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ABSTRACT Light field videos provide a rich representation of real-world, thus the research of this technol-

ogy is of urgency and interest for both the scientific community and industries. Light field applications

such as virtual reality and post-production in the movie industry require a large number of viewpoints

of the captured scene to achieve an immersive experience, and this creates a significant burden on light

field compression and streaming. In this paper, we first present a light field video dataset captured with

a plenoptic camera. Then a new region-of-interest (ROI)-based video compression method is designed

for light field videos. In order to further improve the compression performance, a novel view synthesis

algorithm is presented to generate arbitrary viewpoints at the receiver. The experimental evaluation of four

light field video sequences demonstrates that the proposed ROI-based compression method can save 5%–7%

in bitrates in comparison to conventional light field video compression methods. Furthermore, the proposed

view synthesis-based compression method not only can achieve a reduction of about 50% in bitrates against

conventional compression methods, but the synthesized views can exhibit identical visual quality as their

ground truth.

INDEX TERMS Light field, video compression, region-of-interest, view synthesis, light field video dataset.

I. INTRODUCTION

Traditional applications of images and videos are limited to

a single viewpoint of scenes. By contrast, a light field offers

multiple viewpoints by sampling a huge number of light rays.

Over the past decade, light fields have attracted tremendous

attention due to their capability to represent 3D information

of the environment. Light field technologies provide a rich

representation of real-world scenes and have been popularly

adopted by a wide range of industries. Light field data can

be captured by light field cameras with a microlens array.

These cameras can capture the distribution of light rays in

free space, enabling exciting applications such as refocusing

and viewpoint change. The most popular commercialized

light field cameras are Lytro Illum [1] and Raytrix Plenop-

tic Camera [2]. In April 2014, Lytro Inc. announced Lytro

Illum which uses microlens array technology to capture light

field images in one camera. The Illum focuses on consumer

markets and is designed to attract users with the concept of

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianjun Lei.

capturing first and refocusing later. Raytrix released Ratrix

Plenoptic Camera which provides 3D high-speed video cap-

ture and enhanced depth of field. Light field data can also

be captured with a camera array which is cumbersome and

expensive compared with the microlens-based plenoptic light

field cameras.

The existing light field datasets, [3]–[7], from real-world

light fields captured with a plenoptic camera (e.g., Lytro

Illum), real-world scenes captured with a camera array or a

synthetic light field are light field image datasets. The only

two exceptions are the light field video datasets recently

proposed by Dab̧ała et al. [8] and Sabater et al. [9], which

used camera arrays to capture light field videos. However,

no work has yet attempted to create a light field video dataset

captured with plenoptic cameras. In this paper, a light field

video dataset captured with a Lytro Illum is created. Along

with this paper, the proposed light field video dataset is

published at [10] which we believe may be of special interest

to the community.

The fifth generation mobile network (5G) is making a huge

impact on multimedia applications. Although 5G certainly
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FIGURE 1. 3D matrix structure of a light field video.

provides the ability to have a larger bandwidth and higher

throughput, there is still a huge demand for compression

methods of larger-volumemultimedia data, for example, light

field data. A light field video sequence is a 3D matrix,

with the three dimensions as horizontal views (H-Views),

vertical views (V-Views) and time, respectively, as shown

in Fig. 1. A light field video sequence records a scene with

a set of streams from different viewpoints, thus exhibiting

data redundancy in both spatial and temporal dimensions.

In terms of applications, the sheer size of the data volume

of a light field video brings new challenges to the efficient

storage and transmission of this massive amount of complex

data. Therefore, light field compression is a critical aspect

of the practical usage of light field technologies. Raw data

from light field cameras exhibit strong correlations, so there

is a significant amount of research [11]–[14] that has been

conducted on light field image compression by reducing these

spatial redundancies. A light field video contains hundreds

of times more pixels than a traditional monocular video

sequence, and light field data exhibits a more complicated

and unique structure. Therefore, despite the large volume of

research in light field image coding and traditional video

coding, using these methods to process light field videos is

inadequate.

Light field videos not only have high spatial correlations

in each light field image frame but also indicate strong cor-

relations among continuous video frames. Thus inter micro-

images correlations of each frame and inter-frame correla-

tions of each view should be combined in order to acquire

an efficient compression method for light field video cod-

ing. In the field of video processing, a light field video

sequence can be represented as a two-dimensional multi-

view sequence with both horizontal and vertical parallax.

