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Abstract

Considerable advances have been made in learning to

recognize and localize visual object classes. Simple bag-of-

feature approaches label each pixel or patch independently.

More advanced models attempt to improve the coherence

of the labellings by introducing some form of inter-patch

coupling: traditional spatial models such as MRF’s pro-

vide crisper local labellings by exploiting neighbourhood-

level couplings, while aspect models such as PLSA and LDA

use global relevance estimates (global mixing proportions

for the classes appearing in the image) to shape the local

choices. We point out that the two approaches are com-

plementary, combining them to produce aspect-based spa-

tial field models that outperform both approaches. We study

two spatial models: one based on averaging over forests of

minimal spanning trees linking neighboring image regions,

the other on an efficient chain-based Expectation Propaga-

tion method for regular 8-neighbor Markov Random Fields.

The models can be trained using either patch-level labels or

image-level keywords. As input features they use factored

observation models combining texture, color and position

cues. Experimental results on the MSR Cambridge data

sets show that combining spatial and aspect models signifi-

cantly improves the region-level classification accuracy. In

fact our models trained with image-level labels outperform

PLSA trained with pixel-level ones.

1. Introduction

An ongoing theme in computer vision is the relation-

ship between low-level image features and scene or object

classes such as sky, water, cars, bicycles. Models that relate

features to classes can be used to solve various tasks includ-

ing classification (determining whether the image contains

at least one instance of the class), detection (determining
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the positions of the class instances in the image), and seg-

mentation (partitioning the image into regions covered by

the classes present). When learning such models from an-

notated images, labeling can be done at various levels of

specificity: image-level keywords only indicate that certain

classes are present in the image; bounding boxes provide

rectangular image regions in which the classes occur; and

full segmentation masks assign individual pixels to classes.

Recently there has been considerable interest in meth-

ods for segmenting images into semantic classes [9, 11, 21].

Impressive results have been achieved with conditional ran-

dom field [12] based models trained using detailed pixel-

level labellings. Creating such labellings requires substan-

tially more effort than providing image-level keywords and

it would be useful to develop models that allow learning

from keywords alone along the lines of [2, 7].

At the other extreme, some authors [20, 22] argue that

aspect models like Probabilistic Latent Semantic Analy-

sis (PLSA) [10] and Latent Dirichlet Allocation (LDA) [5]

can recover semantic-level visual models even under com-

pletely unsupervised training (without any labeled training

data). However others [13] find that unsupervised aspect

models perform poorly in classification tasks, even in rel-

atively simple cases where each image contains just one

easily visible target class and inter-class variation is lim-

ited (e.g . the only views of cars are side views). It does

seem clear that when only a few labelled training images

are available, performance can be improved by representing

them in terms of their aspect model topic mixtures rather

than in terms of their original features [1, 13, 19].

In this paper we combine the advantages of spatial fields

and aspect models, focusing particularly on the setting

where the model is learned from image-level keywords

without detailed pixel-level labelling. The key challenge

is to associate image regions with the correct labels so as

to estimate crisply defined class models. Our work is re-

lated to [18, 14] where segmentation models for textured

animals are learned from images grouped by the class of

animal. It differs in that: (i ) there may be many classes

in each image; (ii ) we use dense image features to handle
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Original building grass sky tree

Figure 1. A training image labeled {building, grass, sky, tree}, and the corresponding soft region labelings inferred during learning.

classes with little texture; and most importantly (iii ) we use

well defined probabilistic models that capture both spatial

coherence (local correlations between labels) and thematic

coherence (image-wide correlations).

From each image we extract overlapping patches on a

grid, representing them by color and texture descriptors and

rough indications of their image positions. Label induction

takes place at the patch level, but the results are propagated

to pixel level for visualization and performance quantifica-

tion. Figure 1 shows an example of a training image labeled

with keywords together with the inferred association of im-

age regions to labels. We assume that each image patch

belongs either to one of the label classes or to a vague back-

ground class ‘void ’ that is available in every image.

Aspect models such as PLSA and LDA are probabilistic

models that are well suited to this situation. They model

(the patches of) each image as a mixture of latent aspects or

‘topics’. Each image has its own mixing proportions but the

topics and their attributes are shared by all images. Here we

allocate a single latent topic for each semantic class. Ex-

tending this to multiple topics per class is trivial (but use-

ful). To incorporate labelled training images we use only

the topics corresponding to the the image’s labels and void

to model the image.

