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Abstract—The purpose of the current work is to propose, under
a statistical framework, a family of unsupervised region merging
techniques providing a set of the most relevant region-based expla-
nations of an image at different levels of analysis. These techniques
are characterized by general and nonparametric region models,
with neither color nor texture homogeneity assumptions, and a set
of innovative merging criteria, based on information theory statis-
tical measures. The scale consistency of the partitions is assured
through i) a size regularization term into the merging criteria and
a classical merging order, or ii) using a novel scale-based merging
order to avoid the region size homogeneity imposed by the use of
a size regularization term. Moreover, a partition significance index
is defined to automatically determine the subset of most represen-
tative partitions from the created hierarchy. Most significant au-
tomatically extracted partitions show the ability to represent the
semantic content of the image from a human point of view. Finally,
a complete and exhaustive evaluation of the proposed techniques is
performed, using not only different databases for the two main ad-
dressed problems (object-oriented segmentation of generic images
and texture image segmentation), but also specific evaluation fea-
tures in each case: under- and oversegmentation error, and a large
set of region-based, pixel-based and error consistency indicators,
respectively. Results are promising, outperforming in most indica-
tors both object-oriented and texture state-of-the-art segmentation
techniques.

Index Terms—Bhattacharyya coefficient, image region analysis,
image segmentation, information theory, Kullback–Leibler diver-
gence, region merging.

I. INTRODUCTION

I
MAGE segmentation is a first and key step for image anal-

ysis and pattern recognition [1]. Its goal is twofold: from a

semantic point of view, image segmentation is a first level of ab-

straction providing an image representation closer to the object

representation than the set of pixels; and from a practical point

of view, a region-based representation of the image reduces the

number of elementary primitives and allows a more robust esti-

mation of parameters and descriptors. In other words, segmenta-

tion simplifies the image providing a representation that is more

semantically meaningful and easier to analyze [2].
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However, in a large number of cases, a unique solution for

the image segmentation problem does not exist (for that reason,

sometimes image segmentation is referred as an ill-posed

problem1), i.e., instead of a single optimal partition, it is pos-

sible to find different region-based explanations of an image,

at different levels of analysis or detail [3]. To overcome this

situation a hierarchical segmentation approach is needed,

where instead of a single partition, a hierarchy of partitions is

provided [4].

An important type of hierarchical bottom-up segmentation

approaches are region merging techniques [5]. These techniques

are region-based, in the sense that they consider regions not only

as the goal of the segmentation process but also as the mean

to obtain a partition of the image. Hence, local decisions are

directly based on the region properties and features. Starting

from an initial partition or from the collection of pixels, regions

are iteratively merged until a termination criterion is fulfilled

(for instance, a unique region is reached).

Region merging algorithms can be specified by [6]: a merging

criterion that defines the cost of merging two regions; a merging

order, determining the sequence in which regions are merged

based on the merging criterion; and a region model that deter-

mines how to represent the union of regions. They can be effi-

ciently implemented using graph-based approaches such as the

recursive shortest spanning tree (RSST) algorithm [7]. Fast im-

plementations of this algorithm can significantly decrease its

computational load [8] or even bound its time complexity in the

worst case to for not significantly complex region models

and merging criteria, with being the number of regions in the

initial partition [9].

In the literature, there is an explicit division between two

types of region models. For the first type, where the color of the

pixels belonging to the region is assumed to be approximatively

constant, first-order statistics such as mean [10] or median [11]

color values are used as region model. For instance, this assump-

tion is common in object-oriented image segmentation. For the

second type, where region merging is applied to texture seg-

mentation, region models are based on second or higher order

statistics [12] or in transformations, such as wavelets [13], [14]

or Gabor filters [15], [16].

Specially for object-oriented or content-based applications,

most researchers have focused their attention on the merging

criteria. The basic criteria have relied on color homogeneity,

for instance, MSE, Euclidean distance between region color

mean or median (or a weighted version), single linkage or com-

plete linkage [17]. These approaches may suffer from small

1Another reason to refer to the image segmentation problem as ill-posed is
that conflicting constraints may lead to a cost function that does not get one
closer to a optimal solution by making an improvement in cost.
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and meaningless regions into the generated partitions. Other

methods overcome this problem introducing a regularization

term based on the size of the regions [11]. These merging cri-

teria penalize the merging of large regions, giving priority to the

fusion between small regions or regions with similar number of

pixels. Although this approach helps to eliminate small mean-

ingless regions, it introduces a bias into the merging process that

tends to create partitions with regions of similar sizes. Other

techniques incorporate, apart from color and size, contour com-

plexity of the region into the merging criterion [10], for instance,

based on the perimeter length or area-perimeter ratio [18]. In

turn, some researchers have tried to emulate human perceptual

grouping using more complex criteria, for instance defining syn-

tactic features [19], [20].

The merging order has received little attention in the region

merging literature. Typically, the merging order is based on it-

eratively merging the pair of regions with lowest merging cost,

given by the chosen merging criterion.

The purpose of the current work is to propose, under a statis-

tical framework, a family of unsupervised region merging tech-

niques with the following characteristics:

• a general statistical region model, providing a unified seg-

mentation strategy where arbitrary and non parametric dis-

crete distributions are directly estimated from data and nei-

ther color nor texture homogeneity are assumed inside the

region;

• a set of innovative merging criteria, based on information

theory statistical measures between the region models;

• assuring the scale consistency of the partitions through two

strategies: i) a size regularization term into the merging cri-

teria (in the rest of the paper, we also refer to these methods

as area-weighted) and a classical merging order; or ii) a

new scale-based merging order combined with a size in-

dependent criterion (referred also as area-unweighted cri-

terion) to avoid the region size homogeneity imposed by

the use of a size regularization term;

• moreover, the definition of a partition significance index to

automatically determine the subset of most representative

partitions from the created hierarchy;

• and the ability of these most significant automatically ex-

tracted partitions to represent the semantic content of the

image from a human point of view.

As just commented, this analysis is performed under a statistical

framework, where we can take advantage of well-known results

in probability theory and information theory. The set of infor-

mation theoretical region merging techniques proposed in this

work is outlined in Fig. 1.

Nevertheless, the statistical framework is not new in image

segmentation. For instance, Markov random fields segmenta-

tion techniques have been extensively used [21]; approaches

based on the mean-shift algorithm [22] have also been pro-

posed; or even classical techniques such as the well-known

Mumford–Shah functional [10] have been interpreted as a

parametric maximum a posteriori (MAP) estimation [23].

Particularly, other statistical region merging techniques

are also found in the literature. Nevertheless, most of these

approaches are based on parametric probability region models

under color homogeneous [24], [25] or texture [14] assump-

Fig. 1. Information theoretical region merging techniques. The combination of
the proposed region models, merging criteria and merging orders leads to eight
different techniques, where �, � , and � refer to the area, the probability den-
sity function, and the probability transition matrix of a region, respectively. The
Kullback–Leibler divergence and the Bhattacharyya coefficient are represented
as ������ and ������.

tions. Hence, these techniques cannot be used in a general

scenario but are restricted to a particular type of images.

Approaches without strong probability model assumptions

for the regions are less common. For instance, a semiparametric

statistical approach is presented in [27] and [29]. In these

approaches, image segmentation is formulated as an inference

problem. The authors assume that optimal statistical regions

have a homogeneity property; i.e., inside any statistical region,

the pixels have the same expectation value for each color

channel. Hence, pixels are considered statistically independent

and having this homogeneity condition, although they are

not assumed to be identically distributed. We refer to these

techniques as semiparametric because the pixel distribution is

modeled by a set of independent random variables, where

is a parameter that has to be set, controlling the statistical

complexity of the optimally segmented image. The merging

criterion relies on the definition of a merging threshold, based

on an upper bound on the difference of the expectation of the

pixel value of each region. In [30]–[32], a supervised version

of the previous methods is presented, i.e., a segmentation

algorithm requiring some user guidance.