And because of this fact, there are many light field video

coding methods proposed in the literature to date [15]–[18].

One direct coding method is to encode each view separately,

but the strong correlations between views are ignored. Con-

verting the two-dimensional multi-view video sequence into

a one-dimensional video sequence with a horizontal zigzag

order for light field video compression is proposed in [15].

In another paper [16], a rotary order which scans from the

centre and revolves around the view until the final view of

the last frame is proposed to improve the compression ratio

for light field data. However, the two biggest shortcomings

of these methods are that the vertical correlations between

views and temporal correlations between frames are not fully

utilized. Wang et al. [17] proposed a light field multi-view

videos coding (LF-MVC)method by extending the inter-view

predictionmulti-view video coding (MVC) [18] structure into

a two-directional parallel structure. However, this work just

focused on analyzing the relationship of the prediction struc-

ture with its coding performance, and the biggest obstacle

of LF-MVC is that this method only can be implemented

in H.264-based multi-view coding standard (not compatible

with HEVC).

All the above-mentioned compression methods for light

field videos do not take the importance of some regions of a

video scene into account. In most cases, a moving region of a

scene attracts more attention than other areas. Therefore, con-

sidering motion characteristics of videos, a region-of-interest

(ROI) based compression algorithm for light field videos

is presented. Considering strong inter-view correlations of

light field videos, a view synthesis algorithm is presented

to reduce the costs of video processing, transmission and

storage. Furthermore, the view synthesis algorithm can be

used in some interactive or selective applications to achieve

uneven views’ transmission and compression. In summary,

we make the following contributions:

• A dataset of four light field videos is captured and

presented by a Lytro Illum camera. To our knowledge,

this is the first light field video dataset which is captured

with a plenoptic camera, and the proposed dataset can be

downloaded from [10];

• Four popular light field video compression methods

are implemented to benchmark the compression perfor-

mance of the captured light field video sequences;

• A new ROI-based video compression method is pro-

posed to improve light field video coding efficiency

by 5%–7% compared with the other four popular light

field compression methods;

• A novel view synthesis method for light field videos

is proposed to realize low-latency real-time light field

video streaming, which is able to achieve a significantly

higher coding performance, and the synthesized views

are close to their ground truth.

The rest of the paper is organized as follows. The proposed

light field video dataset is introduced in Section II. The con-

ventional coding methods and a new ROI-based compression

method for light field videos are illustrated in Section III.

The proposed view synthesis for steamed light field video

is presented in Section IV. Experimental results are given in

Section V. Concluding remarks and future work are provided

in Section VI.

II. LIGHT FIELD VIDEO DATASET

Lytro and Raytrix are the two most important light field cam-

eras manufacturers in the market today. Due to the complex-

ity in light filed video processing, only the more expensive

Raytrix light field camera can capture real-time light field

videos, while the lower end Lytro light field camera only has
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FIGURE 2. Example frames of the proposed light field video dataset:
(a) Bottle, (b) David, (c) Toys and (d) Car.

the capability of capturing light field images. In consideration

of real-world applications, we use a Lytro Illum camera to

take several continuous still light field images and manually

generate light field video sequences.

A. LIGHT FIELD VIDEO CAPTURE AND PRE-PROCESSING

Four scenes have been captured using a Lytro Illum camera

(ISO is 3200, flicker reduction is 50Hz) to take several con-

tinuous still light field images and manually generate Light

field video sequences. In order to generate light field videos,

raw light field images captured by the Lytro camera are

first decoded, calibrated and rectified by Matlab LFToolbox

(Version 0.4) [19]. As is commonly carried out in video

coding, each view sequence is then transformed to a YUV

video sequence. Each light field image acquired with the

Lytro Illum camera is represented by a 4D matrix of 15× 15

sub-aperture images/views. However, the viewing quality

of the border views are usually distorted and darksome,

especially the three views from each side are usually black.

To mitigate this problem, all the 15×15 views are refined and

corrected by a frequency filter and a color correction method

in this paper.

These videos are: Bottle, David, Toys and Car, as shown

in Fig. 2. Our dataset has two green background close-ups

sequences (David, Toys) that are interesting for some specific

use cases such as realistic telepresence and face 3D recover-

ing. We have also captured a rotary scene that includes two

small objects with a complex background (Bottle), and the

fourth light field video scene includes a car movement (Car).

