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Abstract 

 

The important algebraic structures viz. group, ring, module,  field, linear space, 

algebra over a field, associative algebra over a field, Division Algebra have made 

the subject „Abstract Algebra‟ very rich and well equipped to deal with various 
algebraic computations at elementary level to higher level of mathematics. In this 

work it is unearthed that these algebraic structures are not sufficient (i.e. not 

capable in most of the cases) to support „Mathematics‟, to support the various 

branches of Sciences and Engineering. It is unearthed that there are many 

computational problems and issues in mathematics which do not fall under the 

jurisdictions of any of these algebraic structures to deal appropriately. It is thus 

observed that there is a genuine vacuum in the family of all existing standard 

algebraic structures of Abstract Algebra to provide computational norms to the 

giant subjects like: mathematics, physics, statistics, etc. and this vacuum was 

remaining so far in a very hidden way. Consequently, it is strongly justified that 

this family (of important algebraic structures viz. group, ring, module,  field, 

linear space, algebra over a field, associative algebra over a field, Division 

Algebra etc.) needs inclusion of an appropriate new member who is well capable 

and can take the responsibility to deal with the all type of computations being 

practiced in mathematics, sciences, engineering studies unlike the limited 

capabilities of the existing standard algebraic structures. It is fact that an 

algebraist can introduce a number of new algebraic structures if he desires. But 

the question may arise about the necessity to do so!. A new algebraic structure is 

not supposed to be a redundant one to the subject „Abstract Algebra‟ to 
unnecessarily cater to the existing huge volume of literature of Algebra. It must 

have some unique as well as advance kind of roles in the mathematical computing 

of daily practices (at school, college, research levels) which none of the existing  
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algebraic structures can have by its respective definition and independently owned 

properties, it must have some unique capabilities to justify the validity of all the 

mathematical computing of daily practices (at school, college, research levels)  

which none of the existing algebraic structures can claim. Such kind of statements 

may apparently appear to many of the readers with very surprise, but it is fact.  

With this objective a new and very important algebraic structure called by 

“Region” is introduced in this paper, and its various properties are studied. The 

philosophy of the importance of this work is presented in details by making all the 

justifications with story-based explanations (with hypothetical data/information). 

The paper finally justifies the fact that Abstract Algebra can not grow without the 

algebraic structure „region‟. With the introduction of „region‟, Abstract Algebra 
will become more complete and sound as a subject to the mathematicians, 

scientists and engineers.  

 

Mathematics Subject Classification: 08, 11 

 

Keywords :  region, real region, characteristics 

 

 

1.   Introduction  
 

Abstract Algebra is the branch of „Mathematics‟ in which we study algebraic 
structures such as group, ring, module,  field, linear space, algebra over a field, 

associative algebra over a field, Division Algebra etc.  This branch has the 

important responsibility to become sufficiently equipped for validating the rules 

for manipulating formulae, laws, identities and algebraic expressions involving 

unknowns, often now called elementary algebra. But at the very outset in Section-

3 in this paper we unearth the fact that although there is no error, no self-conflict, 

no contradiction being faced by the mathematicians with the nature and growth-

style of the existing giant subject „Mathematics‟, but most of the simple and 
useful results, equalities, identities, formulas, cross-multiplication rules, etc. of 

elementary algebra (which are commonly practiced  at secondary school level of 

mathematics and of course at all levels of higher mathematics) are not valid in 

any of the recognized important algebraic structures viz. groups, rings, modules,  

fields, linear spaces, algebra over a field, associative algebra over a field, and 

even not valid in „Division Algebras‟. They can not be verified  in any of the 
existing standard algebraic structure alone in general, by virtue of their respective 

definitions and independently owned properties. It is a major gap of Abstract 

Algebra unearthed today in this work. One could feel the gravity of  this fact of 

vacuum comparing hypothetically with other type of statements as presented 

below (but with an analogous philosophy):  

the drivers have been driving their vehicles very well on the city road network of 

Calcutta city where many of them are not having any valid official license or any 

valid official authority to drive on the roads of the city, nevertheless they have 

been driving for many years without any error, without any accident occurred,  
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without any conflict, without any collision, but catering to human welfare and 

human progress as well as to the progress of the city continuously all-time;  

where it is also fact that the progress of the traffic system and management has 

been happening significantly with time in good pace. Since there is no collision 

happening while driving without the driving authority/license, can we accept it to 

be a valid official act of driving? Since there is no accident occurring in the 

driving, can we regard this fortunate outcomes to be the „sufficient authority‟ for 
the act of driving being practiced on the city roads where it is claimed that the 

city is under an excellent governance?   

Exactly same is the situation with the mathematicians who are computing 

everyday using so many fundamental and elementary rules/norms/formulas but 

being not ever authorized by any of the existing algebraic structures of Abstract 

Algebra. This is a major weakness of the present shape of Abstract Algebra, 

despite being rich with a huge volume of literature developed so far.  

 

Unearthing gaps and then filling up the gaps by introducing new algebraic 

structure in Abstract Algebra happened time to time in the last centuries 

because of genuine requirements only. The past chronological history of 

Abstract Algebra may be revisited for details. But today  the obvious questions 

now arise : “What is the core algebraic structure out of all the existing standard 

core algebraic structures based upon which the elementary mathematics and also 

the higher mathematics, norms/rules/equalities/identities etc. can be practiced 

fluently with validity?”  And if there exists no answer to this question then does 
the fluent practice of elementary algebra/computation, which have been always 

producing correct outputs, give the guarantee of official validity to a 

mathematician to do computations? If not, then how to do justice to the 

transparency of Mathematics, if the computations in most of the cases be not  

supported and validated by Abstract Algebra?  

 

Mathematicians discovered the beautiful algebraic structure „Group‟ in early of 
19

th
 century with some genuine objectives and requirements to solve  

mathematical and scientific issues. Then the mathematicians found some gaps and 

felt the necessity for obligatory extension of the subject „Abstract Algebra‟ by 
defining another new algebraic structure „Ring‟. After that the mathematicians 
found further gaps and felt the necessity for obligatory extension of the subject 

„Abstract Algebra‟  by defining another new algebraic structure „Field‟. All these 
developments happened for smoothness and enrichment of the topic „Algebra‟, to 
make it more complete and more sound to validate the practices of computations. 

Thus, with time the mathematicians defined the algebraic structures groups, rings, 

modules,  fields, linear spaces, algebra over a field, associative algebra over a 

field, „Division Algebras‟, etc to make the topic „Abstract Algebra‟ very sound 
and as best as possible so that the common users (students of school, college, 

universities, and researchers) can practice elementary mathematics and higher 

level mathematics with valid authority. But the region mathematics is initiated to 

grow because it is now  unearthed that there is a huge gap and probably highly  
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significant gap that none of the existing important algebraic structures like groups, 

rings, modules,  fields, linear spaces, algebra over a field, associative algebra over 

a field, „Division Algebras‟ etc can validate many of the simple and useful results, 

equalities, identities, formulas, cross-multiplication rules, etc. of elementary 

algebra (i.e. can not be verified by none by its respective definition and 

properties). This is a serious incompleteness and major weakness of the topic 

“Abstract Algebra‟. This beautiful important gap is identified in this work and an 

independently complete and sound algebraic structure called by “Region‟ is 
developed to make the „Abstract Algebra‟ now much richer and complete. Most 
important matter in this work is that the very genuine necessity to define the new 

algebraic structure „Region‟ is justified in full length to fill up the gap. It is fact 

that if an algebraist desires then he can introduce many new algebraic structures, 

but the „most important‟ matter is to justify the necessity of doing so!. The 
existing Abstract Algebra is so rich and voluminous that it does not need any 

redundant amount of literature in this century. But it is strongly justified in this 

work that the new algebraic structure „Region‟ is not redundant to „Algebra‟ by 
any amount of it. Rather it is very much genuine and obligatory because it is the 

„minimal‟ algebraic structure which allows the mathematicians to use the simple 

and useful results, equalities, identities, formulas, cross-multiplication rules, etc. 

of elementary algebra. The „minimal‟ property is the extraordinary power of the 

„Region‟ which none of the existing algebraic structures including Division 

Algebra possesses. Consequently, in this sense it is fact that the algebraic structure 

„Region‟ is the most important algebraic structure of all the existing algebraic 

structures including Division Algebra, by virtue of their respective definitions and 

independently owned properties.  