Although being more general than parametric approaches, in

the previous algorithm the number of random variables depends

on the image complexity and, consequently, it is difficult to es-

timate when no prior knowledge on the image is available. Ad-

ditionally, some of the resulting partitions suffer from scale in-

consistency, i.e., small meaningless regions do not necessarily

merge as the scale gets coarser. In this sense, it is difficult that

the color homogeneous parts of a texture region can merge to

form a coarser level statistical distribution without using a scale

consistency mechanism, specially in early stages of the merging

process where assumptions such as the homogeneity property
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Fig. 2. Illustrative example of a coarse level texture. (a) Original image ex-
tracted from the Berkeley Segmentation Dataset [26]. (b) Segmentation obtained
by one of our techniques (concretely, using the empirical distribution of the re-
gion quantized to ten bins as statistical model and a merging criterion based on
the Bhattacharyya coefficient, see Section II-C). The partition shown was au-
tomatically determined by the proposed significance index as the most relevant
partition in the whole hierarchy (see Section V). (c) Partition provided by the
method in [27] with � � ��. Note that this method is not able to capture the
zebra black and white texture. (d) Partition provided by the method in [27] with
� � ���. Partitions (c) and (d) were obtained using the online available appli-
cation created by the authors of [27] (http://www.sonycsl.co.jp/person/nielsen/
SRM/). This Java implementation is the simplest code provided to the internet
community (see also [28] for the C++ code and details).

do not hold. This fact is illustrated in Fig. 2. A region containing

the white stripes of a zebra and another region containing the

black stripes do not hold the homogeneity property when they

are considered independently. Our approach can correctly deal

with low scale textures thanks to the preservation of the size

consistency of the partitions and the use of accurate informa-

tion theoretical merging criteria. Moreover, note the ability of

the most relevant partition automatically proposed by the sig-

nificance index [see Fig. 2(b)] to approximately represent the

most human-representative semantic content of the image.

Finally, the proposed merging techniques have been eval-

uated in two different contexts. First, we have performed a

complete evaluation in terms of object-oriented segmentation

and semantic analysis of generic images. Second, an exhaustive

evaluation in terms of natural texture segmentation is provided.

In each case we use not only a specific database with available

ground truth partitions, but also concrete evaluation features.

For the object-oriented evaluation, the most important

types of errors, namely, undersegmentation (merging regions

belonging to different objects) and oversegmentation (not

merging regions belonging to the same object), are measured

using the metrics proposed in [33] and an extension of the

methodology in [34].

Our methods are directly compared with the region merging

technique proposed in [35]. In this case, the proposed techniques

using area-weighted merging criteria obtain similar or better re-

sults in terms of undersegmentation (1.5% mean decrease) while

clearly outperforming in terms of oversegmentation (10% mean

decrease). The techniques using a scale-based merging order

lead to a compromise between under- and oversegmentation

error (for instance, a sacrifice of a 9% undersegmentation in-

crease can result into a 30% oversegmentation decrease).

For the texture evaluation, the selected database has associ-

ated a system that automatically evaluates and compares the re-

sults with nine state-of-the-art texture segmentation algorithms

and presents the results on-line. Concretely, a total of 21 indi-

cators are evaluated. In this case, the evaluation is performed

on a supervised and on an unsupervised manner. In both cases,

the proposed techniques based on a size dependent merging cri-

teria show a good performance in most of the indicators, clearly

outperforming eight out of the nine algorithms into the bench-

mark and being comparable or superior to the best technique

(http://mosaic.utia.cas.cz/).

The work presented here completes our preliminary contribu-

tions in [36] and [37], first by including a more detailed analyt-

ical development of the information theoretical merging criteria,

and specially in terms of a deeper and more exhaustive objec-

tive evaluation. Concretely, the criteria are proved to be optimal

in terms of maximizing the likelihood of the merged regions

(criteria in Sections II-B and III-B) or derived from an upper

bound on the classification error between a pair of regions (see

Sections II-C and III-C and Appendix, this last one including

a proof for an extension of the Chernoff bound for first-order

Markov processes). The possibility of developing these mathe-

matical proofs has made us chosen these two merging criteria

among the myriads of existing information theory statistical

distances (for instance, Bregman divergences [38] or Csiszár

-divergences [39]). For the object-oriented evaluation, a study

of the performance in terms of the parameter selection for the

scale-based merging order and the objective evaluation of the

ability of the most significant partition to represent the semantic

content are originally included here. For the texture evaluation, a

deeper interpretation of the supervised evaluation results and the

whole unsupervised evaluation are exclusively presented here.

Additional examples from previously used databases and new

examples from the Berkeley Segmentation Database [26] are

also included.

The rest of the paper is structured as follows. In Section II,

a first set of information theoretical region merging techniques

is presented. Concretely, a nonparametric region model based

on the empirical distribution is proposed in Section II-A and

two different size-dependent merging criteria based on the Kull-

back-Leibler divergence (Section II-B) and the Bhattacharyya

coefficient (Section II-C) are formally developed. Following a

similar structure, Section III presents a region model based on

a first-order Markov process (Section III-A), leading to sim-

ilar information theory statistical measures (Sections III-B and

III-C). An alternative approach, combining a size-independent

extension of all previous methods and a scale-based merging

order is presented in Section IV. The automatic partition selec-

tion criterion is detailed in Section V. Section VI presents an

objective evaluation and comparison with other state-of-the-art

region merging and image segmentation techniques, using two

different data sets. Conclusions are outlined in Section VII. Fi-

nally, a novel proof for an extension of the Chernoff bound for

first-order Markov processes is included in the Appendix.
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II. AREA-WEIGHTED STATISTICAL MERGING CRITERIA FOR

I.I.D. PIXEL REGION MODELS

A. I.I.D. General Statistical Region Model

From a statistical point of view, a single channel image can

be considered as a realization of a 2-D stochastic process.

Therefore, each pixel is a sample of one of the discrete random

variables composing the image process. For simplicity, all

mathematical developments in this work are obtained for single

channel images; their extension to the multichannel case under

channel independence assumption is straightforward.

To formally tackle the image segmentation problem, we

consider a region as a set of independent and identically dis-

tributed (i.i.d) pixels which is completely characterized by

the probability distribution common to all pixels. We propose

a region model based on the estimation of this probability

distribution from the empirical distribution of the region.

The empirical distribution or type of a sequence of

samples from an alphabet is defined

as the relative proportion of occurrences of each value of ,

i.e., for all , where is the

number of times the symbol occurs in the sequence .

Using a main result of the theory of types [40], the probability of

the type of a sequence of i.i.d. observations with probability

distribution , is given by

(1)

where

(2)

is the Shannon entropy of the type and

(3)

is the Kullback–Leibler divergence between the statistical dis-

tributions. It can be seen [40] that the empirical distribution

converges to , concretely, with probability 1

for . Hence, for sufficiently large, the probability for

a particular sequence can be approximated by

(4)

and the unknown distribution of the data can be directly ap-

proximated by the empirical distribution of the samples. In prac-

tice, to ensure that the value of is large enough to have a reli-

able approximation, the statistical model is not directly applied

at the pixel level but at the level of an initial partition with a re-

duced number of regions (see Section VI).

Using the empirical distribution provides a unified and gen-

eral framework for image segmentation, as arbitrary discrete

distributions are directly estimated from data. Apart from pixel

independence, no further assumptions are made. Moreover, this

model can be easily computed and, after the union of a pair of

regions, updated

(5)

where , are the number of pixels in , , respectively.

The quantization of the alphabet can be set to optimize

the performance of the algorithm. In this work, we only con-

sider a uniform quantization and directly refer to the number

of bins considered in the empirical distribution. More sophisti-

cated quantization strategies, such as data-dependent partitions

[41], are out of the scope of this paper.

B. Kullback–Leibler Merging Criterion

The first criterion is based on merging at each step the pair of

adjacent regions maximizing the probability of being generated

by the same statistical distribution. We tackle this problem as a

pairwise hypothesis test. Assume and are two adjacent

regions with empirical distributions , , respectively, whose

union would generate a new region with empirical distribution

. Then, the two hypotheses considered are as follows:

• : pixels in the first region, , and pixels in the

second region, , are both distributed by ;

• : pixels are distributed by ; and pixels

are distributed by .

In general, we wish to minimize both probabilities of error.