B. DESCRIPTION OF THE CAPTURED LIGHT FIELD VIDEO

SEQUENCES

The proposed light field video dataset can be downloaded

from [10]. All light field video sequences in this dataset are

provided as 15× 15 views in YUV format. The frame rate of

each light field video sequence in our dataset is 25 frames

per second, and each view has 100 frames. The detailed

description of each light field video sequence is as followed:

1) BOTTLE SEQUENCE

The video sequence Bottle contains one bottle and one toy on

a turn table and with a poster as background. The resolution

is 512 × 352.

2) DAVID SEQUENCE

The video sequence David contains one David sculpture on

a turn table and with a green background. The resolution is

480 × 320.

3) TOYS SEQUENCE

The video sequence Toys contains 2 toys on a turn table and

with a green background. The resolution is 480 × 320.

4) CAR SEQUENCE

The video sequence Car contains one car, and the car is

moving from right to left at a constant speed. The resolution

is 512 × 352.

III. VIDEO COMPRESSION METHOD FOR LIGHT

FIELD VIDEOS

In the following part of this section, we first apply four

conventional 2D/3D video codingmethods to light field video

coding, and then a novel ROI-based compression method for

light field videos is proposed. The experimental results are

shown in Section V.

A. CONVENTIONAL COMPRESSION METHODS

FOR LIGHT FIELD VIDEOS

Taking 3 × 3 array as an example, four popular video com-

pression methods are converted to light field array structure

in order to further experimental analysis.

A straightforward way to compress a light field video

sequence is to encode each view sequence separately, like

a regular 2D video sequence. For example, every single

view can be encoded using the hierarchical-B coding struc-

ture, in which the first frame of each view is encoded

as I frames, and the remaining frames are predictively

encoded as B frames. This method is straightforward and easy

to implement, but only the inter-frame correlation between

frames in each single view sequence is considered while the

strong correlation between views is disregarded.

It is noted that a light field video can be considered as

a 3D image matrix. By transposing this 3D image matrix,

we can obtain a single video sequence and compress it with

high-efficiency video coding methods. A horizontal zigzag

transposed compression method is proposed in [15]. It trans-

poses the first from top-left to bottom-right, then the second

light field frame from bottom-right to top-left, and so on, and

construct a single 2D video sequence with all the transposed

images, as shown in Fig. 3. For example, a 3 × 3 views and

5 frames light field video sequence can be transposed into a

45 frames single view sequence. This method makes use of

the inter-view correlation, but in contrast to the single view

compression method, the inter-frame correlation no longer

exists in the final reconstructed video sequence.
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FIGURE 3. Horizontal zigzag transposed ordering coding structure for a
light field video sequence.

FIGURE 4. Rotary transposed ordering coding structure for a light field
video sequence.

A rotary transposed ordering compression method for light

field images is proposed in [16]. We carried out this method

to compress light field videos by adding a time series into

the structure. It transposed the first light field frame from the

centre and revolved around the view until the final view of

the last frame, as shown in Fig. 4. Rotary transposed ordering

structure makes better use of the inter-view correlation when

the number of views is small comparedwith horizontal zigzag

transposed ordering structure, but more views will bring

larger rotation and frames get father from their references.

The primary problem of this compression method is the inter-

frame correlation is still not considered in this structure.

A light field video can be seen as a multi-view video

vector, and then the standard MVC coding structure can be

implemented to compress a light field video sequence by

making use of both inter-view and inter-frame correlations.

To implement multi-view coding in light field video coding,

a simple ordering operation can be applied to convert the

light field video sequence array into a video sequence vector.

For example, a two-dimensional (H-views and V-views) light

FIGURE 5. Multi-view video coding structure for a light field video
sequence.

FIGURE 6. LF-MVC coding structure for a light field video sequence.

