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ABSTRACT
Region-based memory management offers several important poten-
tial advantages over garbage collection, including real-time perfor-
mance, better data locality, and more efficient use of limited mem-
ory. Researchers have advocated the use of regions for functional,
imperative, and object-oriented languages. Lexically scoped re-
gions are now a core feature of the Real-Time Specification for
Java (RTSJ)[5].

Recent research in region-based programming for Java has fo-
cused on region checking, which requires manual effort to augment
the program with region annotations. In this paper, we propose an
automatic region inference system for a core subset of Java. To pro-
vide an inference method that is both precise and practical, we sup-
port classes and methods that are region-polymorphic, with region-
polymorphic recursion for methods. One challenging aspect is to
ensure region safety in the presence of features such as class sub-
typing, method overriding, and downcast operations. Our region in-
ference rules can handle these object-oriented features safely with-
out creating dangling references.

Categories and Subject Descriptors
D.3.3, D.3.4 [Programming Languages]: Language Constructs
and Features, Processors; D.2.8 [Software Engineering]: Program
Verification; F.3.2 [Theory of Computation]: Semantics of Pro-
gramming Languages

General Terms
Languages, Verification, Theory

Keywords
Region Inference, Object-Oriented Languages, Type Systems, Mem-
ory Management, Downcasts, Method Overriding

1. INTRODUCTION
Region-based memory management systems allocate each new

object into a region with a designated lifetime, with the entire set of
objects in each region deallocated simultaneously when the region
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is deleted. Various studies have shown that region-based program-
ming can provide safe memory management with good real-time
performance. Data locality may also improve when related objects
are placed together in the same region. Classifying objects into re-
gions based on their lifetimes may deliver better memory utilization
if regions are deleted on a timely basis.

Dangling references are a safety issue for region-based memory
management. A reference from (an object in) one region to (an ob-
ject in) another region is said to be dangling if the latter region has a
shorter lifetime than the former. A region has a shorter lifetime than
another region if it is deleted before the latter. Using a dangling ref-
erence to access memory is unsafe because the accessed memory
may have been reallocated to store a new object. Researchers have
identified two approaches to eliminate this problem. The first ap-
proach allows the program to create dangling references, but uses a
type and effect system to ensure that the program never uses a dan-
gling reference to access memory[16]. The second approach uses
a type sytem to prevent the program from creating dangling refer-
ences at all[9]. The first approach (no-dangling-access) may yield
more precise region lifetimes, but the latter approach (no-dangling)
is required by the RTSJ and for co-existence with precise garbage
collectors.

Several projects have recently investigated the use of region-
based memory management for Java-based languages [21, 16, 15,
9]. Most of these projects (e.g. [16, 9]) require programmers to
manually annotate their programs with region declarations. The
type checker then uses these declarations to check that well-typed
programs never access dangling references, ensuring safe memory
management and enabling the omission of run-time tests for dan-
gling references. An issue is that region annotations may impose a
considerable mental overhead for the programmer and raise com-
patibility issues with legacy code. In addition, the quality of the
annotation may vary, with potentially suboptimal outcomes for less
experienced programmers.

In this paper, we provide a systematic formulation of a region
inference system for a core subset of Java. We use the no-dangling
approach and support programs that use a stack of lexically scoped
regions in which the last region created is the first deleted. We
adopt this approach for two reasons: to simplify our inference al-
gorithm and to conform to the RTSJ. Our main contributions are:

� Region Inference: We present a new region inference al-
gorithm for a core subset of Java. This algorithm (based
on type inference) automatically augments unannotated pro-
grams with region type declarations; when the program runs
it uses region-based memory management and is guaranteed
to never create dangling references. Our algorithm fully han-
dles object-oriented features such as class subtyping, method
overriding, and downcast operations.



� Region Lifetime Constraints: Our region type rules prevent
dangling references by requiring the target object of each
reference to live at least as long as the source object. We
formalise this requirement explicitly through region lifetime
constraints, with support for region subtyping.

� Region Polymorphism: We support classes and methods
with region polymorphism. In addition, region-polymorphic
recursion is supported for methods (but not for classes). These
features provide an inference algorithm that is precise and yet
efficient.

� Class Inheritance: Our inference scheme supports class sub-
typing and method overriding. Previous systems [16] require
“phantom regions” to support inheritance, which causes a
loss in lifetime precision. We propose an improved solution
(without phantom regions) where modular compilation can
be guided by a global dependency graph.

� Correctness: We state a correctness theorem that our infer-
ence scheme always leads to well-typed programs that are
region-safe. Such well-typed programs are guaranteed not to
create dangling references in either the store or the stack.

� Downcast Safety: We provide a compile-time analysis which
ensures that downcast operations are region-safe. Previous
proposals (e.g. [7]) require runtime checks for downcast op-
erations.

� Implementation: We have built a prototype implementa-
tion of our region inference system. Preliminary experiments
suggest that our inference is competitive with hand annota-
tion.

The remainder of the paper is organised as follows. Sec 2 intro-
duces the Core-Java language and its region-annotated target form.
Sec 3 presents a set of guidelines for good region annotations; we
use these guidelines to structure our region inference rules. Sec 4
is devoted to region inference. It formalises the region inference
rules and describes how method override conflicts can be resolved.
It also presents the key correctness theorem. Sec 5 deals with the
inference of additional regions to ensure safe downcast operations.
Sec 6 reports on preliminary experiments with our implementation
of the region inference algorithm. Sec 7 discusses related work;
Sec 8 contains the conclusion.

2. CORE-JAVA AND REGION TYPES
Fig 1(a) presents the syntax of a Java-like language named Core-

Java. Core-Java is the source language for our region inference
system. Core-Java is designed in the same minimalist spirit as
Featherweight Java[30]. It supports assignments but remains an
expression-oriented language. Loops are omitted in our syntax as
they are dealt with through conversion to equivalent tail-recursive
methods. To mimic the effects of loops, such converted methods
differ from user-defined methods in that they pass their parameters
by reference instead of by value. This conversion is for inference
purposes only; the generated program executes the loop directly.

Fig 1(b) presents region-annotated Core-Java, the target language
for our region inference system. This language extends Core-Java
with region types and region constraints for each class and method.
In addition, letreg declarations introduce local regions with lexical
scopes.

Note that � denotes a region variable and � represents a data vari-
able. The suffix notation � � denotes a list of zero or more distinct

� � � �
def

�
meth

�
def

� � �
class � � � extends � � �
	 field

�
meth

���
prim
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(a) The Source Language
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(b) The Target Language

Figure 1: The Syntax of Core-Java

syntactic terms separated by appropriate separators, while � # rep-
resents a list of one or more distinct syntactic terms. The syntactic
terms could be � , � , 354 � 6 , field, etc. For example, 354 � 6 � denotes
354 � � �
798.8�897 4:/ � /06 where ;�<>= .

The constraint � ��? � � indicates that the lifetime of region � � is
not shorter than that of � � . The constraint � �9@ � � denotes that � �
and � � must be the same region, while � � A@ � � denotes the converse.
Our algorithm will infer region constraints only of the form � ��? � �
or � �9@ � � but never of the form � � A@ � � . However, � � A@ � � is present
in our syntax because a region checking system which we have also
built supports it. Note that this is a reserved data variable referring
to the current object, while heap is a reserved region to denote a
global heap with unlimited lifetime, that is BC�*D heap ? � .