The Neyman–Pearson lemma [40] proves that the optimal test

for two hypotheses, in that sense, is the so-called likelihood ratio

test:

(6)

Using the result in (4) for the probability of each sequence of

pixels, we can write the log-likelihood ratio (in base 2) as

(7)

which can be interpreted as the size-weighted decrease in en-

tropy when the regions are merged. Considering (5) and the

Kullback–Leibler divergence between statistical distributions,

(7) can be rewritten as

(8)

Consequently, at each merging stage, the two adjacent regions

(written as ) with maximum log-likelihood ratio should

be merged. We will refer to this statistical criterion as the Kull-

back–Leibler merging criterion (KL), formally stated as

This criterion is based on measuring the similarity between

the empirical distributions of the regions and the empirical dis-

tribution of their merging, weighted by the size of the regions.

C. Bhattacharyya Merging Criterion

In this section we present a new criterion based on a direct

statistical comparison between the types of the regions, that

is, without using an estimate of the probability distribution of

the union of the two regions. Nevertheless, in this case, the

Kullback–Leibler divergence becomes impractical, as its con-

vergence cannot be assured anymore. For instance,
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if, for some , and . A

possible solution to this problem may be to use data-dependent

partitions for the divergence estimation, as proposed in [41].

Another possibility may be to use the symmetric version of the

Kullback–Leibler divergence, known as Jensen–Shannon diver-

gence, which is always bounded. Nevertheless, it is known to

behave differently from the Kullback–Leibler divergence [42].

We tackle the problem from a different perspective. Let us

consider the probability simplex in , i.e., the -dimen-

sional manifold defined by all possible empirical distributions

for a sequence of samples. Each region can be seen as a class

in this space, centered at the point generated by its empirical dis-

tribution on the probability simplex. The exponent of the prob-

ability of error of such a classifier is bounded by the minimum

Chernoff information between the statistical distribution of any

pair of classes [40], defined as

(9)

In other words, the performance of a classifier is determined by

the pair of closest classes in the probability simplex, in terms of

the Kullback–Leibler divergence.

In our case, we propose to merge the pair of regions with

maximum Chernoff information, redefining the probability of

error of a classifier as the probability of fusion in a clustering

method. Hence, the bound on the error probability becomes a

bound on the probability of merging. This way, the bound on

the probability of merging for two adjacent regions, with type

, , and number of pixels , , respectively, can be written

as

(10)

Nevertheless, computing the Chernoff information implies an

optimization over . To reduce this computational load, in prac-

tice, we propose to approximate the Chernoff information by the

upper bound corresponding to the case , known as the

Bhattacharyya coefficient [43]

(11)

In conclusion, a statistical clustering approach leads to the

merging of the adjacent pair of regions with maximum (bound

of the) probability of fusion, or equivalently, maximizing its

exponent

(12)

This method is based on a size-weighted direct statistical mea-

sure of the empirical region distributions, and we will refer to it

as the Bhattacharyya merging criterion (BHAT).

III. AREA-WEIGHTED MERGING CRITERIA FOR

FIRST-ORDER MARKOV REGION MODELS

A. First-Order Finite-State Markov Process as General

Statistical Region Model

Under the same statistical framework, the region merging

problem can be formally tackled considering that statistical de-

pendency is restricted to pixels belonging to the same region.

To simplify the statistical analysis, we will further assume that,

for each pixel, the statistical dependency is only with respect to

neighboring pixels inside the same region.

In order to achieve low complexity region merging, we

propose a compromise between the difficulty introduced by

a 2-D dependency and the simplicity of the i.i.d assumption

in Section II-A, and hence, to model each region using a 1-D

first-order Markov model. The reduction of the dimensionality

is based on the scanning of the region pixels in four different

directions (left–right, right–left, up–down, down–up), esti-

mating the directional empirical transition matrices of the 1-D

Markov process associated to each scanning. The simplified

1-D Markov model of the region is obtained averaging the

four directional transition matrices. In other words, the 1-D

Markov model is based on considering only the average pair-

wise dependency of a pixel on its four closest neighbors, which

can be seen as the (empirical) probability transition matrix

of a first-order finite-state Markov process characterizing the

region. This empirical pairwise pixel distribution leads to a

second-order statistic extensively used in texture analysis,

known as co-occurrence matrix [44].

Formally, given the set of region pixels from an al-

phabet , their co-occurrence matrix

is defined as the relative proportion of occur-

rences of each pair of pixel values of separated by a given

displacement , i.e.,

(13)

where is the number of times the

pixel value occurs at a given location, while the pixel value

occurs at a displacement from that location; and is the

total number of pairwise pixel occurrences at displacement in

. Under the previous assumption, the considered displacements

are . Averaging on these

values, a rotation-invariant co-occurrence matrix is obtained.

Arbitrary discrete distributions are directly estimated from

data, incorporating spatial information not only about the region

itself but also about its interactions with adjacent regions (exis-

tence of an edge), with no specific assumptions about the nature

of the regions (in terms of homogeneity or texture). Moreover,

this model can be easily computed and, after the union of a pair

of regions, updated

(14)

with , the number of pixels in regions , , respectively.

The quantization of the alphabet can be set to optimize

the performance of the algorithm. As in Section II-A, we only

consider a uniform quantization and directly refer to the number

of bins in each dimension of the co-occurrence matrix.
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The statistical formulation of the merging problem presented

in Sections IV–VI is based on considering the co-occurrence

matrix as the empirical probability transition matrix of the first-

order finite-state Markov process characterizing a region [45].

We will assume that this Markov process is ergodic, and hence,

it is completely characterized by its initial state and a prob-

ability transition matrix. However, note that in this particular

case it is not meaningful to consider an initial state distribution

for the sequence of pixels, because the pixels of a 2-D region

are not ordered. Consequently, we will assume that all initial

states are equally likely, i.e., the probability of the state is set

to . Under these considerations, a region is com-

pletely characterized by the probability transition matrix of the

first-order Markov process generating it, estimated by its co-oc-

currence matrix.

B. Kullback-Leibler Merging Criterion

Similarly to the i.i.d. case in Section II-B, we can define a

criterion based on merging at each step the pair of adjacent

regions maximizing the probability of being generated by the

same first-order Markov process. Assuming that and are

two adjacent regions with , pixels, and with empirical tran-

sition matrices , , respectively, whose union would gen-

erate a new region with empirical transition matrix , the

two hypotheses considered are as follows:

• : pixels in the first region, , and pixels in the

second region, , are both distributed by the same

first-order Markov process, with probability transition ma-

trix ;

• : pixels in the first region, , are distributed by

the first-order Markov transition matrix ; and pixels in

the second region, , are distributed by the first-

order Markov process, with transition matrix .

Similarly to the Neyman–Pearson lemma for i.i.d. observa-

tions, in [46] it is proved that the best achievable error expo-

nent for testing between two stationary and irreducible Markov

sources (thus, ergodic Markov processes) is given by the likeli-

hood ratio test:

(15)

Considering that the probability of a first-order Markov se-

quence can be written as and

referring to as the concatenation of the pixels of both regions,

i.e., , the log-likelihood ratio can be formulated as

where , are the number of pixels in and , respec-

tively; and .

As the Markov process modeling each region is assumed to be

ergodic (as stated in Section III-A), by the ergodic theorem, each

one of the terms approaches the statistical

average with probability 1 under the probability distribution .

For instance,

where corresponds to the statistical mean under the dis-

tribution of . Considering as the

initial states distribution of the process, and

as the transition matrix

(16)

where

(17)

is the Shannon entropy rate of the first-order Markov

process [47].