 
Actually speaking, the author was working initially on few suddenly identified 

issues on the  simple and useful results, equalities, identities, formulas, cross-

multiplication rules, etc. of elementary algebra; and then eventually unearthed the 

new algebraic structure „Region‟ which is the „minimal‟ algebraic structure 

having the capability to resolve the issues. It has been thus justified that Region is 

much more useful algebra compared to Division Algebra to the mathematicians 

and scientists. One can define several new algebraic structures, but the necessity 

to define the „Region‟ is completely unavoidable, the justification for this claim is 

thoroughly made and established in this work. Elementary Algebra is one of the 

main branches of mathematics. It encompasses some of the basic concepts of 

algebra. It is practiced by all the mathematicians and scientists at their daily 

works, but as far as teaching is concerned it is typically taught to secondary 

school students on their understanding of arithmetic.  

 

Since the „Elementary Algebra‟ runs over the particular Division Algebra R (in 
most of the cases) in the existing concept of the academic world, there is no 

contradiction or error or conflict faced so far by the people dealing with 

elementary algebra because of the very hidden fact that “this particular Division 
Algebra R fortunately qualifies to be a Region also”. It is thus the very fortunate  
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but accidental event, because the Division Algebra R satisfies few more additional 

axioms/conditions which are not covered by virtue of definition and independently 

owned properties of the algebraic structure „Division Algebra‟. Otherwise, 
mathematicians would have arrived at red-light stoppages long before in 

particular while practicing elementary algebra.   

 

There was no plan or idea to the author initially to develop a new algebraic 

structure „Region‟. The initialization was ignited with some issues on elementary 

algebra while working to solve some long standing unsolved problem of 

mathematics. Let the matter be presented in a simple way, but with the help of 

some other social domain of our daily life environment. Instead of practicing the 

subject mathematics, consider another practicing area of daily life, say „car 
driving‟. If you drive a car, you must have in your pocket a driving license. 
Almost all the vehicle drivers in the world have valid driving licenses. But if there 

is no traffic police on your road, if there does not happen any accident by your 

driving, and if you can commute millions and millions kilometer comfortably 

without any collision but without having any valid driving license, then quite 

naturally you may be confused about the necessity of having your driving 

license.  
Questions arises : What is wrong with the style and progress of the existing nature 

of driving although it be without the appropriate official driving license?  What is 

the necessity of having a valid driving license?  What is the necessity of acquiring 

an officially documented authority? Is the „Driving License‟ is a redundant 
document on road today?  

An exact situation unearthed to exist in the ground reality on the academic sphere 

on this earth where instead of roads it is Education and Academic fields in 

mathematics, and instead of drivers it is the mathematicians, scientists, engineers, 

etc. The two basic and obvious assumptions are to be that when a driver drives a 

car then,   

(i) “he must be sitting inside the car”, and  
(ii) “he must be having an official driving authority”.  
Otherwise he may do mistake anytime today or in future because of the reason 

that there is no well precise code of conduct at his hand, he may loose discipline 

on the road.   

You can not do the following at a time:  

You are sitting inside your non-AC car and during your driving you demand very 

cool air from outside because of the reason that cool-air is not 

available(validated in the system)  by your car.  

In case you need an AC car, then an AC car must be available in the market. But 

if there is no idea so far developed by any engineer to develop an AC car, then it 

is a major weakness of the market, and the world automobile engineers need to 

develop a new advanced car to provide solution in one unique car.  

An analogous philosophy is applicable to the people doing mathematical 

computations, as the basic pre-assumption is that :  

“While practicing elementary algebra, you must be sitting upon the platform of  
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one unique algebraic structure and you are free to use all its properties”.   
 

Two drivers may have two different category of driving licenses respectively, one 

may have for driving light vehicles  and the other may have for driving heavy 

vehicles including light vehicles. Consequently the second driver is having the 

authority to exercise more options while he drives on the roads, whereas the first 

driver has less amount of options.  

Similarly the two basic and obvious assumptions in Region Algebra are that 

whenever a mathematician practices elementary algebra then,    

(i) “he must be sitting on (standing upon the platform of) one very sound and 

complete appropriate algebraic structure A”,  and  

(ii) “that algebraic structure A must officially allow him to practice elementary 

algebra”, (providing valid rules for manipulating formulae, laws, identities and 

algebraic expressions, etc by virtue of its own definition and independently owned 

properties).  

 

Most Important Issue :  

 
The Elementary Algebra of primary/secondary school education (having 

exercises on simple formulas, identities, equalities, cross-multiplication laws, 

Componendo & Dividendo  Rule, etc.) should not be dependent upon 

multiple members of the family of core algebraic structures for validity 

because of non-existence of an appropriate unique algebraic structure in 

Abstract Algebra. The unique algebraic structure must provide solution by 

itself by virtue of its own definition and independently owned properties. The 

non-existence of an appropriate unique algebraic structure is a major 

weakness of the subject “Abstract Algebra” to justify and validate the 
practices of computations on Elementary Algebra in primary/secondary 

school education. This serious observation will be analyzed in this paper in a 

very rigorous way, as this observation apparently may seem to be a 

surprising issue to the readers initially.  

Every mathematician or every scientist uses elementary algebra fluently during 

his every kind of mathematical work. The mathematical work could be of school 

level or college level or of higher level or in some application domains 

theoretically and/or practically. But whatever be the level of mathematics, it can 

not be free from elementary algebra. Consequently he must have valid authority to 

use the formulas, rules, equations, identities, etc of elementary algebra. And it is 

the subject „Abstract Algebra‟ who itself is supposed to issue the appropriate 
authority to the mathematicians and scientists for fluently practicing elementary 

algebra. This fact is unearthed (in Section-3 in this paper). On this new light, an 

introductory explanation is presented in the subsequent section below. It is a 

revised, updated  and more sound version of the work of [7], and therefore it is not 

required to have a prior knowledge of the work [7].  
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1.3 About the algebraic structure „Region‟  
 

 Let us make an analysis here in a very simple way with some elements of college 

algebra. But it is fact that behind the simple matters being presented, there exists 

an element of beautiful mathematics which remained hidden in hibernation so far. 

And it is now observed that its importance is very high in mathematics. Because 

of very simple and fundamental nature of the analysis presented below, the 

readers may have to take some patience to get into the depth of this work from 

Section-3, because the work is advertently put into a slow pace of progress 

initially in this paper.  

 

It is obvious that there are more flexible type of computations possible in a ring 

(S, , ) compared to the group (S, )  where   and   are two binary 

operations defined over the set S. For example, if you are standing upon the 

platform of an algebraic structure which is a  group G = <G,> then you can 

only add (or subtract) two members of G by virtue of the definition of the addition 

operation   of the group. You do not have any valid authority (license) to make 

an attempt for computing a*b  where a, b  G and * is an unknown operation to 

the group <G,>  (i.e., where * is not the operation   of the group G).  

 

Let us present a specific example.  

Consider the group G = <R, +>  where R is the set of real numbers and + is the 

usual addition operation defined over R. Then you surely have the valid authority 

(license) to compute the expressions:  9+2, 15-3, -8-6, 0+0, etc  i.e. to compute an 

expression like a+b by virtue of the definition of the algebraic structure „group‟ 
where a, b  R. But on this platform of the group G = <R, +>, can you say that 

73 = 21? can you say that 00 = 0? It is sure that „you can not‟. Because you do 
not have the valid authority to do so on this platform as the stranger operation   

is unknown to the platform G = <R, +> which is a group.  

 

Take another similar type of example.  

Consider the group G = <R
+
, >  where R

+
 is the set of all positive real numbers 

and   is the usual multiplication operation defined over R
+
. Then you surely have 

the valid authority (license) to compute the expressions:  92, 1.853, 5.29.64, 

etc  i.e. to compute an expression like ab by virtue of the definition of the 

algebraic structure „group‟ where a, b  R
+
. But on this platform of the group G = 

<R
+
, >  can you say that 7+3 = 10? can you say that 50.7+40.1 = 90.8? It is sure 

that „you can not‟. Because you do not have the valid authority to do so on this 

platform as the stranger operation + is unknown to the platform G = <R
+
,>  

which is a group.  

 

However, using the atomic operation   of a group G = <G,> one can define 

several new composite operations for which valid authority is there inbuilt before  

us for computing expressions involving these new composite operations. For 

example, define a new binary operation    in  <G,>  such that  a   b =  
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abb  where a, b  G. Clearly,    is a valid operation in G because in its 

definition there is no unknown or unauthorized operations involved. Such type of 

operation we call a  „Valid Composite Operation‟ in G.  
But the new operation    defined as :   a  b = abb  can not be called to be 

a „Valid Composite Operation‟ in G =  <G,>.   