A constraint abstraction [27] of the form q EF� �
798"8"7 ��/HG @ rc de-
notes a parameterized constraint. For uniformity, the region con-
straint of each class and method will be captured with a constraint
abstraction. The region constraint for each class is also known as
the class invariant and is denoted using inv.cn EF� � 7�828"7 � / G . The re-
gion constraint for each method is also known as the method pre-
condition and is denoted using pre.m EF� �
7.8"8"7 ��/HG , where m is either
cn.mn or mn, depending on whether it is an instance method or a
static method. Note that mn denotes a method name. The set of
constraint abstractions generated for a given program is denoted by
Q. It is possible to inline the constraint abstractions, after fixed-



class Pair � r1,r2,r3 � extends Object � r1 �
where r2 � r1 � r3 � r1 �
Object � r2 � fst
Object � r3 � snd
Object � r4 � getFst � r4 � () where r2 � r4 � fst �
void setSnd � r4 � (Object � r4 � o) where r4 � r3 � snd=o �
Pair � r4,r5,r6 � cloneRev � r4,r5,r6 � ()

where r2 � r6 � r3 � r5� Pair � r4,r5,r6 � tmp=new Pair � r4,r5,r6 � (null,null);
tmp.fst=snd; tmp.snd=fst; tmp �

void swap() where r2 � r3 �
Object � r2 � tmp=fst; fst=snd; snd=tmp ��

(a)

class List � r1,r2,r3 � extends Object � r1 �
where r3 � r1 � r2 � r3 � r2 � r1 �
Object � r2 � value
List � r3,r2,r3 � next
Object � r4 � getValue � r4 � () where r2 � r4 � value �
List � r4,r5,r6 � getNext � r4,r5,r6 � ()
where r5=r2 � r6=r3 � next �

void setNext � r4,r5,r6 � (List � r4,r5,r6 � o)
where r5=r2 � r6=r3 � r4=r6 � next = o ��

(b)

Figure 2: The Pair and List Classes

point analysis has been applied to obtain closed-form formulae for
recursive constraints.

Each class definition in the target language is parameterized with
one or more regions to form a region type [32, 33, 16, 9]. For
instance, � ;�EF� ��7.8"8"827 ��/CG is a class annotated with region parameters
� � 8"8"8 � / . Parameterization allows us to obtain a region-polymorphic
type for each class whose components can be allocated in different
regions. The first region parameter � � is special: it refers to the
region in which a specified object of this class will be allocated.
The components (or fields) of the objects, if any, are allocated in the
other regions � � 8"8"8 �
/ which should outlive the region of the object.
This is expressed by the constraint � /	 
 � 35� 	 ? � � 6 , which captures
the property that the regions of the components (in � � 8"8"8 ��/ ) should
have lifetimes no shorter than the lifetime of the region (namely
� � ) of the object that refers to them. This condition, called no-
dangling requirement, prevents dangling references completely, as
it guarantees that each object will never reference another object in
a younger region. We do not require region parameters for primitive
types, since primitive values are copied and therefore always stored
directly in either the stack or inside its owner object.

Each class declaration has a set of instance methods whose main
purpose is to manipulate objects of the declared class. The instance
methods of a subclass can override the instance methods of the su-
perclass. For completeness, we also provide a set of static methods
with similar syntax as instance methods, but without overriding and
without access to the this object. These two categories of meth-
ods are easily distinguished by their calling conventions. Every
method in the target language is decorated with zero or more re-
gion parameters; these parameters capture the regions used by each
method’s parameters and result. Each method also has a region
lifetime constraint that is consistent with the operations performed
in the method body. Fig 2 presents two example classes, the Pair
and List classes, in the target language.

3. REGION ANNOTATION GUIDELINES
To support region-based programming, our region inference al-

gorithm adds region parameters and constraints to each class and
its methods. There are a number of ways to perform such region
annotations. The following principles guide our approach:

� Keep the regions of components in each class (and the re-

gions of the parameters and results of each method) distinct,
where possible.

� Keep region constraints on classes and methods separate.
Region constraints on classes capture the expected class in-
variant (including the no-dangling requirement) on the re-
gions of each object of the class. Region constraints on meth-
ods denote the precondition for invoking the method.

� Use region subtyping, where applicable, to improve the pre-
cision of the lifetimes of the regions.

The first principle allows more region polymorphism, where ap-
plicable. The second principle places the region constraints that
must hold for every object of a given class in the class, while plac-
ing the region constraints for each method invocation in the method.
Placing region constraints with methods where possible allows these
constraints to be selectively applied to only those objects which
may invoke the methods. As we shall see later, this principle is
helpful also to ensure the safety of method overriding. The third
principle allows an object from a region with longer lifetime to be
assigned to a location where a region with a shorter lifetime is ex-
pected. This concept was pioneered in a safe dialect of C, called
Cyclone[26], and is implemented as region subtyping. We shall
see how this idea improves the precision of region lifetimes and
how it can be further enhanced.

3.1 Regions for Field Declarations
Consider the Pair class. As there are two fields (or components)

in this class, we introduce a distinct region for each of them, as
shown in the region-annotated version in Fig 2(a). To ensure that
every Pair object satisfies the no-dangling requirement, we also
add r2 ' r1 + r3 ' r1 to the class invariant.

Next consider the List class with next as its recursive field.
There are many different ways of annotating such recursive fields;
the best choice depends on how the objects are manipulated. To
keep matters simple, we use a special form of region-monomorphic
recursion for class declarations, similar to Tofte/Birkedal’s han-
dling of data structures[32, 4], but with support for region subtyp-
ing. We introduce a distinct region especially for all the recursive
fields. This approach ensures that each recursive field will have
the same annotation as its class, except for its first region. Given
a recursive class declaration with region type cn E1� �
7 � � 7 ��/HG , we
shall annotate each of the fields as cn EF� / 7 � � 7 ��/HG . In the case of
the List class, the region r3 is reserved specially for the recursive
next field, as illustrated in Fig 2(b). We handle mutually recur-
sive class declarations similarly. For simplicity, we ignore mutual
recursive class declarations in this paper, even though our imple-
mentation supports them.

Based on the above guidelines, the constraint abstractions for the
Pair and List classes are:

inv.Pair<r1,r2,r3> = r2 ' r1 + r3 ' r1
inv.List<r1,r2,r3> = r3 ' r1 + r2 ' r3 + r2 ' r1

3.2 Region Subtyping Principle
We investigate three versions of the region subtyping rules; the

versions differ in the precision of the inferred region lifetimes:

� no (region) subtyping

� object (region) subtyping

� field (region) subtyping



The first kind of subtyping was used in [9] and [16]. The second
kind was introduced in [26]. In this paper, we advocate the third
kind of region subtyping (which subsumes the second kind) with
enhanced support for the regions of immutable fields.

Object region subtyping relies on the fact that once an object
is allocated in a particular region, it stays within the same region
and never migrates to another region. This immutability property
allows us to apply covariant subtyping to the region of the current
object. However, the object fields are mutable (in general) and must
therefore use equivariant subtyping to ensure the soundness of sub-
sumption. By reserving the first region exclusively for the region of
each object, we can therefore use the following two subtype rules.