Existing aspect models do not enforce spatial coherence:

they effectively assume that the labels of adjacent patches

are independent, thus ignoring the strong local correlations

that are found in real images. We develop two extensions of

PLSA that are designed to capture some of this coherence:

forests of random spanning trees and regular Markov ran-

dom fields. Our experimental results show that they signif-

icantly outperform PLSA. In fact, even when trained using

only image-level labels, they provide region-level classifi-

cation accuracies similar to or better than those of PLSA

trained using detailed pixel-level labellings.

The rest of the paper is organized as follows. Section 2

briefly introduces aspect models and describes how we use

them to learn from labeled images. Section 3 sketches our

image features and how we incorporate them. Section 4 is

devoted to spatial extensions of aspect models. Section 5

gives comparative experimental results, and Section 6 con-

cludes and sketches ongoing work.

2. Aspect models

Aspect models such as PLSA [10] and LDA [5] have

been extensively studied as models of collections of text

documents. Each document d is modeled generatively as

a bag of words sampled from a document-specific mixture

of T latent ‘aspect’ or ‘topic’ distributions. Each topic t is

characterized by its distribution p(w|t) over the W words

of the dictionary, and each document d is characterized by

its vector θd of mixing weights over topics. Given θd, the

Nd words of d are modelled as independent samples from

the mixture. Letting zn denote the unknown topic (mixture

component) of word wn and θdt = p(zn=t|θd) denote the

mixing weight of topic t in d, the probability of the docu-

ment becomes:

p(w1, . . . , wNd
|θd) =

Nd
∏

n=1

T
∑

t=1

θdt p(wn | t). (1)

When aspect models are applied to image collections, the

images take on the role of documents and the image patches

that of words. Images are thus modeled as mixtures of latent

aspects that generate appearance descriptors independently

for each patch.

PLSA can be viewed as a probabilistic generalization of

PCA – a low-rank nonnegative approximation of the matrix

of (empirical word probabilities for each document) × (doc-

uments) using factor matrices {p(w|t)}×{p(t|d)} obtained

by Expectation-Maximization (EM) [3]. There are various

extensions. Notably, LDA adds a sparse (Dirichlet) prior for

the topic weights θd and treats these as hidden variables to

be integrated out rather than as parameters to be estimated

using Maximum Likelihood for each document. Here we

use only PLSA. It is computationally more efficient than

LDA and it has comparable accuracy in practice. The main

benefit of aspect models is the low-rank projection of the

document onto the aspect space, which regularizes the per-

document word-probabilities p(w|d) and helps to capture

some of the underlying semantics via the per-image mixing

coefficients p(t|d). LDA provides additional regularization

by encouraging the topic mixtures to be sparse and by av-

eraging over their weights, but this only makes a significant

difference for small documents and many topics, Nd 6≫ T .

We learn topic vectors p(w|t) from image-level labels

simply by setting θdt to zero for all classes (except void )



that are not listed among the image labels. So only the im-

ages that are labeled with a topic contribute to learning its

topic vector. The remaining θdt can have any (non-negative

sum-to-one) values1. Section 5 shows that even such weak

supervision allows good topic models to be learned.

PLSA learning is subject to local minima. To avoid some

of the problems associated with these we initially hold the

per-image topic proportions θd fixed to uniform distribu-

tions over the given image-level labels (and zero for those

not present). Once the topic vectors p(w|t) have stabilized

we allow both θd and p(w|t) to vary to obtain the final

model. This makes the learned topic vectors significantly

cleaner. Secondly, we force the topic vector for the void

class to remain generic by fixing it to the uniform distribu-

tion rather than learning it.

3. A multi-modal aspect model to combine cues

We use cues from M = 3 distinct modalities to char-

acterize each image patch: a SIFT descriptor [15] captures

the local texture; the robust hue descriptor of [23] describes

the local color distribution; and approximate image location

is coded by the index of the cell into which the patch falls,

where the image is covered by a c×c grid of regular cells.

Our experiments used c = 5 and c = 10 – larger values

reduce the performance. The SIFT and color descriptors

are vector quantized into respectively 1000 and 100 bins

using centers learned using k-means from all of the train-

ing set descriptors. The compound patch descriptor thus

has c2 · 103 · 102 possible values. It is infeasible to learn

an aspect model over a vocabulary of this size. Instead we

assume that the modalities are independent given the aspect

and learn factored models for them, thus giving a generative

model of the form:

p({wn}Nd

n=1 |θd) =

Nd
∏

n=1

T
∑

t=1

θdt

M
∏

m=1

p(wm
n | t) . (2)

Note that we only assume independence given the aspect.