FIGURE 7. Flexible quadtree structure of HEVC standard.

field video sequence is converted to a one-dimensional multi-

view video sequence, as shown in Fig. 5. MVC for light

field video coding exploits both the spatial and temporal

redundancy contained in a light field video sequence, which

can achieve a much better compression ratio compared with

the single view compression method and transposed ordering

(horizontal zigzag and rotary) methods. However, through

analyzing the extended MVC structure, we can find that the

vertical correlation disappears after the image array-vector

conversion. On the basis of the MVC prediction structure,

a light field multi-view coding (LF-MVC) structure is pro-

posed in [17]. This method makes use of inter-view cor-

relations, inter-frame correlations and vertical correlations

between frames, as shown in Fig. 6. However, the biggest

obstacle of LF-MVC is that this method only can be imple-

mented in the H.264-based multi-view coding standard.

B. A NEW ROI-BASED LIGHT FIELD VIDEO

COMPRESSION ALGORITHM

ROI-based coding methods which consider the importance

of some regions of videos are widely used to reduce bitrates
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FIGURE 8. Results of the proposed region division method (The centre view’s first frame of Bottle sequence, and the largest size of coding units is
64 × 64.): (a) Moving region distribution map, (b) Moving region division result, (c) Texture distribution map, (d) Non-ROI sub-division result.

and keep an excellent perceptual quality of videos. However,

there are no works using ROI technology to guide light field

video coding. In most cases, a moving region of a video

frame attracts more attention than other areas. For example,

the most important areas of the light field video sequences

in the proposed dataset and other two light field video

datasets [8], [9] are moving regions. Therefore, in order to

further improve coding efficiency and compression ratio,

we propose anROI-based video compressionmethod for light

field videos that based on flexible quadtree structure of the

high-efficiency video coding (HEVC) standard. The most

important thing is that the proposed method can be combined

with any HEVC-based compression methods.

As shown in Fig. 7, different from the fixed size mac-

roblock of H.264, HEVC standard uses quadtree-based

variable-size coding units. The largest size of coding units is

64 × 64 pixels, and the smallest size is 8 × 8. There are four

depth levels (0, 1, 2, 3) to divide the size of coding units by

doing in a recursive manner. A depth level of zero means that

the size of the current coding unit is 64×64, and a few bits are

allocated to this unit. On the contrary, a depth level of three

means that the current coding unit is partitioned into four 8×8

sub-units, and many bits are allocated to ensure the quality

of this unit. The size of a coding unit in HEVC is various

depending on the complexity of the video content. In order

to decide the most optimal partition mode, HEVC standard

compares the coding cost of units at current depth level and

the sum of four coding costs of units at other depth levels.

The process time of partitioning coding units accounts for

around 40% of the whole coding time. However, the HEVC

standard allows users to set the depth level for each coding

unit. We can use this option to save a lot of coding costs by

limiting depth level of coding units in non-ROI regions which

are not important in a video frame. According to the human

visual system, humans can not notice all details in non-ROI

regions, so the loss of some details caused by the limitation

of depth level in non-ROI regions have only a small impact

on users’ viewing experience.

In our ROI-based video coding method, moving areas

served as ROI regions, and non-moving areas served as non-

ROI regions. Considering the small difference between views

due to the dense and narrow-baseline of light field videos

captured with a Lytro Illum camera, ROI detection methods

only are implemented on the centre view of a light field

video sequence in order to avoid extra computation time.

We firstly use frame differencial method to detect motion

regions and generate moving region maps. The difference

between frames for each pixel is calculated. The largest size

of coding units in our algorithm is 64 × 64, and the coding

unit is marked as amoving region if it contains moving pixels.

Results of a generated moving region distribution map and a

moving region division result are shown in Figs. 8 (a) and (b).

Moreover, through our observations, the characteristics of

coding units inside a non-ROI region may not be uni-

form. Therefore, non-ROI regions in our research are further

divided into smooth regions and complex regions. Smooth

regions are easy to encode and only needs a few numbers of

bits, and complex regions need more bits to ensure their per-

spective quality. In order to complete the division of non-ROI,

a texture detection method is used to obtain texture maps. The

essential idea behind the method is to calculate Euclidean

distance between the Lab pixel vector in a Gaussian filter

for each frame with the average Lab vector for each frame.

Results of a texture map and non-ROI sub-division are shown

in Figs. 8 (c) and (d).

The generated moving region maps and texture maps are

then used to guide coding units partition and bitrate alloca-

tion. On the basis of these maps, we add a constraint on cod-

ing unit partition strategy, and the partition size is determined

by (1).

depth(cu) =











standard partition, cu ∈ROI

1, cu ∈complex region of non-ROI

0, cu ∈smooth region of non-ROI

(1)

where cu is the current coding unit. The standard recursive

manner is used to determine the unit partition if the unit

belongs to the ROI region. Otherwise, a constraint on the

depth level of the coding unit is added in the non-ROI region.