� � � � �
'��� � � + � /	 
 � � � 	 � �� 	 � � ��� �� 	 �	 � 	 
 /	 
 �
� �  � �
� � / $�� � �  �� ��� � / $ - � 
 �

class cn  "! �
� � / $ extends cn �  "! ��� � � $����
��� P ��
cn �  � ��� � � $�� � cn � �  � � ��� � � $ - � 
 ��
cn  � �
� � / $�� � cn � �  � � �
� � � $ - � 
 �

Note that � �
'��� � allows an object in a region with a longer life-
time to be assigned to a location that expects objects in a region
with a shorter lifetime. For the other regions (that are used by
the fields), a stronger equivariant constraint � /	 
 � � � 	 � �� 	 � would
be used instead. The second rule is for the class subtype hierarchy.
Both rules return a region constraint � and a region substitution � .
The latter may be used if we are interested in only equivariant sub-
typing. One example where object region subtyping is useful is the
following:

void foo (Object a, Object b)� Object tmp;
if ... then tmp=a else tmp=b;
...�

Without object subtyping, the dual assignments of both a and b
to tmp cause their regions to be coalesced together and generate
the constraint ��� @ ��� (where ��� and ��� are the regions for a and b).
With object subtyping, regions of a and b may be different, as long
as they both outlive the region of tmp.

This concept of region subtyping can be further extended to se-
lected fields if they are immutable after object initialization. The
fields of recursive structures are particularly important as they may
involve many objects that are typically grouped into the same re-
gion. We use an isRecReadOnly function to check if a class has
immutable recursive fields or not. With this information, we can
support a more precise region subtyping rule, namely:

isRecReadOnly � ��� � � � � � '��� � � + � / � �	 
 � � � 	 � �� 	 � + � � / '!�� / �� �  � ��- � � - � /H$�� � �  �� ��- � � -"�� /H$ - � 
 � �� 	 �	 � 	 
 /	 
 �

One advantage of this field region subtyping rule is that it allows
each recursive object to be placed in a region that is different (and
may have a longer lifetime) from that of the prior object in the
recursive chain. Such a feature is important for recursive methods
that build temporary data structures during recursive invocations.
An example is the following function, called Reynolds3, that was
highlighted in [22, 4].

Bool search (RList p, Tree t)� if isNull(t) then false
else � Object x; x=t.value;

if member(x,p) then true
else � RList p2; p2=new RList(x,p);

if search(p2,t.left) then true
else search(p2,t.right) � � �

We use RList to denote a list structure with an immutable re-
cursive field. Applying region inference with field subtyping, we
are able to obtain a target program where the region for variable
p2 is localised. Unlike previous work[32, 4], the performance of
such a region-inferred program is comparable to that obtained by
escape analysis[22]. We thus advocate for region subtyping to be
used, where possible, to obtain better region annotations.

3.3 Regions for Method Declarations
For each method declaration, we must provide a set of regions

to support the parameters and result of each method. For simplic-
ity, no other regions will be made available for our methods. All
regions used in each method will thus be mapped to these region
parameters, or to the heap.

We must also provide region lifetime constraints over such re-
gion parameters (including the regions of this object). These con-
straints naturally depend on how the method manipulates the ob-
jects. Consider the getFst, setSnd and cloneRevmethods of the
Pair class. We introduce a set of distinct region parameters for the
methods’ parameters and results, as shown in Fig 2(a). Moreover,
the region (lifetime) constraints are based on the possible opera-
tions of the respective methods. For example, due to an assignment
operation and region subtyping, we have r4 ' r3 for setSnd, while
r2 ' r6 + r3 ' r5 are due to copying by the cloneRev method.

Consider the swap method. No region parameters are needed
in this method as it does not have any parameters or result in its
declaration. However, a region constraint r2=r3 is still present due
to the swapping operation on the current object itself. Though this
constraint is exclusively on the regions of the current object, we
associate the constraint with the method. In this way, only those
objects that might call the method will be required to satisfy this
constraint.

The region constraints for methods also contain the class invari-
ants of its parameters and result. For example, the region constraint
for cloneRev implicitly includes the class invariant r6 ' r4 + r5 ' r4
of the resulting type Pair  r4,r5,r6 $ . For simplicity, we omit the
presentation of such constraints in this paper; these constraints can
be easily recovered from the method’s type signature. Except for
this omission, the constraint abstractions for the various methods
of the Pair class are as shown below:

pre.Pair.getFst<r1,r2,r3,r4> = r2 ' r4
pre.Pair.setSnd<r1,r2,r3,r4> = r4 ' r3
pre.Pair.cloneRev<r1,r2,r3,r4,r5,r6> = r2 ' r6 + r3 ' r5
pre.Pair.swap<r1,r2,r3> = r2

�
r3

3.4 Regions for SubClass Declarations
Subclasses typically augment the superclass with additional fields

and methods. Correspondingly, the regions of each subclass are ex-
tended from its superclass, while its invariant represents a strength-
ening from the invariant of its superclass. These requirements are
needed to support class subsumption. Consider:

class A  r1..rm $ extends Object  r1 $ where �
A
� � �

class B  r1..rn $ extends A  r1..rm $ where �
B
� � �

We expect the regions of the subclass B, namely  r1..rn $ , to be an
extension of A, namely  r1..rm $ , with n # m. Likewise, the region
invariant of � B is a strengthening of � A, with the logical implica-
tion � B $ � A. These requirements allow an object of the B class
to be safely passed to any location that expects an A object, as the
invariant of the latter will hold by implication.

Method overriding poses another challenge which requires sub-
typing of functions to be taken into account. In general, the method
of a subclass is required to be a subtype of the overridden method.



Function subtyping in object-oriented programs is sound if the nor-
mal parameters are contravariant and the selection parameters are
covariant [12].

Consider a method mn in class A that is overridden by another
method mn from the B subclass. Let us assume that these two meth-
ods have the following method signatures, where X,Y denote some
arbitrary classes with regions !�� � - � � � - !��� .

Y A.mn  "!�� � - � � � - !��� $ (X a) where �
A.mn

	 � � � �
Y B.mn  "!�� � - � � � - !��� $ (X a) where �

B.mn
	 � � � �

The constraints � A.mn and � B.mn are preconditions for the region
parameters of A.mn and B.mn, respectively. These parameters must
be contravariant for function subtyping, requiring � A.mn $ � B.mn.
With the class invariant of B (as selection parameter), it is also safe
to weaken this soundness check to � B � � A.mn $ � B.mn. The class
invariant of B can be used as this method is only invoked when the
current object is of the B class. Hence, strengthening � B may help
the method satisfy this soundness check. Its inclusion is critical
to our approach for handling method overriding without phantom
regions.

Method overriding is particularly challenging for region infer-
ence. We shall introduce some techniques to ensure the compliance
of the overriding checks in Sec 4.4, after the basic region inference
method has been presented.

4. REGION INFERENCE
We formalise a comprehensive set of type rules for region infer-

ence. We then present some examples that illustrate the inference
process. We also formalise the analysis of the global dependency
graph to guide the inference process, and describe how class sub-
typing and method overriding can be supported. We then state a
theorem on the correctness of our region inference.

4.1 Region Inference Rules
The goal of region inference is to automatically derive region

annotations. That is, given any program P written in Core-Java, a
program P � with appropriate region annotations can be derived via
our region inference rules.

