually in a hidden way took development over a region which is RR 
(neither over the set R nor even over the division algebra R) by virtue of the 
definition and independently owned properties of region. An important 
observation is made regarding the concept of the amount of increment or decre- 
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ment which is measured by distance. It is obvious that calculus is the mathematics 
about changes. If the variable x approaches the value a then it means the distance 
of x from the particular value a decreases gradually. But our observation is that in 
Newton Calculus, a very particular type of distance formula is being used in 
general. It is probably because of the reason that the concept of „metric space‟ 
took birth after more than 200 years span of the inception of calculus. Today we 
have various options of metrics depending upon the nature of domain under 
consideration, nature of the problems under consideration. Consequently the 
distance between the two points x and x+Δx on the real axis may be suitably 
chosen to be ρ(x+Δx, x) using a suitable metric ρ  if it serves better and if it is 

more appropriate compared to the very  particular result x , in some complex 

cases of real life problems. Even in Region Calculus we have open options to use 
two different metrics, one for the x values and the other for the y values, however 
subject to such requirements in the quest of better results by better computation in 
some complex cases.  
 

Calculus is one of the most important discoveries in Mathematics. It is all 
about changes, about increment or decrement by an amount of distance that 
happen due to changes. Modern calculus was developed in 17th century by 
Newton and Leibniz (independently by each other). It is observed that the existing 
rich calculus of Newton and Leibnitz is a particular case of Region Calculus.  It is 
claimed and justified that there could be genuine requirements of this generalized 
type of calculus to extend the scope of computations required by the 
mathematicians, scientists, and engineers in the various complex domains of this 
century. In Newton Calculus the concept of „distance‟ (be it infinitesimal small or 
large) between two real numbers x and x+Δx on the real axis is x  and the 

distance between two real numbers f(x) and f(x+Δx) is y  where Δy =  f(x+Δx) 
– f(x). The notion of „Metric Space‟ came into Mathematics in 1906, after more 
than two centuries of years time since the inception of Newton Calculus. 
Although the notion of „Metric Space‟ was not discovered during the tenure of 
Newton‟s era, but today it can be observed that the development of Newton 
Calculus can be appropriately viewed to be based upon one „particular metric 
space‟ ρ over the set R of real numbers, where ρ(p,q) = |p-q|.  All the x values are 
in the metric space (R,ρ) and all the y values are also in the same metric space 
(R,ρ). However the issue of „infinity‟ is also analyzed in this paper. The metric 
space for both the collections (of x values and of y values) is common. 
Consequently there is a genuine scope for the branch „Calculus‟ of mathematics 
which can be studied in a generalized way by replacing the particular metric ρ by 
some other suitable metric depending upon the universe of discourse or its 
environment under consideration, depending upon the space in which we are 
interested to analyze the changes. It is expected that a more appropriate metric 
may provide better scope to analyze the changes of variables in a complex 
environment. This philosophy has lead here to open the extended concept of the 
classical calculus called by „Region Calculus‟.  
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Besides that, Newton calculus uses the beautiful and very useful concept of 
infinity. The same is true for Region Calculus too, where the concept of infinity is 
also a generalized concept in the context of the new algebraic structure region. 
However, let us make a quick visit to the history of infinity, which could be 
interesting at this stage just on a quick perusal.  
 
The symbol for infinity „ ‟ was invented by the English mathematician John 

Wallis in 1657. The concept of infinity is that it describes something without any 
limit, without any bound, or something larger than any of the natural numbers. 
Philosophers speculated about the nature of infinity, proposed many interesting 
paradoxes involving infinity. Eudoxus of Cnidus used the idea of infinitely small 
quantities in his method of exhaustion, where the meaning of infinity seems to be 
viewed to define a concept of small positive number which is smaller than any 
positive real number. Modern mathematics uses the general concept of infinity to 
find solutions of many mathematical problems, such as in Newton calculus and in 
set theory. The general concept of infinity is also extensively used in Physics, 
Chemistry, Statistics and in other branches of natural sciences as well as social 
sciences. In Region Calculus here a new notion of „Infinity‟ is introduced which is 
an extended concept of the classical „infinity‟. The „infinity‟ in a region A 
describes something larger than any of the objects of that region A. The term 
„larger‟ has been discussed mathematically in a region. Consequently an 
important term called by „extended region‟ is introduced. During the late 19th and 
early 20th centuries, Cantor formalized many new ideas related to infinity and 
infinite sets. He conceptualized that there are infinite sets of different sizes (called 
cardinalities). This concept shook the mathematicians with a natural question that 
“Can the infinity be of various sizes?”. But modern mathematics has the beautiful 
concepts like : the set of integers is countably infinite, the infinite set of real 
numbers is uncountable, etc. In Region Calculus too, for every extended region a 
concept of „infinity‟ is introduced. It is  not yet explored in this paper whether the 
various infinities of the various extended regions are same or not, or whether there 
exist common infinities of two regions. In modern mathematics, the notion of 
infinity is often treated like a number (in the sense that it does count or it does 
measure viz. we say that "an infinite number of numbers in this set”, "an infinite 
number of terms in this sequence", etc) but without calling it a number. It is also 
an acceptable concept to us that infinity is not the same type of number as either a 
natural or a real number. Similarly in case of extended region too, the notion of 
infinity is to be treated like an object (in the sense that it is greater than all other 
objects) but without calling it an object.  The notion of „greater than‟ and 
„infinity‟ in a region are explained in the next section here. 
 
We will use the region RR [3] extensively in this work. The region RR is  the 
most useful region in Science, Engineering and other areas. Let R be the set of 
real numbers, „+‟ be the ordinary addition operator in R and „.‟  be the ordinary 
multiplication operator in R.  Consider the field ( R,+, . )   of real numbers, and  
the linear space (R,+, .)  over the field (R,+, .) .  Then  the  algebraic  system   
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(R,+, . , .)   forms a region over the outer field (R,+ , .). This region (R,+ , . , .)   
plays a very important role in our daily life computations, in particular in school 
level elementary algebra.  The content of the syllabus and corresponding 
instructions  at school level algebra is based on the platform of this region (R,+, . , 
.),  not on the platform of any standard algebraic structure like  groups, rings, 
fields, linear spaces, algebra over a field, associative algebra over a field, division 
algebra R or any existing algebraic structure. In [3], this region (R,+, . , .) is 
named  in short by the word “RR”.  The region RR is the most useful region in all 
the branches of Mathematics, Statistics, Science, Engineering and other areas. 
The interesting properties of the region RR are that:  
(i)    its inner field is (R,+, .),   
(ii)   its outer field is (R,+, .),  
(iii) all the three multiplication operators are same, and  
(iv) all the three addition operators are same.  
For complete details about the definition and rich properties of the algebraic 
structure „Region‟, one could view [3]. In the next section we first of all introduce 
the concept of Calculus Space, then in Section-3 we introduce a new kind of 
geometry designated as “Object Geometry”, and then in Section-4 we go for 
developing the new calculus called by “Region Calculus”, as a generalization of 
the classical Newton Calculus.  
 