The depth level is one (two 32 × 32 sub-units) if the unit

belongs to the complex region, or the depth level is zero (one

64 × 64 sub-unit) if the unit belongs to the smooth region.

IV. VIEW SYNTHESIS ALGORITHM FOR STREAMED

LIGHT FIELD VIDEO

There is an inherent trade-off between angular and spatial

resolutions in light field data because of the limited resolu-

tion of sensors. The light field videos captured by camera
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array systems have a high spatial resolution but usually do

not have many available views. For example, the light field

videos in [8] and [9] only have 3 × 3 views and 4 × 4

views, respectively. On the other hand, the light field videos

captured by plenoptic cameras have many available views

at the cost of reducing the spatial resolution. For instance,

the light field videos in our dataset are captured with a Lytro

Illum camera have 15× 15 available views, while the spatial

resolution is only 434 × 625 and a limited range of field-

of-view (FOV). To mitigate this problem, a learning-based

approach is proposed in [20] to improve the light field spatial

resolution. This algorithm synthesizes novel views from a

sparse set of input views captured by the Lytro Illum cam-

era. However, the primary issue in this system is that the

authors designed disparity features to represent appearance

flow instead of learning them from original light field images.

Computer vision researchers have shown that learned features

are generally much better than hand-designed features [21].

Niklaus et al. [22] propose an adaptive separable convolution

approach for video frame interpolation. The authors approxi-

mate adaptive convolutional kernels by separating them to the

vertical and horizontal kernels. This approximation greatly

reduces the cost of computer memory so that the network can

handle large motion between video frames. This deep neural

network is fully convolutional and can be trained end-to-end

using widely available video data without any difficult-to-

obtain meta data like optical flow. However, this approach is

designed for dealing with frame interpolation of 2D monoc-

ular video sequences.

Inspired by the above-mentioned algorithms, a view syn-

thesis algorithm for light field video compression is proposed

to improve coding efficiency. The essential idea behind com-

bining the proposed view synthesis algorithm with light field

video coding described in this section is that only a sparse

set of light field views are encoded, transmitted and stored

instead of processing all views. Obviously, compressing and

transmitting only a sparse set of views and synthesizing other

views according to the actual application is an effective way

to improve coding efficiency. Fig. 9 shows the proposed view

synthesis algorithm for streamed light field videos. There are

10 × 10 pink color views which need to be encoded in a

15× 15 light field video sequence, and the other views (gray

and white color views) can be synthesized at the decoder

according to the actual application requirements. Traditional

compression methods need coding 15 × 15 views for each

light field video sequence, while the proposed view synthesis

method can directly cut down approximately 53% of views to

increase the compression ratio.

Considering narrow baseline structure and strong inter-

view correlations exist in light field videos, we extend the

time series of video frames interpolation [22] to the spatial

series of light field views synthesis. The overview of the

neural network architecture is shown in Fig. 10. The learning-

based framework contains three convolutional neural net-

works. Firstly, a multi-scale convolutional neural network

is used to estimate optical flow implicitly. Then the second

FIGURE 9. Proposed view synthesis method for light field videos. There
are 15 × 15 views in the left picture. The pink color views (10 × 10) are
key views which are encoded using a conventional HEVC codec, and the
remaining views (gray and white color views) are synthesized in the
decoder to improve coding efficiency. Gray color indicates this view is
generated by key views, and white color indicates this view is yielded by
synthesized views. The coordinates in the right picture show the locations
of views in a light field video.

convolutional neural network is used to generate pixel-wise

adaptive kernels. The generated kernels are then doing the

convolutionwith the existing views to synthesize novel views.

Finally, we adopt the third convolutional neural network to

refine stacked synthesized views from adaptive convolution

to get the final synthesized views. This deep neural network is

fully convolutional and can be trained end-to-end. Since the

objective of the model is to synthesize novel views, optical

flow ground truth is not required to train the model. This

objective also brings a benefit that accurate optical flow

estimation is not necessary. Pixel-wise adaptive convolution

is used to synthesize novel views, so the problem of view

wrapping in large motion places can be avoided. Adaptive

kernels contain optical flow information thus they does the

view wrapping implicitly. Furthermore, these kernels have

common patterns which mean common features of images,

so the learning-based framework can synthesize more real

and accurate novel views.