For simplicity, we assume the inputs to our region inference al-
gorithm are well-normal-typed programs. The normal type sys-
tem for Core-Java can be derived from the region type checking
system (given in a companion report [14]) by erasing all region-
related notations. That is, if

�
P � , then

�
N erase 3 P � 6 . Notice that�

N denotes the well-normal-typedness of source programs written
in Core-Java. The definition for the erasure function is straightfor-
ward and thus omitted here.

Fig 3 presents the complete set of region inference rules. Our
rules assume that source program P is globally available. Some
of our rules also assume that the target program P � is also avail-
able. This is possible as we perform region inference in stages, in
accordance with the calling hierarchy with the help of the global
dependency graph.

4.1.1 Class Declarations
The inference rule [ � � ] for class declarations has the form:

�
def � def � 7��

Note that def is the source code, while def � is the region-annotated
target with � to capture the constraint abstractions obtained during
inference. For each class declaration, we must designate regions for
the objects of that class and their components. We also add region
lifetime constraints to each class based primarily on the constraints
of its fields.

Region inference for class declaration is conducted in an induc-
tive manner, by inferring regions for the fields first, and then sepa-
rately applying region inference to the instance methods. The rule
uses split 3 � �
	 7�� � 
 6 to separate out the non-recursive fields from
the recursive fields. Recursive (and mutual recursive) fields should
have the same region annotation as the class, except for the first
region. Note that the region invariant of each class cn is captured
by a constraint abstraction, named inv.cn.

4.1.2 Method Declarations
The inference rule [ ��� ] for method declarations has the form:

� �
meth � meth � 7��

This rule can be used for both instance and static methods, with� @ �
this � � ;�EF� � G�� for the former and

� @�� for the latter. It infers
necessary region variables for each method, and calculates lifetime
constraints that should be imposed on them. Note that this rule
generates a fresh set of regions for the parameters and result of
each method. The method’s body is inferred with a type � �� E�� �� G
and region lifetime constraint, � . This annotated type must be a
subtype of the expected output type, � � EF� �� G .
4.1.3 Expressions

The inference rules for expressions have the following form:
� � � � � � � t 7 �

Note that
�

is the type environment where types are annotated with
regions.

� 7 � � are resp. the unannotated expression and the region
annotated counterpart. t is a region type, while � is the derived
region constraint. We next discuss the rules for instance method
invocations and local region declarations.

Rule [ � ��� ] is the region inference rule for instance method invo-
cations. The rule gathers the respective method’s region constraint
suitably modified by a region substitution obtained from equivari-
ant instantiation. We use a substitution to ensure that the region of
each actual argument is mapped to the region of its corresponding
parameter. We implicitly apply the region subtyping principle as
we assign each parameter to its corresponding local variable in our
implementation of the call-by-value parameters. The gathered re-
gion constraint is then imposed as a precondition on each method
invocation.

The rule [ � � ] is a key inference rule that governs how regions
may be localised at each expression block. It attempts to identify
regions that are effectively dead thereafter. Those regions that may
escape the block can be traced to regions that exist in either the
type environment or the result type. All regions that outlive these
regions also escape. It may also be possible that none of the regions
can be localised. This is signified by rs @�� , where we would just
return the annotated expression block without letreg.

4.2 Examples
We next illustrate our region inference rules via some examples.

4.2.1 Localised Regions
Consider an example with four Pair objects that are connected

as shown in Fig 4(a). Its code fragment is given in Fig 4(b). As
shown in Fig 4(c), our inference rules would initially annotate each
local variable and constructor with new distinct regions and pro-
ceed to gather the constraints from each sub-expression. A set of
equality and outlive constraints will be collected and simplified;
these constraints can be applied to reduce the number of distinct
regions.
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Figure 3: Region Inference Rules
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p4
(a) Acyclic data structure

� Pair p4=new Pair(null,null);
Pair p3=new Pair(p4,null);
Pair p2=new Pair(null,p4);
Pair p1=new Pair(p2,null);
p1.setSnd(p3);
p2 �

(b) Source program

� Pair � r4,r4a,r4b � p4 =
new Pair � r4,r4a,r4b � (null,null);
//r4a � r4 � r4b � r4

Pair � r3,r3a,r3b � p3 =
new Pair � r3,r3a,r3b � (p4,null);
// r3a � r3 � r3b � r3 � r4 � r3a

Pair � r2,r2a,r2b � p2 =
new Pair � r2,r2a,r2b � (null,p4);
// r2a � r2 � r2b � r2 � r4 � r2b

Pair � r1,r1a,r1b � p1 =
new Pair � r1,r1a,r1b � (p2,null);
// r1a � r1 � r1b � r1 � r2 � r1a

p1.setSnd � r3 � (p3); // r3 � r1b
p2 �

(c) Initial region-annotated program.

letreg r in� Pair � r4,r4a,r4b � p4 =
new Pair � r4,r4a,r4b � (null,null);
//r4a � r4 � r4b � r4

Pair � r,r,r � p3 =
new Pair � r,r,r � (p4,null);

Pair � r2,r2a,r2b � p2 =
new Pair � r2,r2a,r2b � (null,p4);
// r2a � r2 � r2b � r2 � r4 � r2b

Pair � r,r,r � p1 =
new Pair � r,r,r � (p2,null);

p1.setSnd � r � (p3);
p2�

(d) Final region-annotated program.

Figure 4: Example with Localised Region
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(a) Cyclic data structure
�
Pair p1=new Pair(null,null);
Pair p2=new Pair(p1,null);
p1.setSnd(p2); p2 �

(b) Source program

�
Pair � r1,r1a,r1b � p1 =

new Pair � r1,r1a,r1b � (null,null);
//r1a � r1 � r1b � r1

Pair � r2,r2a,r2b � p2 =
new Pair � r2,r2a,r2b � (p1,null);
// r2a � r2 � r2b � r2 � r1 � r2a

p1.setSnd � r2 � (p2); // r2 � r1b
p2

�
(c) Initial region-annotated program

�
Pair � r1,r1a,r1 � p1 =

new Pair � r1,r1a,r1 � (null,null);
//r1a � r1

Pair � r1,r1,r2b � p2 =
new Pair � r1,r1,r2b � (p1,null);
// r2b � r1

p1.setSnd � r1 � (p2);
p2

�
(d) Final region-annotated program

Figure 5: Example with Circular Structure

The result type of this block is Pair � r2,r2a,r2b 	 , with the
constraints r4a 
 r4 � r4b 
 r4, r3a 
 r3 � r3b 
 r3 � r4 
 r3a,
r2a 
 r2 � r2b 
 r2 � r4 
 r2b , r1a 
 r1 � r1b 
 r1 � r2 
 r1a, and
r3 
 r1b. Based on these type and region lifetime constraints, our
rule can deduce that all the regions escape this block, except for
regions r1,r1a,r1b,r3,r3a,r3b. These non-escaping regions
will be localised to a single region (say r), as shown in Fig 4(d).