 

2.   Calculus Space 
 
The Universe is commonly defined as the totality of existence, a part of which we 
people on this earth have been possibly able to think about so far. The present un-
iverse appears to be expanding at an accelerating rate. There are many competing 
theories about the ultimate fate of the universe. Scientific observation of the 
universe has led to inferences of its earlier stages too. Physicists remain unsure 
about what, if anything, preceded the Big Bang. Many refuse to speculate, 
doubting that any information from any such prior state could ever be accessible. 
There are various multiverse hypotheses too, in which physicists have suggested 
that this universe might be one among many universes that likewise exist.  One 
good question arises : Whether every space of this universe is being governed by 
the same physical laws and constants throughout most of its extent and history?   
 
We consider in this paper an important branch of mathematics which is „Calculus‟ 
(developed independently by Newton and Leibniz), one of the most important 
discoveries in Mathematics. John von Neumann said : "The calculus was the first 
achievement of modern mathematics and it is difficult to overestimate its 
importance. I think it defines more unequivocally than anything else the inception 
of modern mathematics, and the system of mathematical analysis, which is its 
logical development, still constitutes the greatest technical advance in exact 
thinking”. But, can we accept the hypothesis that this classical Calculus is valid in 
every planet of our solar system or at every space of our universe or at every  
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universe of the multiverse (if exists)?  Is our classical Calculus an absolute 
calculus to be regarded as most appropriate calculus applicable at everywhere in 
our universe or multiverse?  Does it not get influenced at different solar systems 
or at different spaces of the universe or at different universes of the multiverse 
where the concept of „time‟, „distance‟ etc are different?  In this work we do not 
(can not) propose any answer to these questions, but we propose the hypothesis 
that there could be an useful generalized type of calculus of which our existing 
classical calculus is a particular case just. Or, there could be a number of new 
calculus which are siblings to our existing classical calculus. In this quest, we first 
of all introduce a new mathematical notion called by “Calculus Space”, then we 
introduce a new branch of mathematics called by “Object Geometry”, and then we 
go for  introducing the “Region Calculus”. A calculus space is a base-platform on 
which one can develop a new calculus. In other words, a calculus can not be 
developed without a calculus space, called a base-platform of the calculus.   
It is observed that the existing rich calculus of Newton is a beautiful example of 
Region Calculus (i.e. one instance of Region Calculus).   
 
 
2.1     Key Role of „Metric Space‟ in developing any Calculus   
 
In many computational environment in this giant universe (or multiverse, if 
exists), the existing rich calculus of Newton may not always work most 
appropriately. The speculation about the reason is that it may be because of the 
fact that the Newton Calculus was developed on such a concept of „distance‟ 
which is a particular example of „distance‟ of today‟s volume of mathematics.  If 
it is so then a computational environment in this giant universe (or multiverse, if 
exists) may need its own calculus.   
 
The „very particular nature‟ of  Newton calculus, if analyzed with the help of 
today‟s volume of mathematics, can be observed mainly due to the following five 
Facts:-  
 
No.(1) :   The basic platform of Newton Calculus is a very particular set which is 
the set R of real numbers (along with graphs with the notion of real line axis like 
X‟OX, and the axis Y‟OY, etc depending upon the dimension of calculus)   and 
 

No.(2) :    If we consider the concept of „change in x‟ while talking about y

x




, the 

distance between the two points  x1  and  x2  on the real line axis in the classical 
Calculus  happens to be by a very particular  metric ρ defined by ρ(x1, x2) =  |x2 – 
x1|  over the metric space (R, ρ).   
 
No.(3) :   the distance between the two points  y1  and  y2  too  happens to be by 
the same    particular  metric ρ defined by ρ(y1, y2) =  |y2 – y1| over the same 
metric space (R, ρ).  
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No.(4) :   The metric ρ is absolutely fixed,  and  usually common to both x-values 
and y-values which are in R.  It is not that : for x-values there is one metric 
applicable and in y-values there is another metric applicable.  
 
No.(5) :   There exist many distinct metric spaces like (R, d)  over the set R 
besides the particular metric space (R, ρ) where ρ is defined by ρ(x1, x2) =  |x2 – 
x1|. But Newton Calculus is observed to be compatible with the use of the metric 
space (R, ρ).  
 
 

MNC  and  MSNC :  

In this article we call this particular metric ρ by the name „Metric of Newton 
Calculus‟ (MNC) and the particular metric space (R, ρ) by the name „Metric 
Space of Newton Calculus‟ (MSNC). 
 
It is quite obvious that the above mentioned five observations was not of much 
significance and was not in existence during Newton‟s era. The author feels that 
there is a need to make an attempt for developing analogous styled calculus 
replacing the above particular metric MNC ρ by other suitable metrics if seem to 
be more appropriate for advance application potential in some complex domains 
of today‟s century. In Newton Calculus, there is no concept of using one metric ρ1 
for the x-values over the set R and another metric ρ2 for the y-values over the set 
R. This gap too needs attention for thinking for some alternatives, which may 
sometimes be required to better fit the computational methods in some new 
complex domains. The requirement is genuine because Newton calculus can not 

be applicable in the universe of discourse R with any arbitrary metric spaces 
(R,d) except the MSNC (R, ρ).  It is known to us that the concept of „Metric 
Space‟ came much later than the discovery of Calculus. The matrix space was 
developed in 1906, after more than 200 years of the discovery of calculus. The 
addition operation  used in R while developing the Newton Calculus was the usual 
addition operation(„+‟), and similarly the other fundamental operations of 
multiplication, division, scalar multiplication, etc.. And no other addition 
operation, division operation, multiplication operation, etc over the set R of real 
numbers are useful to the fundamental theories of Newton Calculus.  
 
And  also it is fact, as can be observed by today‟s volume of mathematics,  that  if  
Δx is a positive real number,   then  
 
(i)  in Newton Calculus the point (x+Δx)  is situated at a distance  ρ(x, x+Δx)  
from the point x on the real axis towards the positive direction of it,  where   ρ(x, 
x+Δx)  happens to be equal to Δx,  and  ρ is the fixed metric space MNC 
corresponding to the concept of  „change in x‟  or  „change in y‟  while talking 

about 
y

x




,  and  

(ii) and similarly,  the point (x-Δx)  is situated at a distance  ρ(x, x-Δx)  from the  



376                                                                                                        Ranjit Biswas 

 
 
point x on the real axis towards the negative direction of it, where  ρ(x, x-Δx)  
happens to be equal to Δx,  ρ being the MNC.  
  
In the seventeenth century of Newton, the concept of the term „change in x‟  was 
an absolute concept, a unique concept.  But in the present century this concept is a 
generalized concept, not an absolute concept. It is because of the fact that the 
concept of „distance‟ took an enormous amount of generalizations after the 
discovery of metric space. In the Region Calculus, the concept of  „change in x‟  
has been generalized with the help of various kind of metrics available over R or 
over the region for which a calculus being developed. The Region Calculus is  a 
generalized calculus which can widen the application freedom of the 
mathematician, scientists, statisticians, and engineers, in particular while dealing 
with very complex problems. The Newton calculus is just a special example of 
„Region Calculus‟.  
 
Notations :  

We use the following notations: 
R = set of all real numbers,  R+  =  set of all positive real numbers,  R-  = set of all 
negative real numbers,  R≥0

   =  set of all non-negative real numbers. 
 