Compared with traditional methods which compress all

views in light field videos, our approach reconstructs dense

light field video from sparse views. The high correlations

between neighboring views allow a deep neural network to

reconstruct original light field videos accurately. The most

significant difference between our approach and traditional

methods is that the deep neural network extracts a common

pattern from light field videos and leverages it to recon-

struct dense light field videos for all the possible videos.

The common pattern is a more efficient way to compress

the data and can be seen as a kind of intelligence. With the

great improvement of GPU’s performance and the property of

highly parallel of the deep neural network, compressed light

field videos can be efficiently reconstructed at the receiver.

In some interactive or selective applications (e.g., [23])

where users can choose some views that interest them to be

displayed, compressing and transmitting the whole light field

video generate not only a very significant computation load

but also an enormous encoding/decoding and transmission

latency. The proposed view synthesis compression method

41188 VOLUME 7, 2019
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FIGURE 10. An overview of our neural network architecture. Given input frames, a multi-scale convolutional neural network extracts features that are
given to horizontal and vertical kernels that each estimates one of four 1D kernels for each output pixel in a dense pixel-wise manner. The estimated
pixel-wise kernels are then adaptive convolution with input views to yield initial stacked synthesized views. A refining process is used to refine the
synthesized results from adaptive convolution to obtain an optimized synthesized view. The whole model is fully convolutional and can be trained
end-to-end.

TABLE 1. Rate-Distortion Performance of Four Conventional Compression Methods.

can be used to solve this problem by allowing users to gen-

erate novel views from a sparse set of decompressed views

at the receiver according to their interactive applications.

Therefore, the proposed view synthesis method for light field

video compression can significantly improve the coding effi-

ciency and apply to low-latency real-time interactive light

field streaming applications.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENTAL RESULTS

Taking 3× 3 light field video sequences as examples, exper-

iments for above compression methods are carried out. The

frame rate is 25 frames per second and quantization parameter

(QP) 37 is adopted. To evaluate the compression efficiency,

we use conventional rate-distortion and Bjøntegaard Delta

(BD) rate [24] to evaluate the performance of compression

methods.

Firstly, the rate-distortion performance of the four pop-

ular compression methods: Single view (SV) compression

method, Horizontal zigzag transposed (HZT) ordering com-

pression method, Rotary transposed (RT) ordering compres-

sion methods and LF-MVC for four light field videos in

our dataset are given in Table 1. According to the results,

the bitrate savings of LF-MVC relative to MVC under the

same objective quality about 19.527% on average, because

the vertical correlations of views are used in LF-MVC. The

performance of HZT is similar to RT due to the strong inter-

view correlations. However, the objective performance of

RT is affected by the number of views because more views

will bring larger rotation and frames get farther from their

references.

TABLE 2. BD-Rate Reductions Obtained by Combining ROI Technology in
Comparison to Conventional Methods.

Moreover, Table 2 shows the BD-rate reductions obtained

by the proposed ROI-based compression method to the

SV, HZT and RT methods. According to Table 2,

the proposed compression method can achieve a reduction

of 4.869%-7.039% in bitrates against the conventional com-

pression methods.

Table 3 shows the BD-rate reductions obtained by the

proposed view synthesis-based compression strategy to the

above four commonly used compression methods. According

to the results, the proposed view synthesis-based compression

strategy can achieve a reduction of about 50.811% in bitrates

against the conventional compression methods.

B. EXPERIMENTAL RESULTS OF VIEW SYNTHESIS

ALGORITHM FOR STREAMED LIGHT FIELD VIDEO

Compressing, transmitting and storing only a sparse set of

views instead of processing all views is an effective way

to improve the performance of light field video compres-

sion. Therefore, a learning-based view synthesis algorithm

for streamed light field videos is proposed in Section IV.

The precondition of combining view synthesis algorithmwith

VOLUME 7, 2019 41189



B. Wang et al.: ROI Compression and View Synthesis for Light Field Video Streaming

FIGURE 11. Comparison of our algorithm against the resent method of Kalantari et al. [20] on the Flower1 and Cars scenes. The contents in
the red boxes obviously show our synthesized views are better than Kalantari et al.’s synthesized views in terms of the quality of edges and
local details.