4.2.2 Circular Structures
Because of the outlives constraint from the no-dangling require-

ment, every cyclic structure must be placed in the same region.
Consider the code fragment in Fig 5(b), which constructs a cyclic
structure involving two Pair nodes, p1 and p2, as shown in Fig 5(a).
The initial region-annotated program is shown in Fig 5(c). Af-
ter constraint simplification to coalesce equal regions together, we
obtain the target program in Fig 5(d). Notice that p1 and p2 are
initially placed in regions r1 and r2, respectively. However, the
region constraint gathered, namely r2 
 r1b � r1b 
 r1 � r1 
 r2a �
r2a 
 r2, implies that r1=r2=r1b=r2a. Applying this extra con-
straint causes the two objects to be located in the same region.

The resulting type of this block is Pair � r1,r1,r2b 	 with the
region constraint r2b 
 r1 � r1a 
 r1. As all declared regions es-
cape from this expression block, the [ � 
 ] rule does not introduce
any localised regions.

4.2.3 Recursive Methods
We discuss the inference of region annotations and constraints

for recursive methods. Fig 6(a) contains a static method which
merges two lists of objects. Because the method swaps its parame-
ters at the recursive call, the resulting list contains alternating ele-
ments from both lists.

Region inference would introduce a constraint abstraction, called
pre.join, and build a definition for it, as shown in Fig 6(c) (after
simplification). As the constraint abstraction is recursive, we ap-
ply a fixed-point analysis to obtain its closed-form formula. Start-
ing with the initial version of pre.join � , we progressively refine
the definition of pre.join until a fixed-point is reached, as high-
lighted in Fig 6(d).

Fixed-point analysis always terminates for our constraint abstrac-
tion — the finite set of possible constraints is made up from a
bounded set of regions. This example relies on region-polymorphic
recursion, without which some loss in lifetime precision occurs.
Note that each recursive call has a different region type (c.f region
parameters) from its caller.

4.3 Global Dependency Graph
Because of the inter-dependency between classes and methods,

our region inference system must process the classes and methods
in a specific order. This order supports hierarchically structured
programs and inheritance and is important for modular compila-
tion. For this purpose, we propose a set of rules that identify the
following kinds of dependencies:

� cn � � cn � : denotes cn � is a component or superclass of cn � .
� mn � � cn � : denotes mn � made use of class cn � in its body.
� mn � � mn � : denotes mn � calls mn � .
� cn ��� mn � cn � mn : from override check.
� cn � cn � mn : from override check.

The first three dependencies arise from the constituents of each
class and method (static and instance), while the last two depen-
dencies are induced by a method override check of the form:

inv � cn ��� � 	 � pre � cn � � mn ��� � 	 � pre � cn � mn ����� 	

The inference mechanism for these dependencies is straightfor-
ward. The details are in our technical report [14]. The final depen-
dency graph has the classes and methods organised into a hierarchy
of strongly connected components (SCCs). Each set of classes in
a SCC will be regarded as a mutual-recursive class declaration for
simultaneous processing. Correspondingly, each set of methods in
a SCC is regarded as a mutual-recursive set for fixed-point analy-
sis. Through a bottom-up processing of each SCC, we are able to
perform region inference in a modular and systematic fashion.



List join(List xs, List ys)� if isNull(xs) then
if isNull(ys) then (List)null
else join(ys,xs)

else �
Object x; List res;
x=xs.getValue();
res=join(ys,xs.getNext());
new List(x,res)��

(a) Source program

List � r7,r8,r9 � join � r1,..,r9 � (List � r1,r2,r3 � xs, List � r4,r5,r6 � ys)
where pre.join � r1,..,r9 �� if isNull � r1,r2,r3 � (xs) then
if isNull � r4,r5,r6 � (ys) then (List � r7a,r8a,r9a � )null // r7a � r7 � r8a � r8 � r9a � r9
else join � r4,r5,r6,r1,r2,r3,r7b,r8b,r9b � (ys,xs) // r7b � r7 � r8b � r8 � r9b � r9

else �
Object � r10 � x; List � r11,r12,r13 � res;
x=xs.getValue � r2 � (); // r2 � r10
xs=xs.getNext � r1,r2,r3 � ();
res=join � r4,r5,r6,r1,r2,r3,r7c,r8c,r9c � (ys,xs); // r7c � r11 � r8c � r12 � r9c � r13
new List<r14,r15,r16>(x,res)
// r10 � r15 � r11 � r14 � r12 � r15 � r13 � r16 � r14 � r17 � r15 � r8 � r16 � r9 � �

(b) Initial region-annotated program

List � r7..r9 � join � r1..r9 � (List � r1..r3 � xs,List � r4..r6 � ys)
where pre.join � r1..r9 �� if isNull � r1,r2,r3 � (xs) then
if isNull � r4,r5,r6 � (ys) then (List � r7,r8,r9 � )null
else join � r4,r5,r6,r1,r2,r3,r7,r8,r9 � (ys,xs)

else �
Object � r8 � x; List � r9,r8,r9 � res;
x=xs.getValue � r2 � ();
xs=xs.getNext � r1,r2,r3 � ();
res=join � r4,r5,r6,r1,r2,r3,r7,r8,r9 � (ys,xs);
new List<r7,r8,r9>(x,res) // r2 � r8� �

(c) Final region-annotated program

Q= � pre.join � r1..r9 � =(r2 � r8) � pre.join � r4..r6,r1..r3,r7..r9 � �
pre.join V � r1..r9 � = True

pre.join � � r1..r9 � = r2 � r8 � pre.join V � r4..r6,r1..r3,r7..r9 �
= r2 � r8

pre.join
J � r1..r9 � = r2 � r8 � pre.join � � r4..r6,r1..r3,r7..r9 �

= r2 � r8 � r5 � r8

pre.join b � r1..r9 � = r2 � r8 � pre.join
J � r4..r6,r1..r3,r7..r9 �

= r2 � r8 � r5 � r8

(d) Fixed-point analysis

Figure 6: Region Inference for a Recursive Method

4.4 Override Conflict Resolution
As mentioned in Sec 3.4, class subtyping and method overriding

must comply with their respective checks to ensure the soundness
of subsumption. The class subtyping check is relatively easy to
enforce. The existing [ � � ] rule already accumulates the invariant
from each class A to its subclass B in order to ensure:

inv.B E���� 8"8 ����G $ inv.A E���� 8"8 ��� G
In contrast, the method overriding check is more complex. Con-

sider a class A, its subclass B, and a method A.mn overridden by
B.mn. For method overriding to be sound, we require the following
property to be satisfied:

inv.B E�� � 8"8 � � G � pre.A.mn E�� � 8"8 � � 7 � �� 8"8 � �	 G
$ pre.B.mn E�� � 8"8 � � 7 � �� 8"8 � �	 G

This property may not hold initially. To rectify this, the region
inference can selectively augment the premise of each overriding
check, with the following considerations:

1. We can strengthen either the premise inv.B EF� � 8"8 � / G or the
premise pre.A.mn EF� � 8"8 � � 7 � � � 8"8 � �� G or both.

2. Strengthening pre.A.mn EF� �
8"8 � � 7 � � � 8"8 � �� G can be problematic
as some regions, namely � � � � 828 � / , are present in class B but
not A.