First of all we define few new terms called by „Chain Region‟,  „Partitioned 
Region‟,  „Extended Region‟ and „2-to-1  bijective mapping‟.  
 

 

2.2     Chain Region, Partitioned Region and Extended Region   
 
In this section we first of all define : Chain Region, Partitioned Region and 
Extended Region.    
 

2.2.1     Chain Region  
Consider a real region A = (A, ,*,  ). Suppose that the set A of the region 
(A, ,*, ) forms a chain with respect to a total order relation (say, denoted by 
the  notation „ ‟). Then the real region A is called a chain region with respect to 
the total order relation  „ ‟.     
 
2.2.2     Partitioned Region  
A real region A = (A, ,*, )  is called a Partitioned Region  if the following 
conditions  are satisfied : 
(i) A is an infinite region,  
(ii) A is a chain region with respect to a total order relation  „ ‟,   and       
(iii)  the characteristic of A is zero.  
 
Here A is called a „partitioned region‟ because of the fact that it induces  a 
partition PA of A  into three mutually disjoint non-null sets denoted by A+, A- and 
{0A}  such that  
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(i)    A+  =  { a  :  a   A  and 0A < a} 
(ii)   A-   =  { a  :  a   A  and  a < 0A}.  

Clearly,   a   A+,  ~a   A-  and    b   A-,  ~b   A+.  
 
(Note :   It may be recalled from the properties of the chain that :  a < b  iff  a ≤ b  
and   a ≠ b, where “≤” is the total order relation of the chain A, and similarly  a > 
b  iff  b ≤ a  and  b ≠ a). 
 
This partition PA, once made, is regarded as an absolute partition of the region A 
corresponding to its total order relation  „  ‟   in the sense that this partition 
generates the sign of every object of the complete region A, positive or negative, 
which will remain absolute throughout the complete literature henceforth 
(complete region is defined in subsection 2.5 below). However for a different type 
of total order relation defined over the region A we will get a different partition of 
A. But the set {0A} is common to all such possible partitions.  
 

 

2.2.3     Extended Region   
 
Consider an infinite region A  =  (A, ,*, ). The extended region of A is the 
region A itself with all its infinity objects, if any. The infinity objects are not 
basically the core member of the region A, but to be included into it. At this point 
of time we do not consider any method about „how to find out all the infinity 
objects of an infinite region‟. However for a partitioned region the method is 
rather easier.  
 
Consider  a partitioned region   A  =  (A, ,*, ).    If we now include two more 
objects  +A  and  - A in  A as two permanent guests,  then the set AE  =  A 
 {+A, -A}  is the „extended region‟ of the region A.  
The two guest objects + A  and  - A  are called infinities, and are defined as 
below:  

(i)   +A  =  
0

A

A

x
 where  

Ax  (≠0A)  is any positive object of the region A,  and  

(ii)   -A =  
0

A

A

z
  where Az  (≠0A)  is any negative object of the region A.   

The extended region of the partitioned region A is denoted by the notation AE. 
However, if there is no confusion then we may use the notation A itself to denote 
the extended region of A. Note that an extended region is not a region.  For a 
partitioned region, it is just a superset of the set A containing two more objects.  
 
But whenever we say that „A is an extended region‟, it will simply mean that A is 
a region with all its infinities as permanent guests.  At this stage we do not explore 
to study whether there are more infinities other than the two guest objects + A  
and  - A for a partitioned region.  
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An extended region AE may also be called as „extended real region‟ if the 
corresponding region A is a real region [3] by virtue of the definition of a 
partitioned region.  
 
For the region C, there are many infinities to be included into it to call it an 

extended region. For example  a, b   R,  the object  a+ib is an infinity object for 
C if either a or b or both are the infinity object of the region R. The extended 
region of C is denoted by the notation CE.  
 
2.3     2-to-1  Bijective Mapping 

 
Consider two non-null sets X and Y.  A function  f : X   Y  is said to be a  „2-to-
1  Bijective Mapping‟  if  

(i)     f is onto,   and 

(ii)    y   Y,  two and only two distinct (not same)  
        elements x1 and x2  in X  such  that  f(x1)  =  y  =  f(x2). 

For example, the function  f : R-{0}  R+  given by   f(x)  =  x2   is a  2-to-1 
Bijective Mapping. But the function  g :  R  R+  given by g(x) =  x2  is not a  2-
to-1 Bijective Mapping.  
 

 

2.4     Calculus Space :  the Platform to develop a Calculus  
 
Consider a non-null set S. Surely we can not form a calculus over the set S unless 
we are aware of any algebraic structure which ensures us about the operations, 
axioms, properties defined over the set S. Consequently, no calculus can be 
developed over an algebraic structure like Field, Division Algebra or any of the 
existing important algebraic structures by virtue of their respective definitions and 
independently owned properties as analyzed in [3]. It must be necessarily a region 
[3] at minimum. It is because of the reason that most of the results of elementary 
algebra are not valid in algebraic structure like Field, Division Algebra or any of 
the existing important algebraic structures by virtue of their respective definitions 
and independently owned properties. But a natural question at this point arises: 
Can we develop a calculus over any given arbitrary region S?  We say that if a 
calculus can be developed over a region S, then this region is to be designated to 
form a Calculus Space. Thus the same question can be posed in a different way: 
Can every region form a calculus space? The answer will be clear soon after 
discussions made in the subsequent subsections.  
 
 
Definition :   Calculus Space  

Consider a partitioned  region A = (A, ,*,  ) with respect to the total order 
relation „  ‟.  Then A forms a Calculus Space if the following conditions are 
satisfied : 
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(i)    A is an extended region (i.e. A is a region and two infinities are also included 
to it as permanent guests).   
(ii)  A is a normed complete metric space with respect to  a  norm ║.║ and  the         
corresponding induced metric ρ(x, y) = ║x~y║,   (i.e. ║x║ = ρ(x, 0A) ).     
(iii)   The norm ║.║ is a 2-to-1 bijective mapping from  A – {0A}  to  R+. 
 

 

2.4.1  „Calculus Space‟  for Newton calculus  

 
Consider the RR region. This region can be viewed as a partitioned region with 
respect to the crisp order relation  “Less Than or Equal To”  denoted by the 
notation “≤”. Choose a norm defined by ║x║ = |x| in RR,  and the metric   ρ(x, y) 
=║x-y║= |x-y| in RR. Clearly RR forms a region calculus. It can be now observed 
that this region calculus is nothing but the classical Newton calculus (developed 
independently by Newton and Leibniz).   
 
The set R of real numbers is so interesting that it very comfortably forms the 
region RR; and the region RR is so beautiful that it satisfies all the necessary 
conditions to form a Calculus Space (an eligible platform on which a calculus can 
be developed). A division algebra by its definition and independently owned 
properties does not have so much capability. Consequently, it is clear now that the 
classical calculus developed independently by Newton and Leibniz happens to be 
on the particular calculus space RR with respect to a particular order relation 
“Less Than or Equal To”  denoted popularly by the notation “≤” and with respect 
to the norm defined by ║x║ = |x| in RR,  where the metric ρ(x, y) =║x-y║= |x-y| 
in RR.   
 