 

The new algebraic structure „region‟ is not developed by incorporating new „Valid 
Composite Operation(s)‟ in one of the existing algebraic structure viz. group, ring, 

modules, field, linear space, algebra over a field, associative algebra over a field, 

and even not in „Division Algebra‟.  
 

Whenever any mathematician wants to compute an expression involving some 

basic operations, he must have valid authority over his dealing with those 

operations before doing so. And this authority he can possess only from a 

complete and sound algebraic structure upon which he is standing for doing his all 

mathematical exercises and computations.   

For a better understanding consider few very simple statements and analysis made 

below with some element of imagination for the time being.    

It is obvious that there are much more amount of flexible computations possible in 

the platform of a ring (S, , ) compared to the group (S, ). Imagine now 

carefully a situation consisting of the following activities:-     

(i)   the concept of group (S, ) is just discovered in Algebra; and  

(ii)  the concept of ring (S, , ) or any other algebraic structure is not yet 

discovered in the subject Algebra;  and  

(iii)  mathematicians have been talking about groups only, because they do not 

have any other algebraic structure in existence in the literature of Algebra;  and   

(iv) mathematicians have been doing a huge volume of computations on the 

platform of the group (S, ) only, but fluently using the operation like xy in 

their daily practices of mathematics inadvertently;  and   

(v) the people (of all subjects) and mathematicians are so happy because there is 

not happening anything contradictory, rather producing beautiful results and being 

in applications in several domains of academic spheres, and all the branches of 

Science have been growing in excellent ways. No file or document or norm is 

there to check the validity or authority in the practices of mathematicians, to ban 

the practices of the operations like xy, but nevertheless the mathematical 

problems of the world are being solved without any conflict, without any 

contradiction, without any error, and ultimately all the results catering to excellent 

benefits in human welfare!   

 

Now mixing with the situation with car driving practices, few questions arise:-   

You may be driving well having your driving license valid only for Light Motor 

Vehicle (for the algebraic structure Group), but how can you do justice by driving 

Heavy Motor Vehicle (for the algebraic structure Ring) with the same driving 

license, without its corresponding higher driving license? Should you do so with  



„REGION‟ : The unique algebraic structure in abstract algebra                        193 

 

 

the satisfaction and boldness that there is no accident occurring? Can you say that 

you have the driving license for Light Motor Vehicle which authorizes you the 

driving of Heavy Motor Vehicle too?    

 

Consequently it is surely agreeable in the imaginary situation presented above that 

the exact algebraic structure (we know that it is ring)  needs to be unearthed and 

more important matter is that this exact algebraic structure needs to be identified 

with an appropriately new title (here it is ring) giving a very precise mathematical 

definition of it independently, so that the mathematicians feel transparently 

justified while using the operation like xy as many times as required. We can 

not ignore the necessity to study the new algebraic structure (here it is ring) as an 

independent topic, as an independently entitled one. We can not and should not 

ignore the necessity of providing a new identity title for it, just by saying that it is 

a group (S, ) but along with one more operation   and few more axioms!.   
 

Let us imagine another hypothetical instance. It is known to us that there are much 

more amount of flexible computations possible in the platform of a field S 

compared to a  ring (S, , ) or compared to a group (S, ). Imagine now the 

situation consisting of the following activities:-     

(i)   the concept of group (S, ) is discovered in the subject Algebra; and then  

(ii)  the concept of ring (S, , ) is also discovered in the subject Algebra;  and  

(iii)  the concept of field S or other algebraic structure is not yet discovered; and  

(iv)  mathematicians have been talking about groups and rings only, because they 

do not have any other algebraic structure in existence in the literature of the 

subject Algebra.  

(v) mathematicians have been doing huge volume of computations on the 

platform of ring (S, , ), but fluently using the operation like x/y in their daily 

practices of mathematics, in everyday applications in science and engineering 

areas, etc inadvertently; and   

(vi) the people (of all subjects) and mathematicians are so happy because there is 

not happening anything contradictory, rather producing beautiful results and being 

in applications in several domains of academic spheres. No file or document or 

norm is there to check the validity or authority of the mathematicians, to ban the 

operation like x/y, but nevertheless the mathematical problems of the world are 

being solved without any conflict, without any contradiction, without any error, 

and ultimately all the results catering to excellent benefits in human welfare!   

 

Now mixing with the situation with car driving practices, few questions arise:-   

You may be driving well having your driving license valid for Light Motor 

Vehicle (for the algebraic structure Ring), but how can you do justice by driving 

Heavy Motor Vehicle (for the algebraic structure Field) with the same driving 

license, without any higher driving license?  Should you do so with the 

satisfaction and boldness that there is no accident occurring?  Can you say that 

you have the driving license for Light Motor Vehicle which authorizes you the 

driving of Heavy Motor Vehicle too?    
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Consequently it is surely agreeable in the imaginary situation presented above that 

the exact algebraic structure (we know that it is field) needs to be unearthed and 

more important matter is that the exact algebraic structure needs to be identified 

with an appropriately new title (here it is field) giving a very precise mathematical 

definition of it independently, so that the mathematicians feel transparently 

justified while using the operation like x/y as many times as required. We can not 

ignore the necessity to study the new algebraic structure (here it is field) as an 

independent topic, as an independently entitled one. We can not and should not 

ignore the necessity of providing a new identity title for it, just by saying that it is 

a ring (S, , ) along with few additional axioms fulfilled!.   
 

Let me now justify how the above act of imaginations will help the readers to get 

into the inside of the subject of „Region‟. The idea knocked my mind while I 
unearthed a peculiar fact that most of the simple and useful results, equalities, 

identities, formulas, cross-multiplication rules, etc. of elementary algebra, which 

are commonly practiced  at secondary school level of mathematics and of course 

at all levels of higher mathematics, are not valid  (can not be verified)  in groups, 

rings, modules,  fields, linear spaces, algebra over a field, associative algebra over 

a field, and even not in „Division Algebras‟;   i.e. are not valid (can not be 

verified)  in any of the existing standard algebraic structures alone in general, by 

virtue of their respective definitions and independently owned properties.  

 

Consider one simple example. By a careful observation it can be seen that even  a 

simple computation of „cross-multiplication‟ like: 

        if   
2

7

x

y




  =  
5

3

z

t




 ,    then  6 x t   =   35 y z  (and  conversely)    

        for  x, y, z, t  A,   

can „not be verified‟ in general in a group A alone, or in a ring A alone, or in a 
module A, or in a field A, in a linear space A, in an „algebra A over a field (i.e. F-

algebra)‟, in an „associative algebra A over a field‟, and even can „not be verified‟ 
in a „Division Algebra A‟ alone,  or in any standard existing algebraic structure A 

alone, by virtue of their respective independent definitions and independently 

owned properties.   

 

The same issue in simple literature can be stated that, the computation of „cross-

multiplication‟ practiced at secondary school level elementary algebra like: 

        if  
2

7

x

y
 = 

5

3

z

t
 ,   then  6xt = 35yz  (and  conversely)   for  x, y, z, t   R,   

can „not be verified‟ in general in the group R alone, or in the ring R alone, or in 
the  field R, and even can „not be verified‟ in the „Division Algebra‟ R alone,  by 
virtue of their respective definitions and independently owned properties. 

 

The reason is explained in details in Section-3 in this paper. There are infinite 

number of such very surprising but interesting cases can be pointed out, but may  
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be surely difficult to believe today in this century. In this regard, an amount of 

needful justifications and explanations are presented in Example 3.1, in Example 

3.2, and Example 3.3 in Section-3 here. Although apparently it seems to be a 

simple issue, but the question is not about the „correctness‟ of the results, 

equalities, identities, formulas, cross-multiplication rules, etc. of elementary 

algebra; the question is how and when they can be accepted to be correct, 

how they can be stamped as valid, authenticated?.   