For example, knowing that a region is green or blue can only

alter the conditional distribution of its texture (e.g . favoring

vertical grass-like textures or smooth sky-like ones) via the

latent topics involved (grass, sky, . . . ).

In contrast, [6] combines color and texture by calculat-

ing 128-D SIFT independently on each component of HSV

color space and vector quantizing the resulting 384-D fea-

ture vectors. This captures within-topic interactions but the

dimension of the resulting feature spaces rapidly becomes

1Here we use only simple constraints that set the mixing proportions

of topics not present to zero, but other convex constraints such as upper

or lower bounds on the proportions or their relative sizes could easily be

included. The negative data log-likelihood is a convex function of the pro-

portions, so for any convex constraints on them, the optimal mixture can

be found efficiently using convex optimization.

prohibitive. Unlike multi-modal LDA [4], in our model the

three modalities of each patch share a single common topic.

4. Spatial extensions to aspect models

Aspect models such as PLSA and LDA ignore the spa-

tial structure of the image, modeling its patches as indepen-

dent draws from the topic mixture θd. We now discuss two

models that capture more of the spatial coherence of natural

region labels. Random fields are an attractive way of do-

ing this but exact inference tends to be intractable for ones

that are densely connected enough to capture spatial inter-

actions well. Our first model uses tree-structured approxi-

mations of the conditional dependencies between region la-

bels, thus allowing efficient exact inference with standard

Belief Propagation. Our second model uses a conventional

8-neighbor Markov Random Field with efficient approxi-

mate inference based on Expectation Propagation (EP) on

intersecting Markov chains.

4.1. Forests of spanning trees

A simple way to capture some of the local dependencies

between aspect labels in a computationally tractable form

is to connect the nodes of the image Z = {z1, . . . , zNd
} in

a tree (e.g . a spanning subtree of the usual MRF grid) and

impose a tree-structured prior

p(Z) ∝ exp

(

∑

i

ψ(zi, zπ(i)) + log θdzi

)

, (3)

where π(i) denotes the unique parent of node i in the tree.

There are a great many possible trees, even if we restrict

attention to ones whose edges link near neighbors. Neigh-

bors with similar appearance often belong to the same class

so they are preferred candidates for coupling. To sample

the trees, we initially connect all neighboring patches, as-

signing edges the value of 1 if they have the same SIFT or

color index, and 0 otherwise. We then randomly sample

maximal spanning trees from this 0-1 valued neighborhood

graph. There are usually many such trees, so to reduce the

dependence on arbitrary choices we randomly select 10 and

average (marginal label probabilities) over them. Experi-

mentally we find that such averaging helps but that the ef-

fect saturates after about 10 trees. There are also various

ways to set the edge weights more progressively based on

appearance, but we will not discuss these here.

Perhaps surprisingly, Potts-like pair-wise potentials

ψ(zi, zπ(i)) = ρ · [zi = zπ(i)], (4)

(where [·] denotes the indicator function of its argument)

give more accurate classification results than ones estimated

using fully supervised pixel-level labellings (again with av-

eraging over 10 trees). We therefore use the Potts form be-

low, determining ρ by cross-validation.



θd

z1 z2 z3
. . . zNd

w1 w2 w3
. . . wNd

Figure 2. A graphical representation of our Markov field aspect

model. (In reality, the zn are coupled in a 2D lattice).

4.2. Markov field aspect model

The above tree-structured models can include only

Nd−1 direct connections among Nd nodes, so spatial

neighbors often end up being well separated in the trees.

This typically limits the extent to which their correlations

can be captured. A more realistic model is a Markov Ran-

dom Field (MRF) with connections between all spatially ad-

jacent nodes. The MRF has the following prior over node

labels [3]:

p(Z) ∝ exp





∑

i

log θdzi
+
∑

i∼j

φ(zi, zj)



 , (5)

where i∼j enumerates spatial neighbor nodes i, j. The pair-

wise potentials φ(zi, zj) encode the compatibility between

neighboring labels. As before we use a Potts model

φ(zi, zj) = σ · [zi = zj ]. (6)

See Figure 2 for a graphical representation.