The following interesting facts may be recalled about the metric ρ  associated with 
the norm  ║.║  (of the calculus space A here),  i.e.   the metric ρ(x, y) = ║x~y║  
has the following special properties : 
(i)  „Translation Invariance‟ :       
 zA  we have  ρ(x z, y z)  = ρ(x, y)  = ║x~y║   where x,y   A,    and 
(ii) „Homogeniety‟ :         
  rR  we have  ρ( r x, r y) =  |r|.║x~y║ = |r|. ρ(x, y)   where x,y   A.  
 
Although these two beautiful properties were established much later than the 
discovery of the Newton calculus, but today these can be observed to be true in 
the „Calculus Space‟ of Newton calculus.  
 
 

2.5     Complete Region  
 
A real region which forms a calculus space is called a “complete region”.  
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By a complete region, we will always mean one-dimensional complete region (1-
D complete region), as a special case of n-d complete region introduced in 
subsection 4.7 later). 
 
For instance, the region RR is a complete region with respect to the crisp order 
relation  “Less Than or Equal To”  denoted by the notation “≤” and the metric ρ(x, 
y) = ║x y║ =  |x-y|,  where the norm is the classical norm defined over R.  
 
The collection of all complete regions is called the complete region universe Ʃ.   
 

2.5.1    How many distinct 1-D complete regions?  

 

An interesting question arises :   
How many distinct 1-D complete regions do exist mathematically?  
To answer this question, first of all we see that given a region A =  (A, ,*, )  
over the field (F, +, .)  there may (may not) exist more number of regions 
corresponding to the same set A over the same set F with different operators  , 
*,   and +, .,  respectively.  

Even if P = (A, ,*, )  be a given fixed complete region with respect to the  total 
order relation „ ‟ and  the norm ║.║, there could be another distinct complete 
region Q = (A, ,*, ) with respect to a different total order relation  or with 
respect to a different  norm or with respect to different  pair of  total order relation 
and  norm both. There could be many more such complete region (A, ,*, )  in 
similar ways. However, we will explore this in depth in our future research work.  
Thus a given region A = (A, ,*, )  over the field (F, +, .)  may produce more 
than one distinct complete regions (even retaining the set A, retaining the set F 
and retaining the operators  , *,   and +, ., unchanged), but with different total 
order relations   and  different norms,  subject to fulfillment of the definition of 
one dimensional region calculus.  
 
For example,  consider the Newton Calculus which is based upon the complete 
region RR but with respect to the crisp order relation  “Less Than or Equal To”  
denoted by the notation “≤”  and the classical norm ║.║ defined by ║x║ = |x| in 
RR,  where the corresponding metric is given by  ρ(x, y) =║x-y║= |x-y|. Now, for 

any real number k>0 we can define a new norm .
new

 over the region RR as: 

new
x =   k |x|.  

It can be observed that the region RR in this case forms a new one dimensional 

calculus space with respect to this new norm .
new

 and the corresponding metric 

new  given by ( , )new x y = 
new

x y =  k |x - y| ,  even retaining  the same crisp 

order relation “Less Than or Equal To”  (≤).   
 
Thus we can define infinite number of distinct norms mathematically and infinite 
number of distinct corresponding metrics, even retaining the same total order  
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relation. Newton Calculus is an example of 1-D region calculus which is based 
upon the platform of the real region RR.  
 

 

3.     Object Geometry  
 
In the previous section  it is explained that we can mathematically define infinite 
number of distinct 1-D complete regions in mathematics (by a complete region, 
we shall always mean 1-D complete region). We are now in a position to initiate a 
new kind of geometry on a  complete region A. We begin the subject by 
introducing first of all a 2-D Object Geometry developed over an 1-D complete 
region.  
 
For developing the new geometry called by “Object Geometry”, be it in a two 
dimensional region coordinate system or in an n-dimensional region coordinate 
system, at least one 1-D complete region A = (A, ,*, ) is required.  
 
3.1     Positive Object and Negative Object   

 

In the work [4], a new theory entitled „Theory of Objects‟ is developed. However 
some of the fundamental concepts of the Theory of Objects are presented here 
from the work[4] as these will be extensively used in the development of Object 
Geometry and Region Calculus.  
 
Consider a complete region A = (A, ,*, ). The elements of A+

 are said to be 
positive objects and the elements of A-

  are said to be negative objects. The object 
0A is neither in A+ nor in A-,  and so we say that 0A is neither a positive object nor 
a negative object. The attribute of being positive or negative is called the sign of 
the object, and 0A is not considered to have a sign of its own.  
 
For a given calculus space A, a line XX1 can be drawn with all positive objects 
lying upon it to the right of 0A, and all negative objects lying upon it to the left of 
0A as shown in Figure 3.1. The concept of „line‟ may be assumed to be same as in 
our classical geometry. Thus the „positive direction‟ of X-axis  and  the „negative 
direction‟ of X-axis can be well understood and the line which the objects of the 
complete region A is considered to lie upon  is called the Object Linear 
Continuum Line  (see Figure 3.1 below) or Object Line in short.  
 

Fig. 3.1.    Objects linear continuum line of the complete region A, a general view 
 
Thus, any point on the Object Linear Continuum Line of the complete region A is 
called an object point of A.   
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We use the following notations in our work here : 

A+   =  set of all positive objects of the complete region A,     
A-    =  set of all negative objects of the complete region A,    
A≥0

  =  set of all non-negative objects of the complete region A. 
 
For developing a new calculus, be it in a two dimensional coordinate system or in 
an n-dimensional coordinate system, at least one calculus space is required as its 
base. Consider the object linear continuum line and the corresponding X-axis. 
Since the region A is complete, there are no "points missing" from it (inside or at 
the boundary). Since A is a chain, every object of A has a unique address on this 
object linear continuum line and  conversely,  i.e. corresponding to every address 
(point) on this object linear continuum line there is a unique object x of the 
complete region A. 
 
Consider a point x on the X-axis of the object linear continuum line corresponding 
to the calculus space A. Then for an infinitesimal small positive object ∆x of the 
region A, the point (x∆x) will be at a distance ║∆x║ from the point x along the 
positive direction of X-axis and the point (x ∆x) will be at a distance ║∆x║ from 
the point x along the negative direction of X-axis. By distance between two 
objects x and y lying upon the XX1 Object Linear Continuum Line of the 
complete region A, we mean the corresponding metric distance ρ(x,y) of the 
normed complete metric space A.  
 
For example, see a collection of consecutive equi-spaced points on the object line 
as shown in the Figure 3.2 below.  
 
 
 

Fig. 3.2.    Object Linear Continuum Line of the complete region A 
showing few consecutive equi-spaced object points. 

 

The term „equi-spaced‟ in the caption of Figure 3.2 is well understood in the sense 
of the corresponding metric (or norm) of the complete region A;  i.e. for any real 
integer r,  ρ(r  1A, (r+1) 1A)  =  constant  (independent of r),  in the complete 
region A by virtue of the beautiful property of „Homogeneity‟ possessed by the 
metric ρ (as mentioned earlier in subsection-2.4.1).     
 