 

Quite naturally a question arises that if many of the simple and useful results, 

equalities, identities, formulas etc. of elementary algebra are not valid in any of 

the existing algebraic structure alone (even not in Division Algebra) by virtue of 

their respective definitions and independently owned properties then „why the 
mathematicians do not arrive sometimes at contradictions or at wrong results or at 

deadlock ends?‟  or why the physicists, cosmologists, statisticians, engineers, etc 

do not arrive sometimes at contradictions or at confusion results or at deadlock 

ends?. I became very much curious to scan the issue thoroughly. Initially I got 

confused, I got puzzled, I could not find out „what is the reason, what is wrong or 
where is the deficit in the existing volume of theories in Abstract Algebra?‟.  I 
completely doubted only upon myself as my main area of research is not 

„Algebra‟. I then revisited my college-life favorite books of Herstein, Jacobson, 

Lang, Waerden, etc. from my bookshelves. In fact I tried a 

permutation/combination of the various existing algebraic structures to make out a 

possible identity of  that platform algebraic structure in which all the daily-useful 

and daily practiced results, identities, formulas, laws, etc. of elementary algebra 

can be observed to be valid (i.e. can be verified). Finally I became fully confident 

that there is an excellent something lying hidden so far in the subject „Abstract 

Algebra‟. I unearthed the hidden beauty, which is a beautiful algebraic structure 
which I call by „Region‟. In this work in Section-3 the algebraic structure 

„Region‟ is introduced and then various properties of it are studied, to open a new 

algebra called by „Region Algebra‟.  
 

The enormous and very unique potential of Region Algebra lies upon the fact that 

this is the  minimal algebra which, by virtue of the definition and independently 

owned properties of region, can give full license to the mathematicians to practice 

all the existing simple and frequently useful results, equalities, identities, formulas 

etc. of elementary algebra.  In other words, region is the minimal algebra which 

can authenticate the elementary algebra. None of the existing important algebraic 

structures like group, ring, module, field, linear space, algebra over a field, 

associative algebra over a field, and Division Algebras has this ability.  

The beautiful properties and results fulfilled by the set R of real numbers are 

being so far fluently used by the mathematicians assuming R to be a division 

algebra, but without knowing that they are actually using the „region‟ properties 
of R, not the properties of division algebra only. The particular Division Algebra 

R fortunately qualifies to be a Region also. It satisfies few more additional 

axioms/conditions which are not covered by virtue of definition and independent- 
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ly owned properties of the algebraic structure „Division Algebra‟.  
This is justified in Section-3 in details that the properties of division algebra 

collectively is not sufficient to use most of the existing useful results of 

elementary algebra. Fortunately the particular division algebra R fulfils the 

additional conditions by default (not by virtue of the properties of division 

algebra) to become qualified to get the status of a region. But at the same sense, it 

is unfortunate too.  Because the above stated fortunate properties of the division 

algebra R could not happen to unearth the failure of division algebra in practicing 

the computations of elementary level algebra, and consequently in practicing the 

mathematics as a totality of college as well as higher level. It may be noted that 

besides R there are other division algebras in existence; and the fortunate event 

mentioned above did not (does not)  happen with other division algebras as none 

of the other division algebras is so lucky. Incidentally, the very particular division 

algebra R is now observed to happen to be a region. And that is the reason why 

the mathematicians did not face any problem so far while discovering and 

developing various topics of mathematics (viz. Theory of Numbers, Geometry, 

Calculus, etc.) on exploiting fluently the infinite number of interesting properties 

of R. Consequently the mathematicians missed to look at the actual hidden 

identity of the minimum algebraic platform upon which the results stand valid. It 

is explained in details in Section-3 that division algebra alone can not offer 

authority to the mathematicians to practice the existing simple and frequently 

useful results, equalities, identities, formulas etc. of elementary level algebra.    

Summarily, it can be stated that in the progress of mathematics achieved so far in 

all of its branches, the set R of real numbers is being always pre-assumed to be a 

division algebra. This work justifies with several examples that this pre-

assumption is not sufficient (i.e. does not give license) to the practitioners to use 

many simple results, formula, rules, identities etc. It is a Region Algebra R at 

minimum, not a Division Algebra R or any of the existing important algebraic 

structure. The work of “Region Algebra” may apparently seem to be too 
simple at the first reading, because of the fact that it is truly simple and of 

very fundamental nature. Because of its very simple initial nature, the readers 

may have to take patience to read the materials of this work till the last page, even 

if some of the theories/propositions happen to be unacceptable or debatable or 

redundant initially.   

 

2.    Recollecting the important Algebraic Structures  
 

Since this paper introduces a new algebraic structure which is the most important 

algebraic structure in the sense of its application potential, a quick visit to the 

definitions of all the important existing algebraic structures of Abstract Algebra is 

made in this section which could serve as a ready reference before entering into 

the literature on Region presented in Section-3 here. However for further details 

about their properties and for in-depth literature on algebra, any good book like 

Jacobson [30-32], Hungerford [29], Herstein [28], Hardy et al. [27] etc. may be 

referred.  
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Binary Operation  

Let S be a non-empty set. An operation * will be called a binary operation over 

the set S if  the following two conditions are satisfied:  

(1)  if a, b S  then  a b S.  

(2)   a,b S,  a b  is unique.    

For example, usual addition „+‟ is a binary operation over the set R of real 
numbers. Subtraction (-) is a binary operation over the set R of real numbers. But 

subtraction (-) is not a binary operation over the set N of natural numbers. A non-

empty set A equipped with at least one binary operation is an algebraic structure.  

It is important information for the readers that throughout the discussion and 

analysis in this work, the following standard definitions for the important useful 

algebraic structures are followed.  

 

2.1 Group 

A non-empty set G together with a binary operation   is called a Semi-group if 

the following property is  satisfied :   if a, b, c G  then  (a b) c  =  a (b c).      

Example:  

The set N of natural numbers forms a Semi-group with respect to the usual binary 

operation „+‟.  
 

A non-empty set G together with a binary operation   is called a Group if the 

following properties are satisfied:  

(1)  if a, b, c G  then  (a b) c  =  a (b c).        

(2)   e G such that a e = a = e a,   aG.  

(3) if aG,   b G such that a b = e  =  b a.  

We say that (G,  ) is a group denoted in short by the notation G simply. 

The group (G,  ) is said to be an Abelian Group or Commutative Group if the 

following additional property is satisfied in G:  

(4)  a,b G,  a b  =  b a.   

 

The zero element e in property no(2) above is called the identity of the group G. 

The identity element of a group is unique. The element b in property no(3) above 

is called the inverse of the element a and is denoted by the notation a
-1

. The 

inverse of an element a in the group G is unique. Cancellation laws hold good in a 

group. The set I of integers, the set R of real numbers, the set Q of rational 

numbers  with respect to the usual addition (+) are examples of group. The set of 

all nn matrices over the set R of real numbers is a group with respect to usual 

„matrix addition‟ operation. The set C of  complex numbers is a group with 

respect to usual „complex addition‟ operation.  
 

2.2 Ring  

After a strong realization of the importance of Group in mathematics, the possible 

conceptualization of a new algebraic structure began in the 1870s and was finally 

shaped in the 1920s in the name of Ring. The main contributors include 

Dedekind, Hilbert, Fraenkel, and Noether. Actually Rings were initially formaliz- 
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ed as a generalization of the Dedekind domains that occur in number theory. Since 

the inception, rings are proved to be very useful in many other branches of 

mathematics viz,  geometry, mathematical analysis, etc. In mathematics, ring is 

now one of the most fundamental algebraic structures used in abstract algebra. A 

group is an algebraic structure equipped with one binary operation only. A ring 

consists of a set equipped with two binary operations   and   that generalize the 

arithmetic operations of addition (+) and multiplication ( ). Through this 

beautiful generalization, the theorems and results from arithmetic are extended to 

non-numerical objects such as polynomials, series, matrices and functions.   

 

A non-empty set R together with two binary operations   and  , called 

„addition‟ and „multiplication‟  respectively, is called a ring if the following 

properties are satisfied :  

Abelian Group :  

(1)  if a, b, c R  then  (ab) c  =  a (b c).        

(2)   0R R such that a0R = a = 0R a,   aR.  

(3)  if aR,   b R such that ab = 0R  =  b a.  

(4)  a,b R,  ab  =  b a.   

Semi-group :  

(5)  if a, b, c R  then  (a b) c  =  a (b c).      

Distributive Properties :   

(6)    a, b, c R  then         

(i)   a (b c)  =  (a b) (a c).      

(ii)  (ab) c  =  (a c) ( b c).    

We say that (R, , ) is a ring denoted in short by the notation R simply. The zero 

element 0R in property no(2) above is called the additive identity of the ring R. 

The additive identity element of a ring is unique. The element b in property no(3) 

above is called the additive inverse of the element a and is denoted by the notation 

 a. The additive inverse of an element a in a ring is unique.  