TABLE 3. BD-Rate Reductions Obtained by the Proposed View
Synthesis-Based Compression Strategy in Comparison
to Conventional Methods.

video coding is to make sure novel views can be synthesized

correctly by a few input views. In order to verify the effective-

ness of the proposed view synthesis algorithm, comparison

experiments are done by using the existing popular view

synthesis algorithm [20] and the proposed algorithm.

1) OBJECTIVE EXPERIMENTAL RESULTS FOR LIGHT FIELD

VIEW SYNTHESIS ALGORITHM

We test the proposed light field view synthesis algorithm on

microlens-based light field image dataset [20] in order to

compare the proposed algorithm against the state-of-the-art

algorithm available in the literature [20]. The experimental

results are evaluated numerically, in terms of the PSNR and

structural similarity (SSIM) [25]. SSIM produces a value

between 0 and 1, where 1 indicates perfect perceptual quality

with respect to the ground truth.

Table 4 shows the PSNR and SSIM values for these two

methods on different test scenes. As can be seen in the table,

the results of our algorithm are better than another algorithm.

2) SUBJECTIVE EXPERIMENTAL RESULTS FOR LIGHT FIELD

VIEW SYNTHESIS ALGORITHM

Wefirst test our algorithm on Flower1 andCars scenes which

are offered in microlens-based light field image dataset [20]

TABLE 4. Objective Comparison of Our View Synthesis Algorithm Against
the State-of-the-Art Method [20].

to compare the subjective quality of the proposed view

synthesis algorithm against Kalantari’s algorithm [20], and

the results are shown in Fig. 11. Ground truth is shown

in Fig. 11 (a) as the judging criteria, and the contents

within red boxes in Figs. 11 (b) and (c) show obviously

subjective improvement of our synthesized views compared

with another algorithm. In the Flower1 scene, the leaves

in the red box of the right image (our synthesized view)

have better quality than the same area in the medium image

(Kalantari et al.’s synthesized view). In the Cars scene,

the tree branches in the red box of the right image are much

clearer than the same area in the medium image. Therefore,

this subjective contrast shows our algorithm is able to synthe-

size more details and much closer to the ground truth.

Then we implement our algorithm in the proposed light

field video dataset to demonstrate its superiority and effec-

tiveness. Taking four 3× 3 light field video sequences which

are belong to the proposed light field video dataset as exam-

ples, the subjective results are shown as Fig. 12. The results

show no detectable differences between the ground truth and

the synthesized view. Therefore, the proposed view synthesis-

based light field video compression strategy is feasible, and

views can be flexibly synthesized according to the specific

application.
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FIGURE 12. Subjective results of synthesized views. (a) Ground truth of Bottle (the 36th frame), David (the 23rd frames), Toys (the 5th frame) and Car
(the 36th frame) sequences, (b) Magnified details of the central ground truth, (c) Synthesized views of the four sequences, (d) Magnified details of the
central synthesized views.

VI. CONCLUSION

In this paper, we presented a light field video dataset with

four scenes. To our knowledge, this is the first light field

video dataset captured with a plenoptic camera (Lytro Illum).

Four popular compression methods were implemented in the

proposed dataset to set a benchmark of light field video

compression performance. In order to further improve the

compression performance, a new ROI-based light field video

compression method which considers motion characteristics

was proposed. Instead of using the same way to encode the

whole frame, every frame in our compression method is

divided into an ROI region, a complex non-ROI region and

a smooth non-ROI region to be processed differently. Then

a novel fview synthesis method for light field video com-

pression was presented to reduce bitrates further. Experimen-

tal results show that the proposed ROI-based compression

method can save 5%–7% in bitrates comparedwith traditional

HEVC-based light field video compression methods, and a

reduction of about 50% in bitrates can be achieved by using

the proposed view synthesis-based compression method. Fur-

thermore, subjective results show that our view synthesis

algorithm yields high-quality views that are superior to the

state-of-the-art synthesis algorithm.

In the future, we would like to improve coding efficiency

by utilizing depth estimation [26] from light field videos.

Another interesting approach will be to design an interactive

light field video compression method that will efficiently

encode uneven views by predicting users’ viewing trajecto-

ries and gestures.
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