Example 2.1 

 
If we choose the region A to be the RR region which is a partitioned region with 
respect to the crisp order relation “Less Than or Equal To”  denoted by the 
notation “≤”,  and if we choose ║x║ = |x| in RR, where  ρ(x, y) =║x-y║= |x-y|,  
then it can be observed that the X-axis of the region calculus is the classical X-
axis popularly used by us in the Cartesian coordinate system in Newton Calculus, 
the corresponding object linear continuum is the classical real continuum.  
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It will be mistake if we say that the Newton Calculus is based on the field R of 
real numbers (of course, considering the extended real-axis). Actually it is neither 
the field R nor the division algebra R, but it is the region R (which is here the RR 
region [3]).  Interestingly and very fortunately, the particular division algebra R 
satisfies few additional properties trivially (not by virtue of the definition and 
independently owned properties of „division algebra‟). And by fulfilling these 
additional properties, the division algebra R well qualifies [3] to become a real 
region too, but not by virtue of the definition and independently owned properties 
of „division algebra‟. Consequently the classical calculus never faced any 
computational constraints or invalidity even assuming inadvertently R to be a 
field or division algebra just. Fortunately it is a coincidence that R does also form 
a complete region!  Otherwise the classical calculus would not have reached the 
extremely rich level of today, rather it would have become blocked somewhere at 
some time much earlier in its so long beautiful network of journey happened over 
all branches of academic subjects.  
 
Consider the object linear continuum line and the XA-axis corresponding to the 
complete region A. Consider a point xA (a positive object) on the XA-axis. Then 
for an infinitesimal small positive object ∆xA, the point (xA∆xA) will be at a 
distance ║∆xA║ from the point xA along the positive direction of XA-axis and the 
point (xA ∆xA) will be at a distance ║∆xA║ from the point xA along the negative 
direction XA

1-axis; and in fact all the objects of the complete region A are well 
ordered in this sense, as explained in details earlier.  Now we incorporate “YA-
axis” (imagine that a copy of XA-axis is placed at right angle to the XA-axis 
passing through the point 0A, i.e. rotating through 900 anticlockwise about the 
point 0A)  and  thus construct a region coordinate plane in the style of Cartesian 
coordinate system.  
 

3.2    Region Coordinate Plane   

 
We will observe now that every complete region has its own Object Geometry. 
We introduce first of all 2-D Object Geometry in a 1-D complete region A = 
(A, ,*, ). It is a system of geometry where the position of points on the plane is 
described using an ordered pair of objects, analogous to the case of Cartesian 
coordinate plane. We call this plane by „Region Coordinate Plane‟. A plane is a 
flat surface that goes on forever in both directions. If we were to place a point on 
the plane, region coordinate geometry gives us a way to describe exactly where it 
is by using two objects. Points are placed on the "region coordinate plane" as 
shown below in Figure 3.3.  It has two scales:  one running across the plane called 
the "XA-axis" and another at right angles to it called the “YA-axis”. Both these 
axes (XA-axis and YA-axis) are thus object linear continuum lines corresponding 
to the complete region A.  
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Fig. 3.3   Object coordinates on region coordinate plane of the complete region A 
 
 
The point where the two axes cross is called the origin  denoted by the notation 
OA at which both xA and yA are the object 0A. On the XA-axis, as explained earlier 
that objects to the right of origin are positive objects and those to the left are 
negative objects of A. Similarly, on the YA-axis, objects above the origin are 
positive objects and those below the origin are negative objects of A.  
 
A point's location on the region coordinate plane is given by two objects in the 
form of object coordinates (xA,yA), the first coordinate reveals where it is away 
from the YA-axis at parallel to the XA-axis and the second coordinate reveals 
where it is away from the XA-axis at parallel to the YA-axis (see Figure 3.3 
above). The meaning of the word „away‟ is to be drawn with the help of the 
concerned metric ρ. There are four quadrants, and sign convention rule is same as 
that of classical Cartesian coordinate geometry. If there is no confusion, we use 
the word X-axis instead of XA-axis, Y-axis instead of YA-axis in our literature 
here henceforth.  
 

Consider the Object Geometry corresponding to the 1-D complete region A, and   
consider also the Object Geometry corresponding to the 1-D complete region RR. 
Thus there are two sets of Object Geometry we will consider now, and there are 
two corresponding region coordinate planes.  Suppose that the region coordinate 
plane of A does also represent the region coordinate plane of RR taking same 
lines as two axes and taking the same location for origin  (i.e.  OA and ORR are co-
incident points). Thus the X-axis, Y-axis, and the origin are common to both the 
region coordinate planes.  
 
The results of the following proposition are straightforward.  
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Proposition 3.1       

 

(1)   If P be a point on the X-axis with the coordinates (xA, 0A) on the region 
coordinate plane of A, then the coordinates of the same point P in the region 
coordinate plane of RR will be    

(i)    ( Ax ,0)  on X-axis,  if xA is a positive object,  

(ii)   (- Ax ,0)  on X-axis,  if xA is a negative object.  

(i.e. the sign retaining rule will be followed, as the point P will remain in the same 
quadrant in both the region coordinate planes).   
 
(2) If P be a point on the X-axis with coordinates (x, 0) on the region 
coordinate plane of RR, then the coordinates of the same point P in the region 
coordinate plane of A will be (xA, 0A)  on the X-axis.  
(the sign retaining rule will be followed, as the point P will remain in the same 
quadrant in both the region coordinate planes).   
 
(3)  If P be a point on the Y-axis with coordinates (0A, yA) on the region 
coordinate plane of A, then the coordinates of the same point P in the region 
coordinate plane of RR will be      

(i)    (0, Ay )  on Y-axis,  if yA is a positive object,  

(ii)   (0, - Ay )  on Y-axis,  if yA is a negative object.  

(the sign retaining rule will be followed, as the point P will remain in the same 
quadrant in both the region coordinate planes).   
 
(4) If P be a point on the Y-axis with coordinates (0, y) on the region 
coordinate plane of RR, then the coordinates of the same point P in the region 
coordinate plane of A will be (0A, yA)  on the Y-axis.  
(the sign retaining rule will be followed, as the point P will remain in the same 
quadrant in both the region coordinate planes).   
 
(5)  If P (xA, yA) be a point on the on the region coordinate plane of A, then the 
coordinates of the same point P in the region coordinate plane of RR will be one 

of the ( Ax , Ay )  which is in compliance with the sign retaining rule, as the 

point P will remain in the same quadrant in both the region coordinate planes.   
 
(6)  If P (x, y) be a point on the on the region coordinate plane of RR, then the 
coordinates of the same point P in the region coordinate plane of A will be (xA, 
yA).     
(the sign retaining rule will be followed, as the point P will remain in the same 
quadrant in both the region coordinate planes).   
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3.3    Slope of an Object Line   

 
An object line passing through two points on the Region Coordinate Plane of the 
region A is unique. We now compute the slope of an object line for this region 
coordinate plane.  
 
Slope of an object line passing through the two object points P(x1A,y1A) and 
Q(x2A,y2A)  is the real number ma given by (as shown in Figure 3.4) : 

         ma   =  tan θ  =   λ. 2 1

2 1

( , )

( , )
A A

A A

y y

x x




,  where λ is either +1 or -1 as per the usual 

sign rule followed in classical geometry.  
 