These two issues can be considered systematically by examining
each basic constraint of pre.B.mn E�� � 8"8 � � 7 � �� 8"8 � �	 G to determine if it
(i) is already valid, or (ii) can be added to pre.A.mn, or (iii) can
be added to inv.B, or (iv) can be split into an equality constraint
for inv.B and a modified constraint for pre.A.mn. We formalise this
conflict resolution as the following inference rule:

I 7 X 7 Y
�

I � 7 X �
Note that I denotes the class invariant of the subclass, X denotes
the precondition of the overridden method (from the superclass),
while Y represents the precondition of the overriding method (from

the subclass). The results I � 7 X � are strengthened versions of I 7 X
which satisfy the soundness of overriding. Each constraint is ex-
pressed as a set of atomic constraints in conjunctive form


 � ,
where ��� � � <>� ��
 � � @ � � . In the following rules, we assume
that RB

@ � � �
8"8 �
/ � , RX
@ � � ��8"8 � � 7 � � � 828 � �� � and RA

@ � � ��8"8 � � � .
Note that � � R � � R � denotes a region substitution with R � 3 R � 6
as its domain (co-domain). ctr 3 ��6 transforms the substitution �
into an equality constraint. For example, ctr 3�� � ���� � � 7 � ���� �����F6 @
35� �9@ � � �(� ��@ ���
6 .

I + X � Y

I - X - Y
�

I - X
c � Y � � I + X � c �

reg �1� ��� RX I - X + c - Y
�

I � - X �
I - X - Y

�
I � - X �

c � Y � � I + X � c �
reg �1� ��� RB

I + c - X - Y
�

I � - X �
I - X - Y

�
I � - X �

c � Y � � I + X � c �� � � reg �1� � � � RB � RA
� 	 RA

I + ctr � � � - X + � c - Y
�

I � - X �
I - X - Y

�
I � - X �

We use the following extension of the Pair class to illustrate this
override resolution mechanism:

class Triple � r1,r2,r3,r3a �
extends Pair � r1,r2,r3 � where r2 � r1 � r3 � r1 � r3a � r1 �
Object � r3a � thd
Pair � r4,r5,r6 � cloneRev � r4,r5,r6 � () where r2 � r6 � r3a � r5� Pair � r4,r5,r6 � tmp =new Pair � r4,r5,r6 � (null,null);
tmp.fst=thd; tmp.snd=fst; tmp �

Two basic constraints are present in an overriding cloneRevmethod,
namely r2 ' r6 and r3a ' r5. The first constraint is already satisfi-
able, but the second constraint cannot be directly placed in the class
invariant of Triple, nor in the precondition of Pair.cloneRev.
Nonetheless, we can still split it into two constraints r3a=r3 and
r3 ' r5 that can be added to inv.Triple and pre.Pair.cloneRev,
respectively. We have a choice of mapping the extra region r3a to
either r3 or r2 using [r3a

�	
r3] or [r3a

�	
r2], respectively. We

choose the former since (r3 ' r5) exists in pre.Pair.cloneRev
but not (r2 ' r5). While multiple solutions exist, we choose a so-
lution which minimises the number of new constraints.



class A � r1,r2 ���a�K� ;
class B � r1,r2,r3 � extends A � r1,r2 ���K�K� ;
class C � r1,r2,r3 � extends A � r1,r2 ���K�K� ;
class D � r1,r2,r3,r4 � extends C � r1,r2,r3 ���K�a� ;
class E � r1,r2,r3,r4,r5 � extends A � r1,r2 � �K�a� ;
:

A � r1,r2 � a; A � r3,r4 � a2;
if .. then

a = lb:new B � r1,r2,r5 � (..) // B upcast to A
else ..

a = lc:new C � r1,r2,r6 � (..) // C upcast to A
else ..

a = le:new E � r1,r2,r7,r8,r9 � (..) // E upcast to A
B � r1,r2,r10 � b = (B) a; // downcast to B
C � r1,r2,r11 � c = (C) a; // downcast to C
D � r1,r2,r11,r12 � d = (D) c; //downcast to D

Figure 7: Program Fragment with Downcasts

4.5 Correctness
The correctness of the type inference algorithm is often defined

in relation to a checking system. We have formalised a comprehen-
sive set of region type checking rules and proven their safety prop-
erties in our technical report [14]. In our type system for region-
annotated Core-Java, P

�
def def denotes that class declaration def is

well-region-typed (or well-typed in short), P � � � R � � �
meth meth

indicates that a method meth is well-typed, P � � � R � � �
e � t in-

dicates that an expression e is well-typed, while
�

P denotes that a
region-annotated program P is well-typed.

The following theorem states the correctness of the region infer-
ence algorithm. It guarantees the existence of a well-region-typed
target program P � for each well-normal-typed source program P.
By region erasure, we can show that both programs have the same
observable behaviour (through bisimulation) in the absence of dan-
gling accesses. The main safety property (proven in [14]) is that
no dangling reference is ever created during the execution of any
well-region-typed expression.

THEOREM 1 (CORRECTNESS). Given any well-normal-typed
source program P in Core-Java, there exists a region-annotated
program P � , such that

�
P � P � and P � is well-region-typed.

The proof of Theorem 1 relies on a global dependency graph
and the following Lemma. The details of the proof can be found in
[14]. The Lemma states that each part of the inferred program is
well-typed, assuming those parts it depends on are well-typed.

LEMMA 2. Suppose
�

P � P � .

(a). If
� �

e � e � � t 7 � ,
and all classes and static methods that e � depends on are
well-formed in P � , then there exists R � reg 3 � 6�� reg 3 t 6 ,
such that P � � � � R ��� � e � � t 8

(b). If
� �

meth � meth � � Q 7
and all classes and static methods that meth � depends on are
well-typed in P � , then P � � � � R � � �

meth meth �
where R @ �

r ��� � / 7 heap � 7 � @ �
this � cn E r ��� � /HG�� 7 � @

inv.cn E r ��� � /HG , if meth � � cn E r �
� � /0G ; R @ �
heap � 7 � @ ��7 � @

true, otherwise.

(c). If
�

def � def � � Q,
and all classes and static methods that def � depends on are
well-typed in P � , then

�
def def � 8

5. HANDLING DOWNCASTS
One important feature that is missing from Core-Java is the down-

cast operation. In general, this operation may be type unsafe if the
object in question is not the expected subtype. Unless both the sub-
type and supertype have the same set of regions, it may also be
possible for the downcasted regions to be wrong. In [7], a type-
passing approach was extended to carry ownership information to
allow this property to be checked at runtime. If a region error is
detected at runtime, the blame can still be pinned on the program-
mer for providing an incorrect region annotation. With automatic
region inference, it is the responsibility of the region inference sys-
tem to (at compile time) prevent such a situation. Let us see how
this problem can be resolved.

Downcast and upcast represent dual operations. In our present
formulation, regions may be lost during upcast operations. As a
consequence, we are unable to carry out region-safe downcasts, as
the lost regions cannot be recovered.

To illustrate the problem, consider the program fragment in Fig 7.
Note that every new statement is labelled with a unique program
point to identify its source location. During the upcast operations,
regions r5,r6,r7,r8,r9 are lost. These lost regions cannot be re-
covered when subsequent downcast operations are performed, lead-
ing to unknown regions r10,r11,r12.

To support region-safe downcasting, a key technique is to pre-
serve the regions that were originally lost during the upcast opera-
tion. We propose two techniques to preserve these regions.