Thus, we can rewrite the log-likelihood ratio test in terms of

the Shannon entropy rate of the processes as

(18)

In general, for and sufficiently large, the first term

can be dismissed [46]. Particularly in our case, the asymptotic

conditions for and are not required as we consider an

equiprobable initial state distribution. Thus, the first term is con-

stant for any , not affecting the maximization of the log-like-

lihood ratio test. Under this condition, the log-likelihood ratio

can be written (apart from a constant) as

(19)

and, for , it can be simply approximated as

(20)

that can be interpreted as the size-weighted decrement on the

entropy rate when the regions are merged. Considering (14),

the equiprobable initial state assumption, and using the Kull-

back–Leibler divergence rate between a first-order Markov se-

quence of samples with stationary distribution and transi-

tion matrix , and another first-order Markov sequence

of observations , with transition matrix :

(21)

then, (20) can be rewritten as:

(22)
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or equivalently,

Defining the Kullback–Leibler divergence between transition

matrices as

(23)

we can rewrite the previous expression depending only on the

transition matrices of the candidate regions

(24)

Consequently, at each merging stage, the two adjacent regions

(written as ) with maximum log-likelihood should be

merged. We will refer to this statistical criterion as the Markov

Kullback–Leibler merging criterion (M-KL), formally stated as

This criterion measures the similarity between the empirical

probability transition matrices of the regions and the empirical

transition matrix of their merging, weighted by the size of the

regions.

C. Bhattacharyya Merging Criterion

Identically to Section II-C, the idea behind this approach is

to use the Chernoff information bound on the exponent of the

probability of error of a classifier, based on the maximum in-

tersection between two distributions, as a measure of similarity,

and consequently, to perform a clustering procedure based on

the maximization of this bound.

Proceeding analogously to the classical derivation of the

Chernoff bound for the i.i.d. case, in the Appendix we develop

an extension of this bound for the case of first-order Markov

sequences. Hence, the Chernoff information between the tran-

sition matrices of two first-order Markov processes is defined

as

(25)

Following the reasoning in Section II-C, we propose to merge

the pair of regions with maximum Chernoff information, re-

defining the probability of error of a classifier as the probability

of fusion in a clustering method. This way, the bound on the

probability of merging for two adjacent regions, with empirical

probability transition matrices , , and number of pixels ,

, respectively, can be written as

(26)

As in Section II-C, in order to avoid the optimization over

, we propose to approximate the Chernoff information by the

Bhattacharyya coefficient between the transition matrices

(27)

In conclusion, this approach leads to an analogous expression

to the criteria in (12) for the i.i.d. case:

(28)

This method is based on a size-weighted direct statistical

measure of the empirical probability transition matrices, and

we will refer to it as the Markov Bhattacharyya merging crite-

rion (M-BHAT).

IV. EXTENSION TO AREA-UNWEIGHTED STATISTICAL

MERGING CRITERIA

The obtained merging costs depend on the size of the in-

volved regions, establishing, in some sense, the confidence of

the estimated empirical models. This approach assures that the

resulting partitions are size consistent, meaning that the areas

of the regions tend to increase as the number of regions into the

partition decreases.

The size term favors the fusion of smaller regions, slowing

the merging of larger regions, even when they are similarly dis-

tributed. On one hand, as it may be possible to make a mistake

during the merging process, merging small regions causes less

significant errors in terms of number of pixels, minimizing un-

dersegmentation. On the other hand, as the fusion of larger re-

gions is slowed even when they are similarly distributed, area-

weighted methods suffer generally from oversegmentation (see

Section VI).

Therefore, the goal of this section is to propose an extension

of the previous methods providing a tradeoff between under-

and oversegmentation, while increasing the size resolution

of the partitions (i.e., the region with minimum size). This is

achieved by removing the size dependency from the merging

criteria and incorporating it into the merging order to assure

size consistency.

Hence, under the assumption that regions are large enough

to have a high confidence on the estimated distribution (see

Section VI for further details on how to assure this condition

in practice), the area dependency can be removed from the pre-

vious merging criteria:

• area-unweighted Kullback–Leibler merging criterion for

the i.i.d. region model:

(29)

• Area-unweighted Bhattacharyya merging criterion for the

i.i.d. region model:

(30)
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• area-unweighted Kullback–Leibler merging criterion for

the first-order Markov region model:

(31)

• area-unweighted Bhattacharyya merging criterion for the

first-order Markov region model:

(32)

In practice, we cannot always assure that the distribution of

all regions is perfectly estimated, specially, in early stages of

the merging process. For this reason, and to assure the size

consistency of the partitions, an agglomerative force is needed

into the merging process. Our proposal is to combine the cri-

teria in (29)–(32) with a scale-based merging order, incorpo-

rating the size consistency constraints. The idea is to define a

scale threshold for each level of resolution. Regions beyond this

threshold are considered as out-of-scale and are merged with the

highest priority, fusing them with their most similar region in the

partition. Finally, when no out-of-scale regions remain, the al-

gorithm continues merging in-scale regions normally. At each

merging step the scale threshold is updated, and normal merging

continues until new out-of-scale regions appear.

The scale threshold is defined as

(33)

i.e., regions that are smaller than a given percentage of the mean

region area at the current scale are considered out-of-scale. The

parameter controls the minimum resolution at each scale.

Heuristically, we have found that values around pro-

vide a good compromise between under- and oversegmentation.

The performance curves for different values of the scale pa-

rameter are evaluated in Section VI (see Experiment 4 and

Fig. 11).

The benefit of this approach is that the fusion of large regions

is not penalized, once out-of-scale regions have been removed.

All regions are equally likely to merge despite their size, be-

cause the merging cost only measures the statistical similarity

of the empirical distributions, without being size biased.

V. PARTITION SELECTION CRITERION

A. Stopping Criterion Versus Selection Criterion

In Section I, the importance of a hierarchical approach to

provide different region-based explanations of the image at dif-

ferent levels of detail was discussed. For instance, the level of

resolution may be application dependent, considering the type

of analysis to be performed. The nature of the region merging

techniques succeeds to provide a hierarchy of partitions. Never-

theless, these processes usually lead to a huge number of parti-

tions with no clues about which of them is more representative

or contains the most meaningful information.

The goal of this section is to propose a partition selection cri-

terion, i.e., an automatic technique to extract from the hierarchy

of partitions the most statistical significant partitions at different

resolutions. Although being at an early level of analysis, and

without any a priori knowledge on the image, we expect statis-

tical meaningful partitions to contain most human-representa-

tive regions, for different levels of analysis.

In the region merging literature, other researchers have pro-

posed the use of stopping criteria for the merging process. These

approaches determine a single step in the merging process (that

is, a single partition). This proposed partition is usually related

with the last merging step where the merging criteria has a cer-

tain degree of validity or where a certain compromise is fulfilled.

Some simple criteria are based on the maximum merging cost

(or minimum similarity), on the definition of a certain threshold

on the number of regions [11], [48], or on the minimum value of

peak-to-noise ratio (PSNR) between the original image and an

image partition reconstructed using the mean region color [11].

When heterogenous image data sets are considered, it is not pos-

sible to generalize the value of these parameters for a given pur-

pose (for instance: extraction of partitions with high level se-

mantic content, or with minimum undersegmentation error and

providing high accuracy).

In [49], a stopping criterion based on the evolution of the ac-

cumulated merging cost during the overall process is proposed.

Its goal is to extract the most salient semantic regions or ob-

jects present in the scene. It determines the number of regions

that divides the accumulated merging curve into two segments:

the highest variation part of the accumulated cost and the lowest

variation part (geometrically, it corresponds with the first-order

polygonal approximation of the accumulated curve using a stan-

dard recursive subdivision method). Although this criterion is

dependent on the image content itself, the determined partition

depends on the number of regions of the initial partition used by

the region merging process.

Another stopping criterion based on the accumulated cost is

proposed in [34]. In this case, its purpose is to determine parti-

tions with correct characterization of the objects in terms of low

undersegmentation error and a moderate number of regions. The

proposed partition is given by the step of the merging process

leading to a relative increase of the accumulated cost over a cer-

tain percentage. This method succeeds in its particular goal, but

no studies are presented about its validity in other cases.

We would like to remark the significant difference between

a stopping criterion (as those proposed in the previous ap-

proaches) and the partition selection proposed here. While a

stopping criterion determines a single partition or iteration,

usually referred to the merging step where the used merging

criteria cannot assure a certain degree of reliability or where

a given tradeoff is fulfilled, the selection criteria proposes a

reduced set of meaningful partitions at different levels of detail.