Exact inference in MRFs – in particular, determining

the posterior marginals p(zi|{wn}Nd

n=1) that are needed to

learn the topic models – requires time exponential in the

field width (typically O(
√
Nd)). However there are vari-

ous methods for approximating marginals, including (struc-

tured) Gibbs sampling [8], Variational Mean-Field (VMF),

Loopy Belief Propagation (LBP), and Expectation Propa-

gation (EP). For an introduction to the latter three meth-

ods see [3], and for more details on EP and its relation to

loopy BP, variational and other approximations see [16].

Gibbs sampling can in principle provide samples from the

true posterior marginals, but it typically requires exponen-

tially many iterations to do so. Variational methods and

loopy BP converge more quickly, but tend to provide over-

confident approximations: the variability and entropy of

the marginals are under-estimated. EP is a recent approx-

imation technique for exponential family models based on

matching statistical moments. When the node marginals

are multi-modal, EP tends to smooth over the peaks and

hence over-estimate the marginal entropies, but in practice

its marginals are often found to be more accurate than those

of VMF and LBP [3]. In particular, MRF priors that can

generate segmentation-like behaviour typically have many

well-separated modes associated with collective local rela-

bellings. For these, (sequential) Gibbs sampling is expo-

nentially slow and VMF and LBP tend to lock onto just one

mode, while EP tends to average over multiple modes.

EP approximates the MRF posterior p(Z|{wn}Nd

n=1) with

a simpler model distribution Q(Z) that is estimated from

the observations and some tractable factorization of the

MRF prior. Here we have a regular grid of patches with

pairwise 8-neighbor connections. We use a completely fac-

tored approximation Q(Z) =
∏

i qi(zi) and write the MRF

prior as a product of four factors, respectively covering the

contributions of horizontal, vertical, and the two types of

diagonal edges:

p(Z) ∝ t1(Z) t2(Z) t3(Z) t4(Z). (7)

Each factor is a set of 1-D MRFs whose exact marginals

are calculated using the Baum-Welch algorithm [3]. This

allows the EP projection step to account for the averaged

influence of the 1-D couplings2.

As with standard PLSA, we treat (θd, σd) as parameters

to be estimated for each image. Our full algorithm inter-

leaves applications of EP to find marginals for the patch la-

bels with M-steps that minimize a convex cost to update

(θd, σd) – and p(w|t) too, if we are learning topic vectors.

However we find that we can achieve essentially identical

performance by using simple PLSA to estimate θd and fix-

ing σd = σ empirically for all images. This is much faster

than the full algorithm so we have used it in most of the

below experiments.

5. Experimental results

Our experiments use the Microsoft Research Cambridge

(MSRC) data sets3. The first set contains 240, 213×320
pixel images, each with a ground truth segmentation that

labels each pixel with one of 13 semantic classes or void.

The void pixels either do not belong to one of the 13 classes

or lie near boundaries between classes and were labeled as

void to simplify the task of manual segmentation. Here we

also treat the classes horse, mountain, sheep and water as

void as they occur rarely in the data set.

The algorithms below are based on 20×20 pixel patches

extracted at 10 pixel intervals at a single scale. Each patch

thus overlaps its eight nearest neighbors. Its ground truth la-

bel is taken to be the most frequent pixel label within it. On

output, pixel-level posterior label probabilities are obtained

by either: (i ) using the posterior of the nearest patch centre

– thus producing probabilities that are constant over 10×10
pixel blocks as in Figs. 3 and 4; or (ii ) linearly interpolat-

ing the 4 adjacent patch-level posteriors to produce smooth

2Our formulation can also be interpreted as a particular message pass-

ing scheme in Loopy Belief Propagation – see [24].
3http://research.microsoft.com/vision/cambridge/recognition



Building Grass Tree Cow Sky Aeroplane Face Car Bicycle Average

S 51.1 (12.1) 74.0 (10.8) 68.1 (15.8) 59.0 (15.3) 59.2 (6.4) 52.1 (16.5) 52.5 (12.9) 59.4 (14.9) 76.3 (5.8) 61.3 (3.1)

C 50.4 (13.8) 77.6 (12.8) 46.8 (24.6) 51.0 (17.4) 81.2 (10.5) 20.8 (13.9) 77.2 (13.1) 58.5 (15.3) 38.0 (17.3) 55.7 (5.3)

P 0.0 (0.0) 86.6 (5.5) 0.0 (0.0) 0.0 (0.0) 68.9 (6.0) 3.5 (6.3) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 17.7 (1.0)