Therefore,      ma   =   λ. 2 1

2 1

A A

A A

y y

x x




 

                              =    λ. 2 1

2 1

1 1

1 1

a A a A

a A a A

y y

x x

 
 




 

                              =    λ. 2 1

2 1

( ) 1

( ) 1

a a A

a a A

y y

x x

 
 

 

                              =    λ. 2 1

2 1

. 1

. 1

a a A

a a A

y y

x x




 

                              =    λ. 2 1

2 1

a a

a a

y y

x x




 

                              =    λ. 2 1

2 1

.1 .1

.1 .1

a a

a a

y y

x x




,  2ay  means 2( )ay which is equal to 2.1ay    

                              =    λ. 2 1

2 1

y y

x x




 

 
 

 
Fig. 3.4.   Slope of an objects line 
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Thus the slope is neither dependent upon the concerned region nor upon the 
metric of the region.  
 

3.4     Distance between two object points   

 
In Object Geometry, the distance between two object points on a region 
coordinate plane can be defined in various ways like in classical geometry. 
However, we follow the style of Eucledian distance here.  
 
Consider the XAYA region coordinate plane corresponding to the complete region 
A.  Let  P(x1A,y1A) and Q(x2A,y2A) be two points on this region plane (see Figure 
3.5). Distance PQ between these two points is the positive real number d,  where  

d  =   
1

2 2 2
2 1 2 1( ( , )) ( ( , ))

A A A A
y y x x  .   

 
It can be observed that this distance is an absolute distance in the sense that 
neither it is dependent upon the concerned region nor upon the metric of the 
region.   
 
We see that,    

d2  =  
2 2

2 1 2 1A A A Ay y x x   

     =  
2 2

2 1 2 11 1 1 1a A a A a A a Ay y x x     
 

     =  
2 2

2 1 2 1( ) 1 ( ) 1a a A a a Ay y x x    
 

     =  2 2 2 2
2 1 2 1( ) .1 ( ) .1a a a a a ay y x x  

 
     =  2 2

2 1 2 1{( ) ( ) }a a a ay y x x  
 

     =  2 2
2 1 2 1{( ) ( ) }.y y x x  

 
 
This implies that d is neither dependent upon the concerned region nor upon the 
metric of the region.   
 

 
 

Fig. 3.5   Distance between two object points 
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The Pythagoras Theorem is thus well valid irrespective of the concerned region or 
the metric of the region.   
 

Proposition 3.2       

Pythagoras Theorem is valid in every Object Geometry, whatever be the 
corresponding complete region A.  
 

 

3.5    Equation of an Object Line 

 
Consider the XAYA region coordinate plane corresponding to the complete region 
A (see Figure 3.6).  The general equation of an object line whose slope is ma  is 
    yA  =  ma xA cA . 
Equation of an object line having slope ma and passing through the object point 
Q(x1A,y1A)  is  
                           (yA~y1A)  =  ma (xA~x1A). 
Equation of an object line passing through the two object points  P(x1A,y1A)  and 
Q(x2A,y2A)  is  

              (yA ~ y1A)  =  ma (xA ~ x1A),    where ma  = 2 1

2 1

a a

a a

y y

x x




.  

 
 

 
 

 

Fig. 3.6   An object line having positive intercept of length ca on YA axis. 
 

 
If an object line MN has the intercepts of lengths pa and qa on the X-axes and Y-
axes respectively at the points (pA, 0A) and (0A, qA), then the equation of this 
object line MN will be (as shown in Figure 3.7):    

                     1A A
A

a a

x y

p q
        (using Division Type-2 as introduced in [3]).  
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Fig. 3.7   An object line making two intercepts of lengths pa and qa. 
 

 

In the above equations, the variables take values which are objects of the region 
A. The classical geometry taught at school level is also an instance of Object 
Geometry based upon a particular region which is RR.  
 

3.6     Object Circle   

 
Consider the XAYA region coordinate plane corresponding to the complete region 
A.  Then the equation of an Object Circle (see Figure 3.8) with centre at (0A, 0A) 
and radius ra (>0)  is given by  

2 2 2( ( ,0 )) ( ( ,0 ))A A A A ax y r   ,         

which can be written as    
2 2 2

A A ax y r  .                        

 
 

Fig. 3.8     Object circle with centre at origin 
 
And the equation of the Object Circle (see Figure 3.9) with centre at (αA, βA) and 
radius ra (>0)  is given by   

2 2 2( ( , )) ( ( , ))A A A A ax y r     ,         

which can be written as    
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2 2 2
A A A A ax y r    .   

 
Fig. 3.9     Object circle with centre at the object point C(αA, βA) 

 

Further study on object geometry can be easily done analogous to the literature of 
classical geometry.  
 

 

 

4.    Region Calculus  
 
Let us consider a calculus space A. Suppose that we want to develop now a new  
calculus in the calculus space A. For this purpose, the basic concepts of any new 
calculus (of a new differential calculus) are : limit, continuity, differentiability of 
a function of objects, etc. which we need to introduce first of all in the calculus 
space A analogous to the classical style of Newton calculus. 
 

 

4.1      Defining  “x   a”       
 

We are well aware of the concept of  “x   a” in Newton Calculus. In this 
subsection we define the notion of  “x   a”  in region calculus.   
 
Consider an object variable x over the calculus space A = (A, ,*, ).   Let a   A  
be a fixed object. Suppose that while approaching the object a from its right side 
along the Object Linear Continuum Line, the object variable x assumes successive 
object values, out of which some of them for example are :   
         (a0.1 1A), (a0.01 1A), (a0.001 1A), (a0.0001 1A), ….…  
during its course of journey on the object line X1OX to get close and close to the 
object a. 
 
Obviously, as x passes through these object points, the value ρ(x, a) becomes less 
and less and become so small that for any positive real number  , no matter 
however small, ρ(x, a) <   is satisfied. Let us express this situation using the 
notation “x   a+”  which means that the object variable x approaches the fixed  
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object a from the right hand side of a  (as shown in Figure 4.1). The meaning of 
„right hand side of a‟ is clear by the explanation presented earlier in Section 2,3.     
 

 

Fig. 4.1.  The notion of  x   a+ on  the Object Linear Continuum Line 
 
 
Suppose that while approaching the object a from its left side along the Object 
Linear Continuum Line, the object variable x assumes successive object values, 
out of which some of them for example are :   
             (a ~ 0.1  1A), (a ~ 0.01 1A), (a ~ 0.001 1A), (a ~ 0.0001 1A), ……   
during its course of journey on the object line X1OX to get close and close to the 
object a. 
 
Obviously, as x passes through these successive values, the value ρ(x, a) becomes 
less and less and become so small that for any positive real number  , no matter 
however small, ρ(x, a) <   is satisfied. Let us express this situation using the 
notation “x a-” which means that the object variable x approaches the fixed 
object a from the left hand side of a  (as shown in Figure 4.2).     
 

 

 

 

 

Fig. 4.2.   The notion of  x   a-  on  the Object Linear Continuum Line 
 
 
By the expression “x tends to a” symbolically written as “x   a”,  we mean that 
given any real  >0 no matter however small, the successive values of x 
ultimately satisfy the inequality  0 < ρ(x, a) < .  It is to be noted that  if  “x   a”  
then ρ(x, a) ≠ 0,   i.e.  x ≠ a. 
 