Thus, the selection criteria is application independent, and it

is not specified together with a particular purpose. It can be

seen as a tool to simplify and facilitate a higher level image

analysis, but independently of the type of analysis itself. In

that sense, the proposed partition selection criterion is related

with the simplification or edition techniques for hierarchical

region-based image representations in [50] and [51]. In those

approaches, the merging sequence is stored into a hierarchical

tree structure that, in turn, is collapsed to a reduced subset

of relevant partitions. Nevertheless, the simplified version of

the hierarchy is based on the analysis of the tree structure
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Fig. 3. Analysis of the partition selection criterion: Berkeley Segmentation Database [26] image subset. Columns, from left to right: original image, first and
second selected partitions using the significance index in (34). Partitions are computed using Markov based region model criteria. Concretely, the method used for
the examples are: M-BHAT area-weighted in the first row, and M-KL area-weighted in the second row, both with empirical transition matrices quantized to 10 bins
per dimension.

Fig. 4. Analysis of the partition selection criterion: Corel image subset. Columns, from left to right: Original image, first and second selected partitions using the
significance index in (34). The left columns show i.i.d. KL area-unweighted criterion (types quantized to five bins); and the right columns show Markov M-BHAT
area-unweighted criterion (empirical transition matrices quantized to five bins per dimension).

(parent-children relationships) and not directly on the sequence

of merging similarities as the criterion presented here.

B. Statistical Partition Selection Criterion

Experimentally, we have observed that the merging-similarity

sequences for area-weighted and area-unweighted methods (in

this case, without considering the costs of out-of-scale regions)

present a similar behavior. For that reason, the proposed selec-

tion strategy can be applied to all merging techniques presented

in this work.

The proposed strategy relies on selecting the partitions

associated to a significant decrease into the sequence of

merging similarities. Therefore, we consider a nonde-

creasing version of the sequence of merging similarities

, where is the number of remaining regions, defined as

.

Determining the most important decrements on

provides the set of statistically significant partitions. These

partitions may be ordered using some significance index.

Here, we propose an importance weight based on the relative

increase with respect to the current similarity value. Given

and a nonincreasing version of ,

, the importance weight is

defined as

(34)

In order to illustrate the behavior of the proposed partition se-

lection criterion and the fact that it performs similarly with all

proposed merging criteria, examples of automatically selected

partitions using this significance order are shown in Figs. 3–5.

A complete evaluation is given in Section VI. Note that in Figs. 3

and 4, in general, the first selection corresponds to a coarse par-

tition, whose regions are good approximations of the objects.

Usually, the second proposal gives a finer partition with most

representative regions in the scene. Examples in Fig. 5 (natural

texture mosaics from the Prague texture segmentation data gen-

erator, see Section VI-B) show that the partition selection cri-

teria can be a valuable solution to provide with correct image

explanations at different levels of detail, correctly capturing the

increase in complexity of the region pattern as the resolution

decreases.

VI. EXPERIMENTAL RESULTS

In this section, we provide a complete and exhaustive eval-

uation of the proposed techniques, using not only different

databases for the two main addressed problems: object-ori-

ented segmentation of generic images (Corel Image Database,

Section VI-A) and texture image segmentation (Prague Seg-

mentation Datagenerator, Section VI-B), but also specific

evaluation features in each case: under- and oversegmentation

error, and a large set of region-based, pixel-based and error

consistency indicators, respectively.
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Fig. 5. Analysis of the partition selection criterion: texture mosaic. Columns, from left to right: original image, first and second selected partitions using the
significance index in (34). The left columns show i.i.d. region model criteria; concretely, in descending order: KL area-weighted, BHAT area-weighted (types
quantized to ten bins). The right columns show Markov region model criteria; concretely, in descending order: M-KL area-weighted, M-BHAT area-weighted
(empirical transition matrices quantized to ten bins per dimension).

In the results shown in the paper, we have tried to select im-

ages presenting objects (single or not) showing different char-

acteristics. For instance, objects immerse into textured back-

ground, objects formed by textured regions or objects formed

not only by color homogeneous regions but also by different

plain color regions. Additionally, we also illustrate the behavior

in more general images, such as landscapes. With this selection

of illustrative examples, including also a set of natural texture

mosaics, we try to cover a large amount of general image types

with different levels of complexity.

In order to ensure that all initial regions are large enough

to have a high confidence on the statistical model estimation,

the proposed region merging techniques were applied on an

initial partition of the original image. Except otherwise stated,

the initial partitions were computed using the watershed algo-

rithm [52].

A. Corel Image Database

The first set of experiments was performed over a set of 100

images from the Corel image database [34]. The set contains ten

images of ten different complexity classes: tigers, horses, ea-

gles, mountains, fields, cars, jets, beaches, butterflies and roses.

Ground truth partitions were manually segmented in the context

of the SCHEMA project (http://www.iti.gr/ SCHEMA/).

To evaluate the quality of the partitions created by the pro-

posed methods, we use as in [34] the distances defined in [33].

Initially, an asymmetric distance is proposed . By

definition, it measures the minimum number of pixels whose la-

bels should be changed so that partition becomes finer than

partition , normalized by the image size. Note that, in general,

. When is the partition to eval-

uate and the ground truth partition, the first ordering measures

the degree of undersegmentation, and the second, the overseg-

mentation in with respect to the ground truth partition.

Nevertheless, some applications may not be uniquely con-

cerned about under- or oversegmentation but they may be in-

terested in establishing a good compromise between both types

of error. For that purpose, a symmetric distance is

proposed that provides a measure of the global error between

partitions with equal number of regions. This distance is defined

in terms of the minimum number of pixels whose labels should

be changed between regions in to achieve a perfect matching

with ( and become identical), normalized by the total

number of pixels in the image. This measure was originally de-

fined in the pattern analysis field, in terms of data clustering

comparison [53].

1) Experiment 1. Under- and Oversegmentation Evalua-

tion: This experiment evaluates separately, as a function of

the number of regions into the partitions: i) the degree of

undersegmentation and ii) the degree of oversegmentation of

the generated partitions, referred in both cases to the ground

truth partitions. The asymmetric partition distance is used for

this evaluation, concretely, is chosen for i), and

for ii), where and are the computed partition

and the ground truth partition, respectively.

These results are compared with the region merging tech-

nique proposed in [35]. The merging criterion in [35] combines

color similarity and contour complexity of the regions, normal-

ized by the component dynamic range, and was shown to out-

perform most color based merging techniques. In order to fix

the same test conditions as in [35], the proposed statistical tech-

niques were applied on initial partitions (with 500 regions) com-

puted using the same color-based criterion used in [35] to ini-

tialize the merging process (the weighted Euclidean norm of the

color mean difference of the regions). The initial partitions were

computed using the same color-based criteria as in [35]. The

residual undersegmentation mean error associated to the initial

partitions (their average asymmetric distance with respect to the

ground truth) is 0.0211, with 500 regions per partition.

In Fig. 6, the results for the mean asymmetric distance for

different number of regions with i.i.d. based techniques are pre-

sented. Fig. 6-left shows , measuring the degree of

undersegmentation. In this case, area-weighed methods outper-

form area-unweighted methods. On the contrary, in Fig. 6-right,

for , area-unweighted methods clearly present less

oversegmentation. As discussed in Section IV, this fact is ex-

pected due to the increase in the partition resolution provided

by area-unweighted methods. Note that, in general and for both
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Fig. 6. Asymmetric distance for the subset of the Corel database. Left: From computed to ground truth partition (degree of undersegmentation); right: vice versa
(degree of oversegmentation). Note that left and right figures are shown at different vertical scales. Statistical methods were computed using types quantized to
five bins.

Fig. 7. Asymmetric distance for the Corel subset database. Left: From computed to ground truth partition (undersegmentation); right: vice versa (oversegmenta-
tion). Left and right figures are shown at different vertical scales. Statistical methods were computed using matrices quantized to five bins per dimension.

results, the performance of the Bhattacharyya criterion is supe-

rior to that of the Kullback–Leibler criterion.