The set I of integers, the set R of real numbers, the set Q of rational numbers  with 

respect to the usual addition (+) and multiplication ( ) are examples of ring. The 

set of all nn matrices over R is a ring with respect to usual „matrix addition‟ and 
„matrix multiplication‟ operations. The set C of  complex numbers is a ring with 

respect to usual „complex addition‟ and „complex multiplication‟ operations.  
In a ring (R, , ) it can be verified that   

(i) 0R a = 0R = a 0R  aR,      

(ii)  (a b) = ( a) b =  a (  b)  

(iii)  ( a) ( b)  =  a*b   

 

Commutative Ring  

A ring (R, , ) is said to be commutative if the semigroup (R, ) is commutative,   

 i.e. if  a b  =  b a    a,b R.     
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Ring with unity  

If the semigroup (R, ) has an identity element  then it is unique and denoted by 

the notation 1R. Then 1R is called the Unit element of the ring R, and the ring R is 

called ring with unity.  

 

Zero Divisor 

An element aR is said to be a left zero divisor if there exists b (≠0R) such that 

a b = 0R. An element aR is said to be a right zero divisor if there exists b (≠0R) 

such that b a = 0R. An element aR is said to be a zero divisor if it is either a left 

zero divisor or a right zero divisor.  

 

2.3 Field  

A field is a non-empty set on which addition, subtraction, multiplication, and 

division are defined. And hence it is very supportive to the elementary operations 

practiced over the set R of real numbers, fluently  done at school level to college 

and higher level of mathematics. A field is a fundamental algebraic structure, 

which is widely used in Algebra, Number Theory and many other areas of 

Mathematics, Science and Engineering. 

 

A non-empty set F together with two binary operations   and  , called 

„addition‟ and „multiplication‟  respectively, is called a ring if the following 

properties are satisfied :  

Abelian Group with respect to addition:  

(1)  if a, b, c F  then  (ab) c  =  a (b c).        

(2)   0F F such that a0F = a = 0F a,   aF.  

(3)  if aF,   b F such that ab = 0F  =  b a.  

(4)  a,b F,  ab  =  b a.   

Abelian Group (excluding the element 0F) with respect to multiplication:  

(5)  if a, b, c F  then  (a b) c  =  a (b c).        

(6)   1F F such that a 1F = a = 1F a,   aF.  

(7)  if aF,   b F such that a b = 1F  =  b a.  

(8)  a,b F,  a b  =  b a.   

Distributive Properties :   

(9)    a, b, c F  then         

(i)   a (b c)  =  (a b) (a c).      

(ii)  (ab) c  =  (a c) ( b c).    

We say that (F,  , ) is a field denoted in short by the notation F simply. The 

zero element 0F in property no(2) above is called the additive identity of the field 

F. The additive identity element of a field is unique. The element b in property 

no(3) above is called the additive inverse of the element a and is denoted by the 

notation  a. The additive inverse of an element a in a field is unique. The unit 

element 1F in property no(6) above is called the multiplicative identity of the field 

F. The multiplicative identity element of a field is unique. The element b in 

property no(7) above is called the multiplicative inverse of the element a and is 

denoted by the notation a
-1

. The multiplicative inverse of an element a in a field is  
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unique. The most useful fields in mathematics are the field (R, +, .) of real 

numbers, field Q of rational numbers, the field C of complex numbers, etc. Many 

other fields, such as field of rational functions, algebraic function field, algebraic 

number field, and p-adic field are studied in mathematics, in particular in studying 

Theory of Numbers, Algebraic Geometry, etc.  

 

2.4 Linear Space 

A linear space consists of a set of elements called points, and a set of elements 

called lines, with some axioms. Each line is a distinct subset of the points. The 

points in a line are said to be incident with the line. Any two lines may have no 

more than one point in common. A linear space is a basic structure in incidence 

geometry.  

A non-empty set X is called a linear space over a field F with respect to two 

operations called by „addition (+)‟ and „scalar multiplication‟ if the following 
axioms are satisfied:  

(X, +) is an abelian group :   

(1)  if a, b, c X  then  (a+b)+c  =  a+(b+c).        

(2)   0X X such that a+0F = a = 0F+a,   aX.  

(3)  if aX, then   b X such that a+b = 0X  =  b+a,   aX.  

(4)  a,b X,  a+b  =  b+a.   

Scalar Multiplication :  

(5)  Scalar multiplication of x ∈ X by elements k ∈ F, denoted by kx is to be in X,  

(6)  k(ax) = (ka)x, where x ∈ X, and  k, a ∈ F.  

(7)  k(x + y) = kx + ky,  (k + a)x = kx + ax,    where x, y ∈ X, and  k, a ∈ F.  

Moreover 1 x = x for all x ∈ X, 1 being the unit in F. It follows from the definition 

that 0x = 0, (−1)x = −x.  
A linear space X over the field F is also called a vector space. The elements of a 

vector space are called vectors, and the elements of the corresponding field F are 

called scalars. A simple example of vector space is the field F itself. In this space, 

the vector addition is just the same as field addition, and scalar multiplication is 

just field multiplication. Any non-zero element of F serves as a basis so that F is a 

one-dimensional vector space over itself.  

Another useful example is F
n
. For any positive integer n, the set of all n-tuples of 

elements of the field F forms an n-dimensional vector space over itself F is called 

coordinate space and is denoted by F
n
. An element of F

n
 is written as x = (x1, x2, 

x3, ……, xn) where each xi is an element of the field F.  

The operations on the vector space F
n
 are defined as below :  

If x = (x1, x2, x3, …, xn)  and  y = (y1, y2, y3, ……, yn) are two vectors in F
n
, then  

(1)  x + y = (x1+y1, x2+y2, x3+y3,  …, xn+yn),   

(2)  kx =  (kx1, kx2, kx3, …, kxn)  where k is a scalar,  

(3)  0  =  (0, 0, 0, …., 0)   
(4)  -x  =  (-x1, -x2, -x3, …, -xn).   

As a particular instance, if F is considered to be the field R of real numbers then 

we obtain the n-dimensional real coordinate space R
n
. And if F is the field C of 

complex numbers then we obtain the n-dimensional complex coordinate space C
n
.  
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However, the general form of an element z = a+ ib  of the set C of  complex 

numbers shows that for n = 1 the set C itself is a two-dimensional real vector 

space with coordinates (a,b). Therefore C
n
 is a 2n-dimensional real vector space. 

The quaternions H is four-dimensional real vector space, and the octonions O is 

eight-dimensional real vector space.   

 

2.5     Module   

A module is one of the fundamental algebraic structures. A module over a ring is 

a generalization of the notion of vector space over a field, wherein the 

corresponding scalars are the elements of an arbitrary given ring (with identity) 

and a multiplication (on the left and/or on the right) is defined between elements 

of the ring and elements of the module. In a vector space, the set of scalars is a 

field and acts on the vectors by scalar multiplication, subject to certain axioms 

such as the distributive law. In a module, the scalars need only be a ring, so the 

module concept represents a significant generalization. Clearly a module, like a 

vector space, is an additive abelian group; a product is defined between elements 

of the ring and elements of the module that is distributive over the addition 

operation of each parameter and is compatible with the ring multiplication.   

Suppose that R is a ring and 1R is its multiplicative identity. A left R-module M 

consists of an abelian group (M, +) and an operation ⋅ : R × M → M such that for 
all r, s in R and x, y in M, we have: 

(1) r.(x+y) = r.x + r.y   

(2) (r+s).x = r.x + s.x  

(3) (rs).x = r.(s.x)  

(4) 1R.x = x  

The operation of the ring on M is called scalar multiplication, and is usually 

written by the action of juxtaposition.  

A right R-module M is defined similarly, except that the ring acts on the right; 

i.e., scalar multiplication takes the form ⋅ : M × R → M, and the above axioms are 
written with scalars r and s on the right of x and y.   

Suppose that R is a ring and 1R is its multiplicative identity. A right R-module M 

consists of an abelian group (M, +) and an operation ⋅ : M × R → M such that for 
all r, s in R and x, y in M, we have: 

(1) (x+y).r = x.r + y.r     

(2) x.(r+s) = x.r + x.s  

(3) x.(rs) = (x.r).s  

(4) x.1R = x  

Any ring R is trivially an R-module over itself. If F is a field, then a vector space 

over F is a F-module.   

 

2.6     F-Algebra and  Associative Algebra   

Let F be a field. Let A be a vector space over F equipped with an additional binary 

operation from A × A to A, denoted here by * (i.e. if x and y are any two elements 

of A, x*y is the product of x and y). Then A is called an „algebra over the field F‟  
if the following conditions are satisfied:  a, b  F  and  x, y  A,   
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(1) Right distributivity:    (x + y)*z  =  x*z + y*z 

(2) Left distributivity:      x*(y + z)  =  x*y + x*z 

(3) Compatibility with scalars:   (a x)*(b y)  =  (a.b) (x*y).    