SC 66.6 (10.3) 84.0 (8.8) 59.5 (18.9) 74.8 (16.6) 89.4 (3.5) 74.8 (9.0) 80.7 (8.3) 73.9 (9.3) 73.0 (8.1) 75.2 (3.4)

SP 58.0 (8.9) 76.1 (7.3) 62.6 (19.8) 74.0 (11.1) 81.0 (4.3) 69.4 (14.4) 55.9 (12.6) 69.3 (11.9) 76.7 (5.1) 69.2 (3.6)

CP 60.5 (13.5) 80.2 (12.3) 38.5 (22.4) 57.2 (20.7) 89.5 (6.1) 48.4 (13.3) 76.6 (10.9) 63.6 (14.1) 34.9 (13.0) 61.0 (4.5)

SCP 70.5 (9.1) 88.3 (7.9) 62.5 (15.3) 77.8 (15.4) 93.5 (3.0) 86.7 (6.7) 82.5 (7.5) 76.2 (8.7) 71.3 (8.7) 78.8 (3.5)

Table 1. Patch-level classification accuracies under PLSA on topic vectors learned from labeled patches, for various combinations of the

three modalities S IFT, Color and Position.

probability maps as in Figure 1. We could also apply the

algorithms at pixel level by extracting a patch around each

pixel, but this would be computationally expensive.

Each experiment is an average over a specified number

of random 90% training / 10% test splits of the data set,

with the additional constraint that there must be at least 4

images from each class in each test and training partition.

We report averages and standard deviations of patch-level

classification accuracies for each class. Some classes are

much more frequent than others (21% of pixels are grass,

while only 3% are aeroplane or face), so overall accuracies

are computed by averaging class-level classification rates,

not patch-level ones.

5.1. Combining modalities to improve classification

We first consider how performance depends on the fea-

tures used: SIFT, color and position. To ensure optimal pa-

rameter settings, we learned the topic vectors p(w|t) from

labeled training patches. For each test image we estimated

the class mixing weights θd using PLSA and found the

maximum a posteriori (MAP) label for each patch. The re-

sulting classification accuracies, averaged over 20 random

training/test divisions, are shown in Table 1.

Overall SIFT is the most discriminant, but color and to

some extent position still provide useful complementary in-

formation. We used all three modalities in the experiments

below because this gives the best performance both on av-

erage and for 7 of the 9 individual classes. Position alone

gives zero accuracy for most object classes because their

broad spatial distributions are locally dominated by those

of the three best-localized classes grass, sky and aeroplane.

5.2. Using spatial priors to improve classification

We now compare PLSA, tree-structured and MRF mod-

els for patch-level classification under two training scenar-

ios that are designed to explore the influence of accurate

topic vectors: supervised training in which the topic vectors

are estimated from Patch-level labels (‘P’); and weakly su-

pervised training in which only Image-level labels (‘I’) are

used (i.e . training patches are constrained to have a label

from their image’s label set, but otherwise free). We give

results for two different labeling tasks: Unsupervised label-

ing (‘U’) – nothing is known about the test image and its

patches can have any label, and Weakly supervised labeling

(‘W’) – a set of image-level labels is given for the test image

and each patch must be labeled with one of these (e.g ., in

Figure 1, each patch must be labeled building, grass, tree,

sky or void ).

Table 2 summarizes the patch-level classification rates

for the different models and settings. The spatial models

have higher accuracy than PLSA for almost all classes and

settings, with PLSA-MRF being on average slightly more

accurate than PLSA-TREE. Indeed, for unsupervised la-

belling (‘U’), PLSA-MRF with topic vectors learned us-

ing PLSA from image-level labels alone has an average

accuracy of 78.1%, which is close to the 78.5% attained

by PLSA learned from fully labeled patches. These find-

ings are in line with [17], which reports improved classifi-

cation rates for an aspect model over an irregularly struc-

tured MRF built by connecting interest point based patches

to their 5 nearest neighbors.

The PLSA-TREE and PLSA-MRF models have simi-

lar optimal parameter settings for unsupervised ‘U’ and

weakly-supervised ‘W’ labelling (σ ≈ 0.7 for the PLSA-

MRF), while the non-PLSA TREE and MRF models re-

quire different settings for the two tasks: for ‘W’ the set

of available labels is typically quite restricted (88% of the

images have four or fewer labels including void ) and rel-

atively weak spatial couplings are best (σ ≈ 0.7 for the

MRF), while for ‘U’ all 10 labels compete and signifi-

cantly stronger couplings (σ ≈ 2.6) are needed to pre-

vent the appearance of many small regions with incorrect

labels. Including the image-wide PLSA potential θd effec-

tively reweights the observation likelihoods from p(w|t) to

p(w|t) θdt, thus suppressing classes for which there is lit-

tle global evidence and providing image-level regularization

that improves the overall accuracy.