Our first technique preserves lost regions during upcasting by
equating them with the first region. In this way, downcasting can
always be achieved through this first region. For example, the fol-
lowing upcast operation forces region r3 to be equivalent to r1:
A  r1,r2 $ a = new B  r1,r2,r3 $ (..) // r3=r1
As a consequence, we can easily recover the lost region during a

downcast operation, as follows:
�
��� (B  r4,r5,r6 $ ) a �
��� // r4=r1 + r5=r2 + r6=r1
Applying this technique to our earlier program fragment results

in the following, where the imposed region constraints are shown
as comments.

A � r1,r2 � a; A � r3,r4 � a2;
if .. then

a = lb:new B � r1,r2,r5 � (..) // r5=r1
else ..

a = lc:new C � r1,r2,r6 � (..) // r6=r1
else ..

a = le:new E � r1,r2,r7,r8,r9 � (..) // r7=r8=r9=r1
(B � r1,r2,r10 � ) b = (B) a; // r10=r1
(C � r1,r2,r11 � ) c = (C) a; // r11=r1
(D � r1,r2,r11,r12 � ) d = (D) c; // r12=r1

While this solution is simple and modular, some lifetime precision
are lost due to the additional region equality constraints.

Another solution is to maintain extra regions during upcasting
for objects that may be subsequently downcasted. Specifically,
all objects that may be downcasted (to some subclasses) must be
padded in advance with sufficient number of extra regions to sup-
port subsequent region-safe downcasting. A global flow-based anal-
ysis is required to determine the scope to which each object and its
components may be downcasted.

Based on the earlier program fragment, we can determine that
the object a may be downcasted to B,C,D, while the object c may
be downcasted to D. As the subclass (D) has the maximum number
of regions, we shall pad both these types with up to four regions,
namely A  r1,r2 $ [r3,r4] for a, and C  r1,r2,r3 $ [r4] for c, to
support region-safe downcast to either B,C or D. Note that [r3,r4]
and [r4] denote the padded regions for a and c, respectively. In
contrast, the objects a2 and b are never downcasted and hence we



Programs Size (lines) Compile-Time (sec) Param. Space Usage/Total Allocation Diff. in
Source Ann. Inference Checking Input No Sub Object Sub Field Sub RegJava ��������� �

Sieve of Eratosthenes 80 12 0.08 0.14 50000 1 1 1 1 0
Ackermann 67 5 0.02 0.04 (4,7) 0.004 0.004 0.004 0.004 0
Merge Sort 170 16 0.35 0.47 50000 0.179 0.179 0.179 0.179 0
Mandelbrot 110 14 0.05 0.09 100 0.002 0.002 0.002 0.002 0
Naive Life 114 14 0.08 0.23 10 1 1 1 1 0

Optimized Life (array) 121 15 0.09 0.25 10 0.196 0.196 0.196 0.196 0
Optimized Life (dangling) 35 5 0.01 0.04 10 1 1 1 1 -1

Optimized Life (stack) 80 10 0.04 0.08 10 1 1 1 1 0
Reynolds3 59 12 0.11 0.29 10 1 1 0.004 - -
foo-sum 65 10 0.11 0.24 100 0.340 0.010 0.010 - -

Figure 8: Comparative Statistics on Inference/Checking and Region Subtyping

do not impose any extra regions on their class types. Our earlier
program fragment can now be transformed to:

A � r1,r2 � [r3,r4] a; A � r1’,r2’ � a2;
if .. then
a = lb:new B � r1,r2,r5 � (..) //r5=r3

else ..
a = lc:new C � r1,r2,r6 � (..) //r6=r3

else ..
a = le:new E � r1,r2,r7,r8,r9 � (..) // not in downcast

(B � r1,r2,r10 � ) b = (B) a; // r10=r3
(C � r1,r2,r11 � [r12]) c = (C) a; //r11=r3 � r12=r4
(D � r1,r2,r11,r12 � ) d = (D) c; // r12=r4

Note that the extra regions of E, namely r7,r8,r9 are not made
equal to the padded regions of a. The reason is that the E class is
not in the set to which this object may be downcasted. Hence, any
downcast on this object will fail, regardless of the padded regions.

To support this approach to region-safe downcast, we propose
a backwards analysis technique to find a potential downcast set for
each object in our program. We first provide a set of inference rules
to gather a set of backward flows. The inference rule is expressed
using the relation: � - � � � - C

Note that � is the receiver that may capture the result of
�

under
type environment,

�
. The output C denotes a set of backward flows

that occur in
�

and its receiver � .
Each backward flow is represented using either v �
	�	�� v � or v ���

D � v � , where the arrows indicate that v � captures a value from v � .
In addition, the second arrow is annotated with a D-class to indicate
that its source may be subjected to a downcast-to-D operation.

The rule for downcast operation is defined as:
� - x � � D � v - 	 x � D

	
v
�

The value of v may flow into its outer receiver x and be subjected
to a downcast operation. This is captured by x � D � v.

Our technical report provides the details of this flow inference[14].
For our example, the initial set of flows is:

	 a 
�
�� lb - a 
�
�� lc - a 
�
�� le - b � B
	

a - c � C
	

a - d � D
	

c
�

We can proceed to perform a transitive closure to gather all pro-
gram points of variable declarations and object allocations that could
be downcasted. The goal of our analysis is to find a set of classes
that could be subsequently downcasted for each object at a given
location. For each variable, v, or object field, v.f, we associate a set
of casts D using v[D] or v.f [D].These sets are initially empty and
are initialised by the following rule:

v � D
	

w + w
�
S

 � v 
�
�� w + w

�
S � 	 D

� 

For our example, the initial flow set is converted to:

a
�
B - C 
 + c

�
D

 + 	 a 
�
�� lb - a 
�
�� lc - a 
�
�� le - b 
�
�� a - c 
�
�� a - d 
�
�� c

�

Applying a closure of backward flows (see [14]) gives:

	 b 
�
�� lb - b 
�
�� lc - b 
�
�� le - c 
�
�� lb - c 
�
�� lc - c 
�
�� le - d 
�
�� lb -
d 
�
�� lc - d 
�
�� le - d 
�
�� a

�

Applying a downcast closure operation gives:

a
�
B - C - D 
 - c

�
D

 - lb

�
B - C - D 
 - lc

�
B - C - D 
 - le

�
B - C - D 


This outcome can guide the padding of extra regions for each
variable declaration and object creation site. Moreover, the analysis
can sometimes tell if the downcast is bound to fail. For example, all
possible downcasts at point le will fail since an E object is created
that is not a subclass of B or C or D. Under this scenario, we need
not instantiate the padded regions, as region preservation is only
required when downcast succeeds.

Our approach to downcast safety is achieved at compile-time
through global flow analysis. Another approach is to make use
of type polymorphism (advocated in Generic Java [10]). This ap-
proach is expected to alleviate the need for downcast operations but
requires a fundamental change in the design of the language.

6. IMPLEMENTATION
We have constructed a prototype region inference system for

Core-Java. The output from region inference can be verified by
a separate type checking system that we have also built. The entire
system was built using the Glasgow Haskell compiler[31]; we have
also added a library to solve region outlive constraints.

The primary objective of our initial experiments is to evaluate
the quality of our automatically inferred region annotations as com-
pared to region annotations produced by hand. We tested our sys-
tem on a set of eight RegJava benchmark programs from [16] that
have been hand-annotated for their region checking system. Fig-
ure 8 summarises the statistics for each program.