An algebra over the field F is also called by F-algebra, where F is called the base 

field of the algebra A. The multiplication (product of two elements) of elements of 

an algebra A is not necessarily associative.  

For example, the set C of complex numbers is an „algebra over the field R‟. Let us 
make an illustration of this particular example. It is known that a complex number 

z is represented as z = a + ib, where a, b  R and i is the imaginary unit. In other 

words, a complex number z is represented by the vector (a, b) over the field R of 

real numbers.  

So the set C of complex numbers forms a two-dimensional real vector space, 

because  

(1) addition :   given by (a, b) + (c, d) = (a + c, b + d),   

(2) scalar multiplication :   given by  k(a, b) = (ka, kb), 

(3) Vector multiplication :     (a, b) • (c, d) = (ac− bd, ad + bc).   
If x, y, z are complex numbers and a, b are real numbers, then 

(4) (x + y) • z = (x•z) + (y•z).  
The complex multiplication is compatible with the scalar multiplication by the 

real numbers:  

(5) (ax)•(by) = (a.b) (x•y).  
Example :  

Ring of square matrices over a field F with the usual matrix multiplication is an 

example of F-algebra. Let E/F be an extension of fields of degree n. Then E is an 

F-algebra of dimension n.  

Note that when a binary operation on a vector space is commutative, as in the 

example of the complex numbers, it is left distributive exactly when it is right 

distributive. But in general, for non-commutative operations (for example, in the 

quaternions H)  they are not equivalent, and therefore require separate axioms. 

That means, the multiplication operation in an algebra may or may not be 

associative, leading to the notions of associative algebras and non-associative 

algebras 

In the above notion of „Algebra over a Field‟, if we replace the field of scalars by 

a commutative ring then we get a more general notion called by an „Algebra over 
a Ring‟. Algebras are not to be confused with vector spaces equipped with a 
bilinear form like inner product spaces; it is because of the reason that the result 

of a product x*y is not a member of the space, but rather it is in the field of 

coefficients.     

 

Associative Algebra over a field F   

An associative algebra A over the field F is an algebraic structure with compatible 

operations of addition, multiplication (assumed to be associative), and a scalar 

multiplication by elements in the field F. Here the addition and multiplication 

operations together give A the structure of a ring; the addition and scalar 

multiplication operations together give A the structure of a vector space over the  
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field F. Thus an „Associative Algebra over a field F‟  is  a vector space over the 
field F which also allows the multiplication of vectors in a distributive and 

associative manner, having bilinearity of the multiplication. An associative 

algebra over the field F is also called by „Associative F-algebra‟.  
Given a positive integer n, the ring of real square matrices of order n is an 

example of an associative algebra over the field R of real numbers under usual 

operations of matrix addition and matrix multiplication as the matrix 

multiplication is associative.  

 

Non-associative Algebra over a field F   

Three-dimensional Euclidean space with multiplication given by the vector cross 

product is an example of a non-associative algebra over the field R of real 

numbers since the vector cross product is non-associative, satisfying the Jacobi 

identity instead.     

 

2.7      Division Algebra  

In Abstract Algebra, a „Division Algebra‟ is an algebra in which division 

operation is permissible.   

Explicitly, a „Division Algebra‟ is a non-null set S together with two binary 

operators    and   denoted by  (S, , ) satisfying the closure properties over 

both the operations and the following eight conditions :- 

1. Additive associativity:     a, b, c  S,   (ab) c  =  a (b c)              

2. Additive commutativity:    a, b  S,   ab  =  b a   

3. Additive identity:     an element 0S  S such that   

    a  S,    0S a  =  a0  = a   

4. Additive inverse:   a  S,    an element  a  S   such that    

                                    a ( a)  =  ( a) a  =  0S     

5. Multiplicative associativity:    a, b, c   S,   (a b) c  =  a (b c)              

6. Multiplicative identity:    an element 1S  S such that    

     a  S,   1S a = a 1S = a   

7. Multiplicative inverse:   a ( 0S)  S,    an element a
-1 S  such that     

      a a
-1    

=  1S  =  a
-1 a   

8. Distributivity:  

            Left distributivity :    a, b, c  S,   a (b c)  =  (a b) (a c)   

            Right distributivity :   a, b, c  S,   (b c) a  = (b a) (c a)  

 

The set R of real numbers, the set C of complex numbers, the Cayley algebra 

(Octonion algebra), the set H of quaternions, etc. are examples of division algebra 

with respect to addition and multiplication operation which are the usual 

operations defined over them respectively.  

Let F be a field. The ring Mn(F) of n×n matrices over the field F is called a matrix 

algebra) of dimension n
2
 over F. Then Mn(F) is neither commutative nor a 

division algebra for any natural number n > 1.  

Thus a division algebra (S,+, )   is a unit ring  for which  (S –{0S}, )  is a group.   

http://www.wikipedia.org/wiki/Abstract_algebra
http://www.wikipedia.org/wiki/Algebra_over_a_field
http://www.wikipedia.org/wiki/Division_(mathematics)
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A division algebra must contain at least two elements 0 and 1.  Every field 

therefore is also a division algebra, but not conversely.  

A Division Ring is a ring A such that for all b and all nonzero a in A there is a 

unique solution x in A to the equation  a*x = b  and a unique solution y in A to the 

equation  y*a = b. 

 

Non-commutative Division Algebra  

A division algebra is also called a division ring or a skew field,  as it is a ring in 

which every nonzero element has a multiplicative inverse, but multiplication is 

not necessarily commutative. Even the compatible notion of multiplication may or 

may not be satisfied in a division algebra.  

 

Non-associative Division Algebra  

A Division Algebra may be associative or non-associative. Associative division 

algebras have no zero divisor. There are algebras which are neither commutative 

nor division algebra. A division algebra may be commutative or non-

commutative. The following are few interesting examples.  

The set R of real numbers is an example of associative division algebras. The 

Cayley algebra (Octonion algebra) is non-associative division algebra.   

Consider the set C complex numbers with multiplication defined by taking the 

complex conjugate of the usual popular way of multiplication,  i.e.   

                                         a b ab  .  

This is a commutative, non-associative division algebra of dimension 2 over the 

field R of real numbers.  

Let E/F be an extension of fields of degree n. Then E is an F-algebra of dimension 

n. Let E/F and K/F be field extensions of degrees n and m. Suppose that A = 

EK, the direct sum as both an F-vector space and as a ring, so addition and 

multiplication are component wise. Then A is an F-algebra of dimension m+n, 

which is commutative but not a division algebra.  

 

In the Theory of Numbers, the quaternions H is a number system as an extension 

of the  set C complex numbers. The general form of the quaternions is  q = (a, b, 

c, d) = a + bi + cj + dk  where a, b, c, d   R. In quaternions, the three objects  i, j, 

k  are called the fundamental quaternion units. The quaternions were introduced 

by Hamilton in 1843, and it was very successfully applied in studying 3-D 

mechanics in mathematics. Quaternions have been applied in both pure and 

applied mathematics, in particular for calculations involving three-dimensional 

rotations such as in three-dimensional computer graphics, computer vision, and 

crystallographic texture analysis. In practical applications, they can be used 

alongside other methods, such as Euler angles and rotation matrices, or as an 

alternative to them, depending on the application. 

 

The set R of real numbers may be viewed as a one-dimensional vector space with 

a compatible multiplication, and hence could be regarded as an one-dimensional 

algebra over itself. The set C of complex numbers form a two-dimensional vector  
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space over the field R of real numbers, and hence could be regarded as a two 

dimensional algebra over R. Consequently, both R and C are examples of division 

algebra, because every non-zero vector possesses its own inverse. One is a 

division algebra in one dimension and the other is a division algebra in two 

dimension. There is no division algebra in three dimensions.  But the quaternions 

H is a four-dimensional division algebra over R, where one can not only multiply 

vectors, but also can divide. Consider the two quaternions  q1 = (0,1,0,0)  and q2 = 

(0,0,1,0). It can be observed that q1*q2 ≠  q2*q1  as q1*q2 = (0,0,0,1) but q2*q1 =  

(0,0,0,−1). Thus the quaternions  H are an example of a non-commutative division 

algebra over R, unlike the set C of complex numbers. 