5.3. Improved topic learning though MRF inference

The above experiments used the spatial priors only dur-

ing test image labelling: the topic vectors and the image-



Model Building Grass Tree Cow Sky Aeroplane Face Car Bicycle Average

P/U PLSA 69.8 (10.5) 87.0 (7.3) 63.3 (16.2) 76.3 (14.9) 93.1 (3.2) 85.5 (6.4) 82.7 (6.9) 75.9 (7.8) 72.9 (7.3) 78.5 (3.1)

PLSA-TREE 73.4 (11.3) 89.0 (7.3) 64.4 (17.4) 75.9 (15.5) 95.1 (3.2) 90.6 (5.5) 87.9 (5.6) 80.4 (9.6) 78.3 (9.6) 81.7 (3.4)

PLSA-MRF 74.0 (11.6) 88.7 (7.5) 64.4 (17.8) 77.4 (16.3) 95.7 (2.7) 92.2 (4.9) 88.8 (6.3) 81.1 (10.0) 78.7 (10.2) 82.3 (3.4)

I/U PLSA 40.8 (10.7) 69.6 (9.7) 56.9 (17.3) 79.1 (12.0) 86.1 (6.2) 88.0 (5.8) 91.9 (5.7) 75.8 (9.8) 77.7 (7.5) 74.0 (2.8)

PLSA-TREE 40.6 (13.5) 71.4 (10.1) 57.6 (18.8) 82.3 (12.7) 88.0 (6.2) 94.4 (4.4) 94.9 (4.8) 83.1 (10.1) 85.5 (7.9) 77.5 (2.9)

PLSA-MRF 40.1 (14.4) 70.4 (10.3) 56.6 (19.6) 84.2 (13.1) 87.7 (6.4) 95.6 (3.6) 95.5 (4.7) 85.5 (10.2) 87.4 (7.8) 78.1 (3.1)

I/U* PLSA* 47.8 (10.9) 73.0 (8.9) 62.3 (15.9) 79.7 (10.7) 90.2 (5.2) 90.0 (6.9) 89.7 (6.2) 79.2 (7.8) 77.3 (10.7) 76.6 (3.1)

MRF* 47.4 (11.3) 75.0 (6.1) 63.2 (13.7) 71.2 (11.2) 92.8 (4.2) 87.1 (8.9) 85.9 (5.0) 75.9 (8.9) 72.1 (11.2) 74.5 (3.1)

PLSA-MRF* 49.4 (14.0) 73.5 (9.5) 62.9 (17.4) 83.5 (11.0) 91.5 (5.6) 95.5 (4.4) 93.3 (6.0) 85.8 (10.8) 86.4 (8.6) 80.2 (3.3)

P/W PLSA 80.6 (6.3) 89.0 (6.6) 67.4 (14.6) 80.4 (12.8) 93.4 (2.9) 90.0 (4.6) 89.4 (5.0) 80.6 (7.6) 84.2 (7.2) 83.9 (2.3)

PLSA-TREE 83.9 (6.5) 90.1 (7.0) 68.5 (15.1) 79.1 (13.8) 95.0 (3.0) 93.6 (3.6) 89.9 (5.5) 82.8 (8.9) 87.1 (7.4) 85.6 (2.5)

PLSA-MRF 84.1 (6.9) 89.7 (7.3) 69.2 (15.3) 79.5 (14.7) 95.4 (2.8) 94.5 (3.1) 90.7 (5.5) 83.1 (9.7) 87.1 (7.7) 85.9 (2.6)

I/W PLSA 57.1 (10.1) 72.5 (10.1) 61.8 (15.1) 84.8 (11.4) 84.7 (6.2) 91.5 (4.3) 94.7 (4.9) 85.1 (7.2) 87.7 (7.1) 80.0 (2.6)

PLSA-TREE 56.9 (12.2) 73.9 (10.8) 63.2 (15.9) 85.0 (12.3) 86.6 (6.2) 95.5 (3.4) 96.8 (4.4) 89.4 (7.5) 92.0 (6.2) 82.2 (2.8)