The last column indicates the difference in the number of lo-
calised regions between our inferred annotations and those which
were hand-annotated in [16]. All annotations are identical, ex-
cept for optimized life (with dangling). Our inference produces
one less local region, since we use the no-dangling policy rather
than the no-dangling-access policy of the RegJava checker. For
this set of programs, our region inference is therefore comparable
in performance to human experts. Take note that the region annota-
tions occur in around 12.3% of the programs’ lines. This indicates
that manually generating the region annotations may represent a
sizeable mental effort for a programmer with only a region type
checker. Note also that the region inference and region checking
times are reasonable for this set of programs, running in less than a
second for all of the programs in this benchmark set. We have also
compiled the programs to run on a region-based custom allocator,
called Titanium[29], and measured the resulting space utilization
as compared with the total allocation space of the program. Due to
the lack of space reuse, four of the programs have a ratio of one,
including optimized life (with dangling) despite an extra localized
region. Four other examples have significant space reuse but have
the same performance for all three kinds of region subtyping. How-
ever, we achieved significantly better space reuse for Reynolds3 and
foo-sum when our inference is augmented with object/field region



Programs bisort em3d health mst power treeadd tsp perim. n-body voronoi
Source (lines) 340 462 562 473 765 195 545 745 1128 1000
Ann. (lines) 7 32 24 34 35 7 12 21 38 50

Inference (seconds) 0.14 0.61 3.58 0.48 0.4 0.07 0.28 1.38 2.88 4.63

Figure 9: Region Inference Times for the Olden Benchmark Programs

subtyping. To check the scalability of our region inference, we con-
verted a set of ten programs from the Olden benckmark set[11] to
Core-Java, and measured their inference times, as shown in Fig 9.

7. RELATED WORK
Tofte and Talpin [32, 33] proposed a region inference approach

for a typed call-by-value � -calculus. In their approach, all values
(including function values) are put into regions at runtime, and all
points of region placement can be inferred automatically using a
type-and-effect based program analysis. The treatment of reference
types can be considered as a special case of objects, as it has an out-
lives requirement for its values when compared to its location. This
requirement is specified indirectly through region effects. Apart
from this, their method is tailored mainly to functional languages.

Christiansen and Velschow proposed a similar region-based ap-
proach to memory management in Java [16]. They call their system
RegJava and use a stack of lexically scoped regions for memory
management. They proposed a region type system and demon-
strated its soundness by linking the static semantics with the dy-
namic semantics. However, their system requires programmers to
manually annotate programs with region annotations. In their sys-
tem, each class is augmented with the full set of regions from the
entire class hierarchy, including those from its subclasses and its
sibling classes. While this makes downcast operations trivially
safe, it uses phantom regions and has a closed-world assumption
on the class hierarchy.

Researchers have recently advocated non-lexical regions to sup-
port tighter region lifetimes[24, 25, 28, 34]. Most of these ap-
proaches require programmers to at least indicate when regions are
to be created, allocated and released. One technique [1] accepts
a program with lexically scoped regions, then transforms the pro-
gram to allow, when possible, late creation and early deletion of
these regions. This technique is complementary to our approach to
region inference, as it could be used as a post-phase. With an ex-
plicit outlives relation on the lexical regions, we have also exploited
the concept of region subtyping, as pioneered in [26].

Beebee and Rinard present an early implementation of scoped
memory for Real-Time Java in the MIT Flex compiler infrastruc-
ture[3]. They rely on both static analysis and dynamic debugging
to help locate incorrect uses of scoped memory. Later, Boyapati et.
al. [9] combined region types [32, 33, 19, 26, 16] and ownership
types [18, 17, 6, 8] in a unified framework to capture object encap-
sulation and prevent dangling references. The static type system
guaranteed that scope-memory runtime checks will never fail for
well-typed programs. It also ensured that real-time threads do not
interfere with the garbage collector. Using object encapsulation,
each object and all components it owns are put into the same region;
in order to optimize on region lifetimes. Our region type system is
similar to theirs, but we separate out object encapsulation and RTSJ
issues. We also infer region types automatically across procedures,
whilst they have limited support through intra-procedure inference
and the use of defaults in region types.

Deters and Cytron [21] automatically translated Java code into
Real-Time Java using dynamic analysis to determine the lifetime
of an object. Because the analysis is dynamic, it may not be sound
— it may miss some execution paths that create and use dangling
references given their extracted object lifetime information.

In research performed concurrently with ours, Cherem and Rug-
ina have developed a region inference algorithm for Java [13]. This
region inference algorithm handles all of the features of Java, in-
cluding inheritance, dynamic dispatch, downcasts, and multithread-
ing. Unlike our inference system, their system uses the no-dangling-
access principle and produces programs that use non-lexically scoped
regions. Our inference system is designed to produce an augmented
program with region type annotations; perhaps because non-lexically
scoped regions are less amenable to formalisation in a region type
system, their system produces a program with region handles and
region-based memory management, but without region types nor
region subtyping.

8. CONCLUDING REMARKS
Our aim is to provide a fully-automatic region inference system

for a core subset of Java. We achieved this by allowing classes
and methods to be region-polymorphic, with region-polymorphic
recursion for methods. As shown by the examples, the inferred
region constraints allow us to obtain fairly precise region annota-
tions. We have seen how the region lifetime constraints prevent
dangling references and generate appropriate region instantiations.
There remain a number of areas where improvements are possible.

Several directions can be taken to improve memory utilization.
The key idea is to put objects into regions with shorter lifetimes,
whenever it is safe to do so. As an example, component objects that
are owned by another object can be placed in the same region as the
latter, since no references exist from outside the owner. This idea
has been explored in [9]. Coupled with alias (including ownership)
annotations that can be automatically inferred, as described in [2],
we believe that ownership information can be derived to make this
optimization fully automatic.

We currently give a distinct region type to each occurrence of
null values, just like normal objects. However, null values are more
akin to primitive values as they can be freely moved between re-
gions and the stack. To take advantage of this, we could introduce
a fictitious region, denoted by � , for each null value. Such a region
would not exist during the execution of the program since null ob-
jects do not occupy space. The following axioms hold at all times
for any � : � ? � , � ? � , � @ � and � A@ � . In combination with an
analysis that tracks definite occurrences of null values (e.g. [23]),
these axioms can improve the region lifetime constraints.

Our region type rules are flow-insensitive (within each method)
but context-sensitive (across methods). The latter is due to our use
of region polymorphism at method boundaries. Flow-insensitivity
may cause some loss in region lifetime precision when the same lo-
cal variable is used for objects with different lifetime requirements.
To rectify this, we could use Static Single Assignment (SSA) in-
termediate form[20] which is known to give better flow-sensitive
analysis results. Conversion of programs to SSA form can be han-
dled in a preprocessing step, prior to region inference.

Our current set of rules may introduce localised regions at each
expression block. These are presently mandated at the bodies of
procedures, though in practice they can occur in any subexpression.
Effective placement of local variable declarations, object alloca-
tions and expression blocks can therefore affect region placement
and the extent to which memory is effectively reused. Another fu-
ture work is to explore suitable liveness analysis and restructuring
transformations to further improve the memory utilization.
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