 

Elementary algebra is taught in mathematics at secondary school level of 

education. It introduces the concept of variables representing numbers. 

Expressions  based on these variables are manipulated using the rules of 

operations, formulas, identities, equalities etc that apply to numbers. Abstract 

Algebra is much broader than elementary algebra and studies what happens when 

different rules of operations are used and when operations, formulas, identities, 

equalities etc are devised for things other than numbers. The two important 

operations Addition and multiplication are generalized and their precise 

definitions lead to important algebraic structures like: group, ring, field, vector 

space, module, F-algebra, associative algebra, division algebra, etc. These 

algebraic structures say the users (mathematicians, scientists, researchers) which 

operations are valid and which are not. Consequently, an user apparently gets the 

license authority from that algebraic structure on which platform the user himself 

is standing upon to solve his computational problem under consideration. For 

example, if one user is working in a field then he will have the capability of 

performing more flexible computations, a lot of varieties of computations, 

compared to the case of his capability if working in a semi-group or group. For 

the sake of ready reference, a brief and quick visit to all the existing important 

algebraic structures is done in this section.  

 

 

3.  Region Algebra    
 

Algebra is one of the most beautiful branches of mathematics and it is about 

finding the unknowns.  Algebra is regarded as one of the broad parts of 

Mathematics, together with Number Theory, Geometry and Analysis. In its most 

general form, Algebra is the study of mathematical symbols and the rules for 

manipulating these symbols. Most important merit point of Algebra is that it is a 

unifying thread of almost all branches of Mathematics. Consequently, it may 

sometimes seem to be dry and sometimes very juicy. The basic parts of Algebra 

are called „Elementary Algebra‟ and the abstract parts are called „Abstract 
Algebra‟ or „Modern Algebra‟. Elementary algebra is generally considered to be 
essential for any study of Mathematics, Statistics, Science, Engineering, as well as 

applications of it in Computer Science, Social Science, Forensic Science, Informa- 
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tion & Communication Technology, Medical Science,  and Economics, to list a 

few only out of many. The Elementary Algebra is being studied from school level 

to higher levels. Abstract algebra is a major area in advanced mathematics, 

studied primarily by professional mathematicians. Elementary Algebra differs 

from Arithmetic in the use of abstractions, such as using letters and/or symbols to 

stand for numbers that are either unknown or allowed to take on many values 

(Boyer[17-19]). The beauty of Algebra is that it provides valid methods, valid 

formulas, valid rules, identities, equations etc., and solve equations that are 

much clearer and easier than the older method of writing everything out in words.   

 

Before introducing the algebraic structure „region‟,  it is shown here by a number 

of examples that most of the simple and useful results, identities/equalities, 

formulas  or   algebraic expressions  or equations (commonly practiced at 

secondary school level of mathematics) of elementary algebra  are not valid  (i.e. 

can not be computed/verified)  in general  in any of the existing standard algebraic 

structures alone :  viz. in a group alone, or in a ring alone, or in a field alone , or 

in module, linear space, algebra over a field, in an associative algebra over a field, 

or in a division algebra alone, etc.   

By the phrase : “the result is valid in the algebraic structure A”,  we mean 
here that the result can be successfully computed and established/verified in 

the algebraic structure A by virtue of the definition and the independently 

owned properties of A alone (as mentioned in the previous section).  

 

Consequently, it is unearthed that there is a major gap lying hidden so far in the 

existing literature on the subject “Abstract Algebra”. To fill-up this gap a new 

algebraic structure called by “Region” is introduced in this section independently 

in a unique way.  The huge potential and strength of this powerful algebraic 

structure “Region” is lying in the fact that it is the minimal algebraic structure 

which can validate the simple results, equalities, identities, formulas etc. of 

elementary algebra which are commonly practiced at secondary school level of 

mathematics. None of the existing standard algebraic structure (including Division 

Algebra) possesses this capability except for limited cases. The issue happened to 

my mind by chance only, by luck, with no prior plan or thinking to proceed for 

developing a new algebraic structure. Region alone provides the minimal platform 

on which all elementary algebraic computations practiced by the students, 

teachers, mathematicians, scientists, engineers, etc. can be done, and in fact 

unknowingly being done so far. Such a complete and sound platform for 

practicing „elementary algebra‟ can not be provided by any of the existing 
algebraic structures by virtue of its definition and independently owned properties 

(see Section-2). This important fact was hidden so far, and has been now 

unearthed here in this section.   

With this philosophy, it can be realized that  all the existing classical algebraic 

structures  are weaker than the algebraic structure „region‟ in terms of application 
potential and caliber. In other words, region is the most important algebraic 

structure in terms of its infinite volume of applications in mathematics, science  
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and engineering. An initial development of the theory of regions is done, 

establishing a number of important properties of the regions.  

 

3.1    Genuine Need for a New Algebraic Structure   

 

In this section let me justify the genuine need to define/identify a new algebraic 

structure and to introduce it uniquely in an independent way as a subject area in 

its own right.  

A system consisting of a non–null set S and  one or more n-ary operators on the 

set S is called  an  algebraic structure, denoted by the notation ( S, O1, O2, …, Or)  

where  Oi,  i = 1,2, …., r,  are operators on S.  
An algebraist can define an infinite number of new algebraic structures, if he 

desires. As already mentioned earlier that the objective of the work in this paper 

is not just for the sake of defining a new algebraic structure, but to fix a major 

gap unearthed in Abstract Algebra.  

 

In this section we show by few examples that none of the existing algebraic 

structures viz.   groups,  rings,  modules,  fields,  linear spaces,  algebra over a 

field,  associative algebra over a field,  division algebra or  any existing standard 

algebraic structure, by virtue of their respective definitions and independently 

owned properties (see Section-2), can not provide a sound and complete 

environment/platform or algebraic right to the mathematicians for performing 

many simple algebraic computations, for establishing many useful and simple 

identities  or  equalities of two algebraic expressions,  and for establishing many 

useful algebraic results/solutions etc. of elementary algebra. But many of these 

results/equalities/identities are very much well known even to the secondary 

school students, and being practiced fluently by the students, teachers, 

academicians, engineers, scientists, etc.      

 

Let me begin here with a collection of few cases or issues (out of infinite number 

of available cases) on the various standard algebraic structures :  groups, rings, 

modules, fields, etc.  These cases (five cases) are mentioned below for the sake of 

instance only, although they are no doubt very simple and obvious to any 

algebraist. But special attention of the readers is required on the situations 

presented in Case-5.  And then I will justify the genuine needs for identifying a 

new kind of atomic, well complete, sound and unique algebraic structure in an 

independent way with its self-identity. 

 

Few Cases  (by examples) : 

 

Case-1 

If an expression like x y/z is known to be a valid expression in an algebraic 

structure A  (while let us suppose that nothing is known to us at this stage about 

the identity of the algebraic structure A)  where x, y, z  A,    then one can say 

that A is not just a group or  a ring in general;  however it could be a Division  
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Algebra  or any algebra which is also a division algebra. Thus a group or a ring 

can not allow us to compute an expression like x y/z because they are weak 

algebraic structures in the sense of such type of computations. But a division 

algebra is a stronger algebraic structure in terms of the power of issuing 

authorization to the mathematicians to compute an expression like x y/z.   

 

Case-2 

If an expression like x 2.y 5.z is a valid expression in an algebraic structure A 

while nothing is known to us at this stage about the identity  of the algebraic 

structure A  where x, y, z  A (assuming that associativity property hold good in 

A over the operator  ), then one can say that A is not just a group or  ring  or  a  

field, in general.   However, it could be a linear space over the field R of real 

numbers, or something else which is also a linear space over the field R of real 

numbers. Thus a group or a ring or a field can not allow us to compute an 

expression like x2.y5.z because they are weak algebraic structures in the 

sense of such type of computations.  

 

Case-3 

If an expression like x+2.y z is a valid expression in an algebraic structure A 

where x, y, z  A, then one can immediately say that A can not be just a group or  

a ring or a field  or a linear space  in general. However, it could be an „Associative 
Algebra over a field‟, or something else. A group or a ring or a field or a linear 

space can not allow us to compute an expression like x+2.y z because they are 

weak algebraic structures in the sense of such type of computations.  