PLSA-MRF 55.9 (13.1) 73.0 (10.8) 62.6 (16.6) 85.7 (12.3) 86.1 (6.5) 96.4 (2.9) 96.9 (4.5) 90.4 (7.8) 92.4 (6.3) 82.2 (2.9)

Table 2. Patch-level classification accuracies for the PLSA, PLSA-TREE and PLSA-MRF models, for topic vectors learned from Patch-

level labels (‘P’), or Image-level labels (‘I’). For Unsupervised testing (‘U’) patch labels can belong to any class, while for Weakly

supervised testing (‘W’) they must belong to the test image’s predefined set of keywords. The topic vectors were learned using either

standard PLSA (unstarred models) or PLSA-MRF (starred models). The figures in parentheses are standard deviations over 200 random

90% training / 10% test partitions.

level topic mixtures θd were estimated using standard

PLSA. To integrate topic vector estimation into the MRF

training process, we modified the EM based PLSA algo-

rithm to incorporate the MRF prior in the E-step, using

EP to approximate the posterior marginals p(zi|{wn}nd

n=1).
We used the learned topic vectors to test three classification

methods: (1) standard PLSA; (2) topic-level MRF without

the image-level PLSA potential; (3) the combined PLSA-

MRF model as above. Patch-level classification accuracies

for test images are reported in Table 2 under I/U*. For both

PLSA and PLSA-MRF, the PLSA-MRF based topic vec-

tors give classification accuracies at least comparable to,

and often a few percent better than, the PLSA based ones,

and the PLSA-MRF model does better than either PLSA

or MRF alone. Using PLSA-MRF both to learn topics

from keywords and to classify test patches gives an aver-

age classification rate of 80.2%, which is quite close to the

82.3% of PLSA-MRF, and better than the 78.5% of plain

PLSA, for topics learned from labeled patches. Figure 3

shows some examples of segmentations obtained using re-

spectively PLSA and PLSA-MRF for both topic learning

and classification.

5.4. Comparison to Textonboost with 21­class model

Now we compare the combined PLSA-MRF model with

Textonboost [21] on the 591 image MSRC data set. For

each image a segmentation using 23 semantic classes and

void is available. Very few pixels belong to horse and

mountain so we treated these as void, leaving a total

of 21 semantic classes. Textonboost [21] was learned

from labelled pixels so for a fair comparison we estimate

the PLSA-MRF topics from labeled patches (20×20 pixel

patches spaced by 10 pixels as before). The topics were

estimated from 276 randomly selected images, with the re-

maining ones being used for evaluation. (The training/test

split is probably different from that used in [21]).

Again σ ≈ 0.7 gave the best classification results. The

classification accuracies, per class and averaged over the

classes, are reported in Table 3. The two models achieve

comparable average accuracies over the 21 classes, but their

error rates on individual classes are often quite different

(more than 10% for 15 of the 21 classes). As before there

are large differences in class frequencies, with grass cov-

ering 20% of the pixels and boat covering only 0.9%. Av-

eraging classification performance over all pixels, Texton-

boost achieves 72.2% while PLSA-MRF attains 73.5%. The

improvement is modest but still suggestive. Example seg-

mentations are shown in Figure 4. When trained using only

image-level labels, PLSA-MRF still attains 60.6% classifi-

cation accuracy over all pixels.

Note that estimating topic vectors from labeled patches

is trivial and takes less than 2 seconds, while 11 minutes are

required for feature extraction for the 276 images. Most of

the training time is spent quantizing the 200k patch features

– this takes up to an hour depending on the convergence

criterion. Training Textonboost is much slower: 42 hours

were required using 276 images [21]. Textonboost required

3 minutes to process a test image, while PLSA-MRF re-

quires 2 seconds per image for feature extraction and 0.3–2

seconds for inference depending on the number of EP iter-

ations.
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Figure 3. (Best viewed in color). Example images (top), and segmentations using PLSA (middle) and PLSA-MRF (bottom), with topics

learned from image labels.

6. Conclusions

We addressed the problem of learning to label image re-

gions with semantic classes from training images that are la-

beled with image-level keywords rather than with detailed

pixel-level segmentations. We showed that aspect models

– modelling each image as a mixture of latent ‘aspects’ or

‘topics’ – are well suited to this because image-level labels

can be taken into account simply by restricting the topics

that are used to model the image. We also extended PLSA to

incorporate multiple observation modalities for each patch.

The combination of SIFT, color, and position cues greatly

improves the discrimination: for topics learned from la-

beled patches, the average classification accuracy increases

from 61.3% using only SIFT to 78.8% using all three cues.