Compared to [35], i.i.d. based techniques suffer from larger

undersegmentation error, although the mean error increase for

the Bhattacharyya and the Kullback–Leibler area-weighted

versions is less than 4% and 6%, respectively. Nevertheless,

in terms of oversegmentation, all statistical techniques signifi-

cantly outperform the method in [35]: a mean 15% decrease of

the asymmetric distance for area-weighed methods, and a mean

30% decrease for area-unweighted methods (see Fig. 6-right).

In Fig. 7, the results for the mean asymmetric distance for

different numbers of regions for the Markov based techniques

are presented. For the sake of clarity, only the best i.i.d. model

based area-weighted and area-unweighed methods are shown

(corresponding in both cases to the Bhattacharyya merging cri-

teria). Fig. 7-left shows , measuring the degree of

undersegmentation. In this case, area-weighted methods outper-

form area-unweighted methods, and generally, Markov-based

techniques are superior to i.i.d. methods. The Markov-based

Bhattacharyya area-weighted method presents the most signif-

icant improvement with respect to the best technique based on

the i.i.d. region model (a 5% distance decrease), outperforming

also [35] with a 1.5% less undersegmentation error. On the con-

trary, in Fig. 7-right, for , Markov-based techniques

suffer from more oversegmentation than i.i.d. model based tech-

niques. Despite this fact, they still outperform [35] in terms

of oversegmentation (a mean 10% distance decrease). Hence,

from our experiments it can be observed that there is a compro-

mise between under- and oversegmentation. Again, the Bhat-

tacharyya versions show a better performance than the Kull-

back–Leibler techniques.

2) Experiment 2. Global Partition Quality Evaluation: The

goal of this experiment is to perform a general comparison in

terms of under- and oversegmentation between the ground truth

partitions and the partitions generated by the proposed method

with the same number of regions than the corresponding ground

truth partitions. To measure the dissimilarity between human-

created and computed partitions, the symmetric partition dis-

tance is used.

Table I shows the mean symmetric distance between ground

truth partitions and partitions with the same number of regions

generated by the proposed methods. As in the previous experi-

ment, the initial partitions were computed using the same color-

based criteria as in [35].
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Fig. 8. Merging criteria comparison: Corel image subset. For each example, columns from left to right: Original image (first row), human partition (second row),
KL area-weighted (first row), M-KL area-weighted (second row); BHAT area-weighted (first row), M-BHAT area-weighted (second row); KL area-unweighted
(first row), M-KL area-unweighted (second row); BHAT area-unweighted (first row), M-BHAT area-unweighted (second row). Types and empirical transition
matrices quantized to five bins per dimension.

TABLE I
MEAN SYMMETRIC DISTANCE FOR THE SUBSET OF THE COREL DATABASE.

THE TWO CRITERIA WITH MINIMUM MEAN SYMMETRIC

DISTANCE ARE HIGHLIGHTED IN GRAY

Note that all statistical criteria, i.i.d. or Markov based, outper-

form [35]. As expected, area-unweighted methods present the

best tradeoff between under- and oversegmentation, and particu-

larly, the Bhattacharyya-based criteria. The symmetric distance

is slightly larger for Markov-based methods compared to i.i.d.

model based methods. Fig. 8 presents several results. In it, it can

be observed that, in spite of the differences observed in Table I,

the subjective quality of the partitions is similar for all statistical

approaches.

3) Experiment 3. Quantization Effect Evaluation: Here, we

study the effect of the degree of quantization, in terms of number

of bins, in the empirical models used in the proposed statistical

methods. Similarly to Experiment 1, we measure independently

the degree of under- and oversegmentation as a function of the

number of regions into the partition for different number of bins

into the model.

Figs. 9 and 10 present examples of the performance variation

for different number of bins on the normalized histogram for

each region. Concretely, the for the area-weighted

version of the Bhattacharyya method for the i.i.d. model and the

Markov model are shown, respectively.

On one hand, it can be seen than the oversegmentation error

monotonically decreases as number of bins decreases and

presents a large range of variation (see Fig. 9-right). On the

other hand, the variation on the degree of undersegmentation

when the number of bins is not excessively small (more than

four bins) is not so important and only a moderate improvement

can be achieved. Note that in this case, the increase of the

number not always improves the performance (for instance, in

Fig. 9-left the minimum curve of the asymmetric distance is

obtained for ten bins). This effect is being currently analyzed as

part of our future work (see discussion in Section VII). Taking

into account not only the segmentation quality but also the

computational time, we can conclude that good performance

can be obtained with a reduced number of bins: five or ten

bins is a good compromise between the partition quality and

the computational load of the algorithm. Remaining methods

present a similar behavior.

4) Experiment 4. Scale-Parameter Effect Evaluation: For

completeness, the performance curves for different values of

the scale parameter , introduced in Section IV to control

the scale-based merging order for area-unweighted merging

criteria, are evaluated. Concretely, in Fig. 11, the asymmetric

distance measuring the degree of under- (left) and overseg-

mentation (right) for the i.i.d. version of the Bhattacharyya

area-unweighted method are shown to illustrate the general

behavior of the presented methods.
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Fig. 9. Asymmetric distance for the BHAT area-weighted method for different number of bins in the empirical distributions computed over the subset of the Corel
database. Left: From computed to ground truth partition; right: vice versa. Left and right figures are shown at different vertical scales.

Fig. 10. Asymmetric distance for the M-BHAT area-weighted method for different number of bins in the empirical distributions for the Corel subset database.
Left: From computed to ground truth partition; right: vice versa. Left and right figures are shown at different vertical scales.

Fig. 11. Asymmetric distance for the BHAT area-unweighted method for different values of the scale parameter � in the scale-based merging order for the Corel
subset database. Left: From computed to ground truth partition; right: vice versa. Left and right figures are shown at different vertical scales.

The conclusions are similar to those obtained in the previous

experiment referred to the number of bins. The oversegmen-

tation error monotonically decreases with the value of .

Nevertheless, there is not such a direct relation between the

scale parameter and the degree of undersegmentation, pre-

senting a minimum for values around 0.2. Justified by the

observed compromise between under- and oversegmentation

and by the subjective quality of the provided partitions, as

commented in Section IV, a value of was chosen in

our experiments.

5) Experiment 5. Partition Selection Criterion Evaluation:

In this experiment, the performance of the partition selection cri-

terion proposed in Section V is evaluated for a specific purpose.

Concretely, we study the ability of the most significant partition

proposed by the significance index in (34) to correctly repre-

sent most of the semantic content of the image. Considering the
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TABLE II
EVALUATION OF THE ABILITY OF THE MOST SIGNIFICANT PARTITION � , WHERE � IS ITS NUMBER OF REGIONS, TO REPRESENT THE SEMANTIC CONTENT

OF THE IMAGE FOR THE COREL SUBSET. FOR EACH METHOD, THE RESULTS IN EACH COLUMN (FROM LEFT TO RIGHT) SHOW: MEAN VALUE FOR THE

ASYMMETRIC DISTANCE FROM THE PARTITION WITH ONE REGION MORE THAN THE MOST SIGNIFICANT PARTITION, � , TO THE HUMAN-CREATED

PARTITION ��� �� ����; MEAN VALUE FOR THE ASYMMETRIC DISTANCE FROM THE MOST SIGNIFICANT PARTITION TO THE HUMAN PARTITION

�� �� ����; MEAN VALUE FOR THE ASYMMETRIC DISTANCE FROM THE PARTITION WITH ONE REGION LESS THAN THE MOST SIGNIFICANT PARTITION,
� , TO THE HUMAN PARTITION �� �� ����; PERCENTAGE OF RELATIVE INCREASE IN ASYMMETRIC DISTANCE BETWEEN � AND

� �� ����; PERCENTAGE OF RELATIVE INCREASE IN ASYMMETRIC DISTANCE BETWEEN � AND � �� ����

human-created partitions as semantic reference, the asymmetric

partition distance between these partitions and the first partition

in significance proposed by the selection criterion is computed

(see column in Table II).

Additionally, we investigate the correlation between the pro-

posed partition and a significant error in terms of semantic con-

tent into the next merging step. In other words, we evaluate the

asymmetric distance increase due to the next region merging.