 

4.2     Neighborhood of an Object Point  

 
Consider an object point a on the Object Linear Continuum Line of the calculus 
space A = (A, ,*, ).   Analogous to the concept as in Newton Calculus, we now 
define the notion of Neighborhood of an Object Point on the object line.  
Let δ > 0 be a real number. Then the δ-neighborhood of the object a is defined by 
the set Nδ(a) of objects given by  Nδ(a)  =  { x : x   A  and ρ(x, a) < δ}. 
Here  Nδ(a)   A,  and obviously Nδ(a) ≠ φ.  
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4.3     Limit of a Function of Object Variable  

 
Let X and Y be two non-null subsets of the calculus space A = (A, ,*, )  and 
let f be a function f : X   Y. Thus f is actually an object valued function of 
object variable.  Then f(x) is said to have a limit l in Y if for any pre-assigned real 
number  >0, no matter however small,   a real number δ > 0 such that  
                             ρ( f(x), l) <    whenever 0 < ρ(x, a) < δ.   
We write symbolically as:     
                             lim ( )

x a
f x


 = l,   i.e.  f(x) l  as  x a.                                                                   

 
 
To understand the concept, let us solve the problems posed below.  
 

 

Problem 4.1   

Show that     
2 1

lim 5
Ax

x
 

 =  l0 1A  in the calculus space A = (A, ,*, ).    

Solution :   
Given real  >0, no matter however small, we need to find out real δ > 0 such that  
           ρ( 5 x, l0 1A) <   whenever  0 < ρ(x, 2 1A) < δ. 
i.e.  ║5 x ~ l0 1A║ <   whenever   0 < ║x ~ 2 1A║ < δ. 
i.e.  5.║x ~ 2 1A║  <   whenever  0 < ║x ~ 2 1A║ < δ.   
Now if we choose  δ =  /5,  our definition is satisfied.  

Hence 
2 1

lim 5
Ax

x
 

  =  l0  1A   in the calculus space A.                                                                   

 

Problem 4.2   

Show that 
2

3 1

9 1
lim

3 1A

A

x
A

x

x 







 =  6 1A     in the calculus space A = (A, ,*, ).                                                                     

Solution :   
Given  >0, no matter however small,  we need to find out δ > 0 such that  

              
2 9 1

, 6 1
3 1

A
A

A

x

x

 

  




 <        whenever  0 < ρ(x, 3 1A) < δ. 

        i.e.      
2 9 1

6 1
3 1

A
A

A

x

x





 


  <      whenever  0 < ║x ~ 3 1A║ < δ. 

 
Since  x 3 1A    therefore  x  ≠  3  1A   and hence (x ~ 3 1A)  ≠  0A.  
 
Therefore, Cancellation Laws of region algebra can be applied to get the 
following result : 
       ║ (x 3 1A) ~ 6 1A ║  <    whenever   0  < ║x ~ 3 1A║ <  δ. 
i.e.  ║ x ~ 3 1A║ <    whenever  0 < ║x ~ 3 1A║ <  δ. 
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Now if we choose δ =  , our definition is satisfied.  Hence the result. 
 
4.4     Multi-dimensional Region Calculus  
 
The calculus space discussed so far is basically one dimensional calculus space 
(1-D calculus space)  and  the corresponding region calculus is also one 
dimensional. It is because of the reason that in a calculus space any variable x  can 
vary/move along a straight line only. By the simple terms : calculus space, region 
calculus, complete region, we shall always mean here the same in an one-
dimensional calculus space.  
 
In this section we introduce the concept of „Multi-dimensional Calculus Space‟ as 
a generalization of the concept of „calculus space‟. In a two-dimensional calculus 
space (2-D calculus space), a variable z can move along a curve on a plane. The 
corresponding region calculus is called a 2-D region calculus. In a three-
dimensional calculus space (3-D calculus space), a variable w can move along a 
curve on a 3-D space. The corresponding region calculus is called a 3-D region 
calculus. Similarly, in an n-D calculus space, a variable µ can move along a curve 
on a n-D hyperspace. The corresponding region calculus is called an n-D region 
calculus.   
 
We now define n-to-1  Bijective Mapping. 
 
4.5     n-to-1  Bijective Mapping 

 
Consider two non-null sets X and Y.  A function  f : X   Y  is said to be a  „n-to-
1  Bijective Mapping‟  if  

(i)     f is onto,    and 

(ii)    y Y,    a unique subset Sy of X of cardinality n (> 2)  such  

                   that  x   Sy  we have  f(x) = y. 
Here n could be finite positive integer (> 2)  or  infinity (of the set R).  
 
For example, the function   f :  C-{0}R+  given by  
                                                  f(z)  =  |z|2  

is a  n-to-1 Bijective Mapping, where C is the set of complex numbers.  
 

4.6     Multi-dimensional Calculus Space 
 
Consider a partitioned  region A = (A,  ,*,  ). Then A forms a Multi-
dimensional Calculus Space if the following conditions are satisfied : 
 (i)     A is an extended region.  
(ii)     A is a normed complete metric space with respect to  a  norm ║.║  and  the  
         corresponding induced metric ρ(x, y) = ║x~y║,   (i.e. ║x║ = ρ(x, 0A) ).     
(iii)   The norm ║.║ is  a n-to-1 bijective mapping  from  A–{0A}  to  R+  for some  
         fixed integer n > 2. 
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4.7     n-D Complete Region  
 
A real region which can form a n-D calculus space is called a “n-D complete 
region”.  
A calculus developed out of n-dimensional calculus space is called by n-
dimensional region calculus. It may happen that a region can not form an n1-
dimensional calculus space, but can well form an n2-dimensional calculus space. 
In other words, a region may  not form an n1-dimensional region calculus, but 
may well form an n2-dimensional region calculus.  
 
It is to be carefully noted that, a Division Algebra is not a region in general. 
Consequently a Division Algebra can not become a Calculus Space in general 
even if it satisfies all the conditions of Calculus Space. Given any region G = 
(G,  ,*,  ) over the field (R, +, .), one can immediately attempt to explore 
whether G forms a calculus space with respect to a suitably defined norm ║.║   
and  one suitably defined  total order relation  „ ‟.  If G forms a calculus space, 
then a new calculus can be developed in G. The set C of complex numbers does 
not satisfy the required conditions to become a calculus space with respect to its 

popular norm 2 2
z zz x y   . Consequently, no 1-D region calculus can be 

developed in the region C with respect to this norm.   It is to be carefully noted 
that the existing rich „Calculus of Complex Variables‟ is not an 1-D region 
calculus.  
However, in our future research work we need to explore whether C forms a 

multi-dimensional calculus space (say, 2-D calculus space) with respect to its 

popular norm 
2 2

z zz x y   .  And if so, then will this 2-D region calculus 

be the same calculus as the existing rich ‘Calculus of Complex Variables’ of 
mathematics?    

 
The set of triangular fuzzy numbers (trapezoidal fuzzy numbers) does not form a 
region with respect to its existing known operators and consequently it can not 
offer any region calculus of any dimension to the fuzzy mathematicians. This is 
one of the major demerits of the notion of triangular fuzzy numbers and 
trapezoidal fuzzy numbers, some of the drawbacks have been justified in [7,8,9].  
 