We then presented two models that improve the spatial

accuracy of the labelling by combining the global (image-

level) label coupling of PLSA with local spatial interac-

tions: PLSA-TREE based on averaging over tree struc-

tured couplings; and PLSA-MRF based on an 8-neighbour

MRF with Expectation Propagation based inference. In

comparison to the 78.5% classification accuracy obtained

with PLSA trained from segmented images, PLSA-MRF

achieves 80.2% when trained using only image-level la-

bels and 82.3% using patch-level ones. The performance

of PLSA-TREE is only slightly lower.

On the 21-class MSRC dataset our models achieve pixel

classification accuracies at least as good as those of Texton-

boost at much lower computational cost.
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ditional random fields for image labelling. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 695–702, 2004.

[10] T. Hofmann. Unsupervised learning by probabilistic la-

tent semantic analysis. Machine Learning, 42(1/2):177–196,

2001.

[11] S. Kumar and M. Hebert. A hierarchical field framework for

unified context-based classification. In Proceedings of the



flower

void
building

grass

sky

aeroplane

Figure 4. Example images and segmentations using PLSA-MRF on the 21 class data set, with topic vectors learned from labeled patches.

B
u

il
d

in
g

G
ra

ss

T
re

e

C
o
w

S
h

ee
p

S
k
y

A
er

o
p

la
n

e

W
at

er

F
ac

e

C
ar

B
ic

y
cl

e

F
lo

w
er

S
ig

n

B
ir

d

B
o

o
k

C
h

ai
r

R
o

ad

C
at

D
o

g

B
o

d
y

B
o

at

A
v
er

ag
e

Textonboost 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 58

PLSA-MRF/P 52 87 68 73 84 94 88 73 70 68 74 89 33 19 78 34 89 46 49 54 31 64

PLSA-MRF/I 45 64 71 75 74 86 81 47 1 73 55 88 6 6 63 18 80 27 26 55 8 50

Table 3. Classification rates for each of the 21 classes and their average over classes, using Textonboost and our PLSA-MRF model.

Textonboost was trained using segmented images, so for a fair comparison we used PLSA-MRF to estimate topics both from labeled

patches (‘P’) and from image-level labels (‘I’).

IEEE International Conference on Computer Vision, pages

1284–1291, 2005.

[12] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-

dom fields: probabilistic models for segmenting and label-

ing sequence data. In Proceedings of the International Con-

ference on Machine Learning, volume 18, pages 282–289,

2001.

[13] D. Larlus and F. Jurie. Latent mixture vocabularies for object

categorization. In Proceedings of the British Machine Vision

Conference, pages 959–968, 2006.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local

descriptors and neighborhood statistics for texture recogni-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 649–655, 2003.

[15] D. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004.

[16] T. Minka. Divergence measures and message passing. Tech-

nical Report MSR-TR-2005-173, Microsoft research, Cam-

bridge, 2005.

[17] F. Monay, P. Quelhas, J.-M. Odobez, and D. Gatica-Perez.

Integrating co-occurrence and spatial contexts on patch-

based scene segmentation. In Beyond Patches Workshop,

in conjunction with CVPR, 2006.

[18] J. Puzicha, T. Hofmann, and J. Buhmann. Histogram cluster-

ing for unsupervised segmentation and image retrieval. Pat-

tern Recognition Letters, 20:899–909, 1999.

[19] P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica-Perez,

T. Tuytelaars, and L. Van-Gool. Modeling scenes with local

descriptors and latent aspects. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 883–890,

2005.

[20] B. Russell, W. Freeman, A. Efros, J. Sivic, and A. Zisserman.

Using multiple segmentations to discover objects and their

extent in image collections. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1605–1614, 2006.

[21] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

boost: joint appearance, shape and context modeling for

multi-class object recognition and segmentation. In Proceed-

ings of the European Conference on Computer Vision, pages

1–15, 2006.

[22] J. Sivic, B. Russell, A. Efros, A. Zisserman, and B. Free-

man. Discovering objects and their location in images. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 370–377, 2005.

[23] J. van de Weijer and C. Schmid. Coloring local feature

extraction. In Proceedings of the European Conference on

Computer Vision, pages 334–348, 2006.

[24] M. Welling, T. Minka, and Y.-W. Teh. Structured region

graphs: morphing EP into GBP. In Proceedings of the An-

nual Conference on Uncertainty in Artificial Intelligence,

volume 21, 2005.