Thus, a large increase in asymmetric distance will be interpreted

as a significant semantic error of the partition containing one

region less than the selected one. These results for the Corel

image subset are outlined in Table II. For a correct evaluation,

the relative distance increase caused by the creation of the se-

lected partition is also shown (i.e., the asymmetric distance be-

tween ground truth partitions and partitions containing one re-

gion more than the selected one).

As it can be seen in Table II, the distance increase is

very large for area-weighted methods (from 53% to 66%),

specially when is compared with the increase in distance

caused by the generation of the selected partition (from 13%

to 19%). For the area-unweighted techniques the increase is

still large but lower (a 25%–33% increase with respect to a

previous 12%–15%), except for the i.i.d. version of the Kull-

back–Leibler criterion. For this last criterion the correlation

between the selected partition and an imminent semantic error

is not observed (a 21% increase with respect to a previous

25%). This fact seems to be associated with the low perfor-

mance of this criterion in terms of undersegmentation error,

compared to the other statistical methods, that was observed

in Experiment 1 (see Fig. 6).

Moreover, some additional examples comparing the unsuper-

vised results provided by the partition selection criterion (con-

cretely, the most significant partition) to other unsupervised and

supervised statistical techniques are presented in Fig. 12. The

images and the human segmentations have been extracted from

the Berkeley Segmentation Database [26]. The first method to

compare (third column of Fig. 12) is a statistical segmentation

technique based on the mean-shift procedure [22]. The results

for this method were computed using the software provided

by the authors (http://www.caip.rutgers.edu/riul/research/code.

html). The other two compared techniques are the statistical re-

gion merging algorithm in [27] (discussed in Section I) and a su-

pervised version of this algorithm [31], respectively, the fourth

and fifth columns of Fig. 12. The results for this two methods

have been obtained from the authors web page (http://www.

univ-ag.fr/~rnock/Articles/TPAMI03/). Particularly, the super-

vised algorithm is based on grouping with bias [54], i.e., the

user points in the image some pixels that he/she thinks belong

to identical/different objects and the segmentation is solved as a

constrained grouping problem. The user markers are also shown

in Fig. 12, different marker shapes and colors meaning different

objects. It can be seen that the segmentations provided by the

proposed algorithms working in an unsupervised manner is sim-

ilar to the human partition, being comparable or superior to the

other supervised and unsupervised methods (for instance, see

the image in the fourth row of Fig. 12). Note that our approach

does not require any parameter adjustment (for area-unweighted

methods, the scale parameter, , is never varied) as the

other compared techniques do: the number of variables in the

region model, , in [27] and [31]; and the bandwidth parameter

for the mean-shift procedure, and the minimum region

size, in [22].

B. The Prague Texture Segmentation Datagenerator and

Benchmark

A different evaluation is performed using now the benchmark

system presented in [55]. It contains a set of 20 computer gen-

erated texture mosaics and benchmarks composed from the fol-

lowing real natural texture types: monospectral textures, multi-

spectral textures, BTF (bidirectional texture function) textures,

rotation invariant textures, scale invariant textures, and illumi-

nation invariant textures. The system allows an online evalua-

tion and comparison with other state-of-the-art techniques with

respect to a large set of indicators, divided in three classes: re-

gion-based, pixel-wise average and error consistency [55]. A

complete description of these methods, as well as the results for
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Fig. 12. Comparison between different supervised and unsupervised statistical segmentation techniques. First column: Original images extracted from the Berkeley
Segmentation Dataset [26]. Second column: Human segmentations, also from the Berkeley Segmentation Database. Third column: Partitions computed using [22]
with bandwidth parameters �� � � � � ���� ��� and minimum region size of 100 pixels. Fourth column: Partitions obtained by [27] (from the web page of the
authors). Fifth column: Partitions obtained by [31] (from the web page of the authors). Sixth column: Most relevant partitions using the significance index in (34)
computed by M-BHAT (first row) and M-KL (second and third rows) merging criteria, both quantized to ten bins.

TABLE III
STATISTICAL REGION MERGING SUPERVISED EVALUATION ON THE PRAGUE TEXTURE SEGMENTATION BENCHMARK. RESULTS DIRECTLY OBTAINED FROM THE

SYSTEM IN [55]. FOR INDICATORS WITH UP ARROW, LARGER VALUES ARE PREFERRED; FOR DOWN ARROWS, THE OPPOSITE. FOR EACH PARAMETER, THE

FIRST AND SECOND BEST VALUES AMONG ALL METHODS IS SHOWN IN BLUE (DARK GREY) AND ORANGE (LIGHT GREY), RESPECTIVELY. STATISTICAL

METHODS WERE QUANTIZED TO 10 BINS. BENCHMARK CRITERIA: CORRECT SEGMENTATION (CS), OVER-SEGMENTATION (OS), UNDER-SEGMENTATION

(US), MISSED ERROR (ME), NOISE ERROR (NE), OMISSION ERROR (O), COMMISSION ERROR (C), CLASS ACCURACY (CA), RECALL—CORRECT

ASSIGNMENT (CO), PRECISION—OBJECT ACCURACY (CC), TYPE I ERROR (I.), TYPE II ERROR (II.), MEAN CLASS ACCURACY ESTIMATE (EA), MAPPING

SCORE (MS), ROOT MEAN SQUARE PROPORTION ESTIMATION ERROR (RM), COMPARISON INDEX (CI), GLOBAL CONSISTENCY ERROR (GCE), LOCAL

CONSISTENCY ERROR (LCE), MIRKIN METRIC (DM), VAN DONGEN METRIC (DD), VARIATION OF INFORMATION (DVI). SEGMENTATION TECHNIQUES

ARE IN DESCENDING ORDER ACCORDING TO THE CORRECT SEGMENTATION INDICATOR (CS)

all the proposed methods and a comparison with other state-of-

the-art texture segmentation techniques are available online at

http://mosaic.utia.cas.cz/.

1) Experiment 6. Supervised Evaluation: The goal of this

experiment is to evaluate the performance of the proposed cri-

teria for texture segmentation purposes. In the presented bench-

mark, our statistical methods were compared with other state-of-

the-art segmentation techniques. Here, the evaluation is per-

formed in a supervised manner, i.e., when the number of regions

in the evaluated partitions is manually set to the number or re-

gions in the ground truth partitions.

Table III outlines the performance of the proposed methods,

using as reference the best texture segmentation technique

into the benchmark [45]. The complete evaluation results are

available online at http://mosaic.utia.cas.cz/. The conclusions

from the benchmark results are that, for most indicators,
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Fig. 13. Merging criteria comparison for the texture database in [55]. For each example, columns from left to right: original image (1st row), ground truth partition
(2nd row), KL area-weighted (1st row), M-KL area-weighted (2nd row); BHAT area-weighted (1st row), M-BHAT area-weighted (2nd row); KL area-unweighted
(1st row), M-KL area-unweighted (2nd row); BHAT area-unweighted (1st row), M-BHAT area-unweighted (2nd row); method in [45] (2nd row). Types and em-
pirical transition matrices quantized to 10 bins per dimension.

area-weighted statistical approaches outperform the rest

of techniques in the benchmark. The area-weighted i.i.d.

Kullback–Leibler criterion outperform all other techniques

for most indicators, closely followed by the area-weighted

Markov-based Bhattacharyya criterion. However, note that

similarly to the results shown in the object-oriented evaluation,

both area-weighted Bhattacharyya versions provide the best

results in terms of undersegmentation error (US indicator in

Table III).

Due to the large size of some fundamental parts of the textures

(for instance, observe the texture formed by large green squares

with a black background in the third example of Fig. 13) and

for the general purpose value of the scale threshold proposed

in Section IV, area-unweighted methods present a lower perfor-

mance in most indicators, specially for correct detection (OS),

undersegmentation (US) and all pixel-wise average criteria. In

this particular case, these methods are not able to compact such

large parts into a single textured region, due to its size and

heterogeneity. Anyway, if some prior knowledge is available

about the granularity of the textures present into the regions,

the scale threshold could be specifically set to optimize the per-

formance for a particular type of images. Nevertheless, note that

area-unweighted Bhattacharyya criteria exhibit an excellent per-

formance in terms of oversegmentation (OS) indicator (simi-

larly to the object-oriented evaluation), consistency error criteria

(GCE and LCE) and variation of information (dVI).