 

5.    Conclusion 
 
In this paper a generalization of the existing subject „Calculus‟ is developed.  The 
generalized calculus is called by „Region Calculus‟ which is introduced by 
defining the notion of „Calculus Space‟. The classical calculus developed 
independently by Newton and Leibniz is based on the set R of real numbers, 
extended with two infinities, and then took its shape further with functions of 
complex variables, vector calculus, tensor calculus, etc.  The growth of classical 
calculus at every stage required fluent applications of various properties of the set  



Region calculus                                                                                                    395 
 
 
R of real numbers. But it is justified in [3] that using the properties of a „field‟ or a 
„division algebra‟ or any existing standard algebra, the classical calculus cannot 
have the validity of its all fluent results. Fortunately, the set R is a trivial example 
of the algebraic structure region [3], and the mathematicians enriched the classical 
calculus using the properties of region R, although „unknowingly‟. It is fact 
because of the reason that the development of the classical calculus cannot be 
validated by virtue of the definition and properties of any existing brands of the 
standard algebraic structures of Abstract Algebra by virtue of their respective 
definition and independently owned properties. It is only the algebraic system 
region at minimum which has the capability to validate such elementary and 
higher level computations.  
 
One of the major breakthrough in this work is that we have precisely identified: 
„What are the minimum properties which need to be satisfied by a set A so that a 
calculus can be developed over A?‟. Consequently we have introduced the notion 
of „calculus space‟ as a general minimal platform on which a calculus can be 
developed. It has been explained how the platform R of classical calculus forms a 
calculus space. For a non-example, the set of all triangular fuzzy numbers do not 
form a real region with respect to its commonly used operators, and hence cannot 
open any platform to develop any fuzzy differential calculus and fuzzy integral 
calculus over it in the style of the classical calculus.  The requirements are 
precisely identified as a checklist before making any attempt to develop any new 
calculus over a given set. This work of Region Calculus is initiated with a prior 
intuitionistic assumption that there is a possibility that the classical calculus may 
not be most appropriate or even may not be applicable successfully at everywhere 
of our universe system in some complex situations (if any) or in the multiverse 
system if exists. We presume that our future computations (be it in this solar 
system or in other, be it in this universe or in other of the multiverse) may not be 
sufficiently covered by or compatible with our classical calculus because of a 
significant limitation in the „distance‟ formula used. Consequently, the very first 
job is to define the general structure of a mathematical space which is a minimum 
requirement for making an attempt to develop any new calculus over it.  
 
Before going to develop Region Calculus, we have introduced another new branch 
of Mathematics called by “Object Geometry”. Corresponding to every complete 
region there is a unique Object Geometry. The existing „classical geometry‟ is one 
example of the “Object Geometry” corresponding to the particular region RR. For 
a non-example, the set of all triangular fuzzy numbers (or the set of all trapezoidal 
fuzzy numbers)  is closed with respect to the addition operator defined over them, 
but is not closed with respect to the multiplication operator defined over them 
[7,8]. Thus the set of all triangular fuzzy numbers (or the set of all trapezoidal 
fuzzy numbers)  do not form a real region with respect to its commonly used 
operators (and cannot open any platform to develop any region calculus), and 
hence cannot open any type of new Theory of A-Numbers [4] or any new Object 
Geometry at the present form  in the context of Region Mathematics. Similarly the  
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set of all interval numbers, Z-fuzzy numbers, intuitionistic fuzzy numbers, i-v 
fuzzy numbers, rough numbers, etc do not form a region and hence cannot open 
any platform to develop any region calculus. Hence these sets cannot open any 
type of new Theory of A-Numbers or any new Object Geometry in the context of 
“Region Mathematics” by the present form of their respective literatures 
developed so far .  
 
It is justified that mathematically there are infinite number of distinct complete 
regions exist in mathematics, there are infinite number of distinct 1-D region 
calculus exist. Then we generalize the concept of calculus space by defining 
„multi-dimensional calculus space‟. The simple term calculus space is basically 
one dimensional calculus space (1-D calculus space) and  the corresponding 
region calculus is also one dimensional region calculus. In a calculus space any 
variable x can vary/move along a straight line only,  i.e. if x a in a complete 
region, it means that x is being driven along a straight line.  The concept of 
„Multi-dimensional Calculus Space‟ is a generalization of the concept of „calculus 
space‟. In a two-dimensional calculus space (2-D calculus space), a variable z can 
move along a curve on a plane. The corresponding region calculus is called a 2-D 
region calculus. In a three-dimensional calculus space (3-D calculus space), a 
variable w can move along a curve on a 3-D space. The corresponding region 
calculus is called a 3-D region calculus. Similarly, in an n-D calculus space, a 
variable µ can move along a curve on a n-D hyperspace. The corresponding 
region calculus is called an n-D region calculus (i.e. n-dimensional region 
calculus).  It may happen that a region cannot form an n1-dimensional calculus 
space, but can well form an n2-dimensional calculus space. In other words, a 
region may not form an n1-dimensional region calculus, but may form an n2-
dimensional region calculus. It is to be carefully noted that mathematically an 
arbitrary Division Algebra  is not a region in general by virtue of its definition and 
properties. Consequently an arbitrary Division Algebra cannot qualify to become 
a Calculus Space in general. The proposed theory of Region Calculus helps us to 
study for any arbitrary region G = (G, ,*, ) over the field (R, +, .)  to explore 
whether G forms a calculus space with respect to a suitable  norm ║.║   and  a  
suitable total order relation „ ‟.  If G forms a calculus space, then a new calculus 
can be well developed in G. However, the set C of complex numbers does not 
satisfy the required conditions to become a calculus space with respect to its 

popular norm 2 2
z zz x y   . Consequently, no 1-D region calculus can be 

developed in the region C.  However, in our future research work we need to 
explore whether C forms a multi-dimensional calculus space (2-D calculus space)  

with respect to its popular norm z zz  so that a 2-D region calculus can be 

developed in C.  The set of triangular fuzzy numbers (trapezoidal fuzzy numbers) 
does not form a region with respect to its existing known operations and 
consequently it cannot offer any region calculus of any dimension to us. This is 
one of the major demerits of the notion of triangular fuzzy numbers and 
trapezoidal fuzzy numbers, the drawbacks being justified in details in [7,8].  
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The set C of complex numbers does not satisfy the required conditions to become 

a calculus space with respect to its popular norm z zz  =  2 2
x y .    

Thus no 1-D region calculus can be developed in C, and hence C is not a 1-D 
complete region with respect to 2-to-1 bijection.  It is to be carefully noted that the 
existing rich „Calculus of Complex Variables‟ is not an 1-D region calculus. 
Consequently, a number theory of type „Theory of C-numbers‟ cannot be 
developed in C, and due to same reason a Object Geometry too cannot be 
developed in C; although the concept of prime and composite objects, imaginary 
and complex objects, compound numbers, etc. can be well studied in C.  However 
if C forms a multi-dimensional complete region (say 2-D complete region or n-D) 
then C may open a new Theory of C-Numbers with multi-dimensional approach 
and its own Object Geometry, which is our future course of research work. For 
this,  we first of all need to explore whether C forms a multi-dimensional calculus 

space (say, 2-D calculus space)  with respect to its popular norm z zz  =  

2 2
x y  so that a 2-D region calculus can be developed in C.  And if so, then 

will it be the same calculus as the rich „Calculus of Complex Variables‟ of 
existing mathematics?    
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