Some segmentation examples are shown in Fig. 13. It can

be seen that partitions provided by area-weighted statistical

methods have larger quality than partitions obtained by [45],

in terms of the correct detection of the textures in the mosaic

and into the region connectivity and regularity. In general,

Markov-based and i.i.d. based area-weighted methods pro-

vide similar segmentation results, although in some cases the

Markov model improves the obtained partition. For instance,

see the third and fourth example in Fig. 13, where the Markov

versions are able to compact into a single region such complex

and heterogenous regions as those formed by the white and

blue shampoo bottles and the cactus, respectively.

The stability under various noise types and degradation levels

has also been evaluated for the technique providing the best per-

formance in terms of correct segmentation (CS) indicator in su-

pervised mode: the Kullback–Leibler version based on the i.i.d.

model. The benchmark system automatically provides a noise

corrupted version of the dataset for three noise types (Gaussian,

Poisson, and Salt&Pepper) and under different levels of degra-

dation (only for Gaussian and Salt&Pepper). For the sake of

conciseness, the results have not been included here, but they

are available online at http://mosaic.utia.cas.cz/.

As expected, the performance of the IT-RM technique de-

cays with the SNR for Gaussian noise (SNR values of 10, 5,

0, 5, and 10 dB provide CS values of 56.61, 47.86, 46.68,

36.25, and 15.05, respectively). The performance for an SNR

of 0 dB is still high, especially if it is compared to the perfor-

mance in absence of noise of other state-of-the-art techniques

in the database. Similar results are observed for the Poisson

corrupted images. For the Salt&Pepper noise, the IT-RM ap-

proach is particularly robust, showing an impressive level of

resilience to the highest levels of degradation available in the

database. For a probability of noise presence in the image of

0.5, the CS value is over 63, which outperforms the perfor-

mance in absence of noise of the other state-of-the-art tech-

niques in the system.
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TABLE IV
STATISTICAL REGION MERGING UNSUPERVISED EVALUATION ON THE PRAGUE TEXTURE SEGMENTATION BENCHMARK. RESULTS DIRECTLY OBTAINED FROM THE

SYSTEM IN [55]. FOR INDICATORS WITH UP ARROW, LARGER VALUES ARE PREFERRED; FOR DOWN ARROWS, THE OPPOSITE. FOR EACH PARAMETER, THE FIRST

AND SECOND BEST VALUES AMONG ALL METHODS IS SHOWN IN BLUE (DARK GREY) AND ORANGE (LIGHT GREY), RESPECTIVELY. STATISTICAL METHODS

WERE QUANTIZED TO 10 BINS. FOR BENCHMARK CRITERIA SEE TABLE III

2) Experiment 7. Unsupervised Evaluation: In this case, the

goal of the experiment was to evaluate, into the texture segmen-

tation context, the performance of the proposed statistical re-

gion merging techniques working in an unsupervised manner.

For that reason, the number of regions of the evaluated parti-

tions is automatically selected by the partition selection criteria

presented in Section V, concretely, the first partition in impor-

tance order with respect to the significance order in (34).

The results for the joint evaluation of the merging techniques

and the selection criterion are outlined in Table IV. As before, all

results are available online at http://mosaic.utia.cas.cz/. Despite

the decrease in the performance due to the unsupervised ap-

proach, the area-weighted methods still outperform most texture

segmentation techniques present into the benchmark, showing

a performance comparable to [45], the best texture segmenta-

tion technique into the benchmark. Although for most indica-

tors area-weighted techniques present similar values, the Kull-

back–Leibler version based on the i.i.d. model, working together

with the selection criteria, presents a good performance in most

of them.

VII. CONCLUSION

In this paper, we have proposed a practical solution for the

segmentation of generic images. Summarizing, the main char-

acteristics of the presented approach are as follows:

• generality, as it can be directly used with images of dif-

ferent complexities and characteristics;

• accuracy, as it provides high quality partitions in terms of

objective and subjective quality measures;

• efficiency, as the region models and criteria are not signif-

icantly complex and, hence, the merging procedure can be

implemented using fast graph-based algorithms in linear

time.

From our evaluation of the proposed region merging tech-

niques, the area-weighted methods exhibit a better performance

in terms of minimizing the merging error or undersegmenta-

tion, but, in general, suffer from a larger degree of overseg-

mentation. The area-unweighted extensions have shown a better

tradeoff between under- and oversegmentation. In the texture

segmentation context, area-unweighted methods are sensible to

the characteristics of textures into the regions, namely its size

and heterogeneity. In this case, any prior information about the

granularity of the textures can be incorporated into the scale-

based merging order to optimize the performance of these tech-

niques. When no specific knowledge is available, area-weighted

merging strategies are preferred for texture images to obtain a

correct and reliable segmentation.

For natural images, merging criteria based on the Bhat-

tacharyya coefficient are slightly superior to those based on

the Kullback–Leibler divergence. Particularly the Markov

area-weighted Bhattacharyya criterion presents an excellent

performance in terms of both under- and oversegmentation.

This difference is not appreciated for texture images. However,

experiments for both types of images agree that, at least for

the area-unweighted extensions, the Bhattacharyya criteria are

preferred to the Kullback–Leibler criteria.

Hence, we can conclude that applications where under-

segmentation errors are crucial (or where oversegmentation

errors are not a problem) can find a valuable solution into

area-weighted criteria combined with a classical merging order.

The use of a more complex statistical model, such as the pro-

posed first-order Markov model, can further improve the results

in terms of undersegmentation. On the contrary, applications

being more error tolerant may find into a simple i.i.d. statistical

model a more practical solution.

When oversegmentation is also considered as a source of

error, area-unweighted criteria combined with a scale-based

merging order may be more appropriate, directly for images

with no coarse heterogeneous textures (such as generic real

images).
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Last but not least, these unsupervised techniques can serve as

a generic analysis tool in image processing, as they can provide

to the user or to the next steps of the processing chain a reduced

subset of the most relevant partitions found into the whole hi-

erarchy, without any prior knowledge on the type of analysis

to be performed. Particularly, the most significant partition can

be directly used as a rough approximation of the semantic con-

tent of the image. In turn, when the proposed methods work in a

supervised manner, they clearly outperform state-of-the-art ob-

ject-based and texture segmentation approaches.

Our current work aims at improving the region model quanti-

zation using a data-dependent quantization strategy to obtain a

more accurate estimation of the discrete distributions character-

izing the regions [41]. At the moment, we are also investigating

on the fusion of several of the proposed techniques to improve

the accuracy and the robustness of the segmentation results. As

future guidelines, we would like to extend and validate these

techniques to other problems of generic image segmentation

such as segmentation of compressed images, segmentation of

low resolution versions or extensions to video and 3-D images.

APPENDIX

CHERNOFF BOUND FOR FIRST ORDER MARKOV SEQUENCES

Proceeding analogously to the classical derivation of the

Chernoff bound for the i.i.d. case, we can obtain a similar

result for first-order Markov sequences. As shown in [46], the

posteriori probability decision rule minimizes the Bayesian

probability of error for testing between hypotheses and .

Being the decision region for , the probability of error for

this rule is

(35)

(36)

where refers to the complementary region of , i.e., the

decision region for . Now for any two positive numbers

and , we have

(37)

Using this to continue the chain, we have

(38)

(39)

For a sequence of observations, we have

(40)

Particularizing for first-order Markov sequences,

(41)

As in Section III-A, we can assume all initial states equally

likely, which removes the dependency on the state probabilities.

Thus

(42)

where , correspond to the transition

matrices of the processes, respectively.

Hence, the exponent of the error probability is bounded by

(43)

Although the whole derivation has been done for the case of

, note that when sequences have a different number

of samples, an identical upper bound on the probability of error

can be obtained considering only the smaller number of samples

in both sequences.

Analogously to the i.i.d. case, we can define the Chernoff

information between the probability transition matrices of two

first-order Markov processes, as the minimum exponent of error

given by (43)

(44)
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