 

Case-4 

Suppose that the equality (identity) I :   (x+y)
2
  =  x

2  
+ 2. (x*y) + y

2    
is valid in an 

algebraic structure A. While guessing to identify the algebraic structure A, one 

could observe that I :   (x+y)
2
  =  x

2  
+ 2.(x *y) + y

2    
is  an absurd equality (as it 

can not be verified)  in a group or  in a ring/module  or  in a field or in a linear 

space or  in an associative algebra over a field, by virtue of their respective 

definitions and independently owned properties. However, this equality (identity) 

I can be well verified in  some „algebra over some field‟.  Here it may be noted 
that the LHS of this equality can be evaluated in a ring or in a field,  but not the 

RHS  (assuming that the notation t
2
 stands for the expression  t*t).     

 

Now consider few interesting situations presented in Case-5  below :- 

 

Case-5   

Let me present few examples here out of infinite number of similar type of 

available examples.  

 

Example 3.1 

Consider a very simple instance from elementary algebra, a type which is very 

frequently used by the secondary school students, is the equality (identity)  I  of  
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type  given by 

                             
a x

b y

     
   

 = 
a x

b y

 
  

,  

but it is not valid   i.e. can „not be verified‟ in a  group, ring, module, field, linear 
space,  „algebra over a field‟ (i.e. F-algebra), „associative algebra over a field‟, or 
in a Division Algebra, or  in any existing standard brand of  algebraic structure 

alone by virtue of their respective definitions and independently owned properties 

(as mentioned in Section-2).  See the justification presented below.  

 

Justification  

It is because of the reason that : 

(1) since division operations are involved in both LHS and RHS expressions, 

it can not be a „F-algebra‟ by virtue of its definition and independently owned 
properties.  

(2) on the other hand, if  it is not a „F-algebra‟ but a division algebra D, then 

the following are fact by virtue of the definition and independently owned 

properties of division algebra:-   

(i) the LHS expression 
a x

b y

     
   

 can be well written to be equal to the 

expression 
1

.a
b

 
 
 

 (x*y
-1

)  in the division algebra D,     

(ii) but the expression  
1

.a
b

 
 
 

 (x*y
-1

)  can  not  be written in the division 

algebra D,   by virtue of its definition and own properties,  to be  equal to  the 

expression   (a x) * 11
y

b

  
 

,        

(iii)  although,  it is true that in the division algebra D, by virtue of its 

definition and owned properties,  

            (a x) * 11
y

b

  
 

  is  equal to  the expression 
a x

b y

 
  

.   

Consequently,  in a division algebra D, the expression  
a x

b y

     
   

  can not be 

equal to 
a x

b y

 
  

, by virtue of its definition and own properties.  

 

Similarly, the equality (identity)  I  of type  given by 

                             
a x

b y

  
  

  
 =  

ax

by
 

is not valid  i.e. can „not be verified‟ in the Division Algebra R, by virtue of the 
definition and owned properties of Division Algebra (see Section-2).  
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Fortunately the set R of real numbers satisfies some additional interesting 

properties beyond the properties possessed by virtue of the definition and 

properties of the algebraic structure division algebra,  and that is the hidden reason 

why the mathematics has not been facing any problem and have not been getting 

any incorrect results or contradictory results in computations.  

 

It can be observed that in the simple elementary expression  

                                  

a x

b y

     
   

  =  
a x

b y

 
  

  

three multiplication operators  „.‟ ,   „ ‟,  and  „*‟ are involved.       
 

Example 3.2 

With the same argument as in Example 3.1 above,  it can be observed that if an 

equality (in fact it is an identity)  I  of type given by  

              

2

2 2

2 2

1 1 2
( )

a x
a x a x

b y b y b y

                    
  

is  known to be  a valid identity (i.e. can be computed and verified)  in an 

algebraic structure A where x, y A,  a and b are members (scalars) of some field 

F,  then  it can be observed that each of the following statements are true  (unless 

few additional properties are satisfied beyond their respective definitions and 

properties owned, or unless few additional properties/axioms are endowed with):  

a) A is  not a group, or  a ring, module, field, linear space, etc by virtue of 

their respective definitions and independently owned properties.     

b) A is  not an  „algebra over a field F‟  (F-algebra) by virtue of its definition 

and independently owned properties.  

c) A is  not an  „associative algebra over a field‟ by virtue of its definition and 
independently owned properties.       

d) A is  not a  „Division Algebra‟ by virtue of its definition and independently 

owned properties.       

e) A is not any standard  existing brand of algebraic structure, by virtue of its 

definition and independently owned properties.       

 

The earlier Section-2 contains a brief introduction of the existing important 

algebraic structures. However for further details about their properties, any good 

book like Jacobson (1985,1989), Hungerford(1974), Herstein (2001), Hardy et el 

(2001) etc. may be re-visited.  

 

Example 3.3 
In school algebra, students frequently use  the result like : 

               if  
2

7

x

y
 = 

5

3

z

t
   then  6 x t = 35 y z   (and  conversely). 

But, by a careful observation it can also be seen that this type of simple 

computation of   „cross-multiplication‟  C  of  secondary school level elementary  
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algebra  like : 

   if   
a x

b y




 = 
c z

d t




  then ( . )a d  x t  = ( . )b c  y z      (and  conversely). 

can „not be verified‟ (i.e. not valid)  in a  group, ring, module, field, linear space, 
„algebra over a field‟ (i.e. F-algebra), „associative algebra over a field‟, or in a 
Division Algebra alone,  or  in any standard  algebraic structure  (assuming that 

division by zero element is not allowed) by virtue of their respective definitions 

and independently owned properties. The justification in brief is presented below : 

 

Brief Justification: 

The justification is in fact similar to what made in Example 3.1 

 

(1) since division operations are involved in both LHS and RHS expressions,   

it can not be a „F-algebra‟ by virtue of its definition and independently owned 

properties.       

 

(2) on the other hand, if  it is not a „F-algebra‟ but a division algebra D, then 

the following are fact by virtue of the definition and independently owned 

properties of division algebra:-   

         Suppose that  
a x

b y




 = 
c z

d t




  is valid in the division algebra D.  

         Then,  a x   1
b y

  =   c z   1
d t


   

is also valid in the division algebra D.  

 

But after this step, the mathematics is blocked and can not proceed further for any 

next step. Because this can not yield the next step of the computation expected to 

be as below    

              ( . )a d  x t   =  ( . )b c  y  z     

in the division algebra D by virtue of its definition and its independently owned 

properties, unless it possesses few additional properties/axioms satisfied.  But who 

will provide the division algebra D with few additional properties not being 

possessed by division algebra by its definition?.  

 

Example 3.4 

For another example, see that in school algebra the students frequently use the 

result like : 

              

2

3

7

x

y

 
  

 
=  

2

2

9

49

x

y




.   

But, by a careful observation it can also be seen that this type of simple square 

identity I  like : 

            

2

a x

b y

 
  

 
=  

2

2

c x

d y




    ( where  c = 2
a  and d  = 2

b )       

can „not be verified‟ (i.e. not valid) in a group alone, or in a ring alone, or in a  
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module, field, linear space, „algebra over a field‟ (i.e. F-algebra), „associative 
algebra over a field‟, on in a Division Algebra alone, or  in any standard  algebraic 
structure  (assuming that division by zero element is not allowed) by virtue of 

their respective definitions and independently owned properties.     

 

Then, the immediate questions that arose in my mind are :-   

 “What algebraic structure is A for the above examples presented in Case-5 

above?”      Or    
 “What could be the minimal algebraic structure in which the above type of  
identities  like I  or  the above type of cross multiplication results like  C  are 

valid?”.      Or    
 “What algebraic structure the above type of  identities like I  or  the above 

type of cross multiplication results like  C  can be verified in?”. 
An algebraist  can not answer that it is a  group,  or it is a ring, module, field, 

linear space, „algebra over a field (i.e. F-algebra)‟, „associative algebra over a 

field‟, or it is a Division Algebra,   or  any standard  algebraic structure  (assuming 

that division by zero element is not allowed).   For a possible answer,  the 

algebraist  has to think of a permutation/combination of the various existing 

algebraic structures to make out a possible identity of A.   But, he might seek to 

make a unique identity for this algebraic structure A to define it in an independent 

and atomic way,  and then to study the various properties of A, various results 

valid on A, highlighting its unique importance/role  in Mathematics by virtue of 

its definition and independently owned properties compared to all other standard 

algebraic structures.  It is because of the reason that  this algebraic structure A  is  

supposed to be the most appropriate and minimal platform for practicing the 

problems from elementary algebra of secondary school level to higher algebra,  

compared to  any other existing standard algebraic structure, in general. Thus the 

role of this new algebraic structure to the mathematicians is much more than any 

other of the existing algebraic structures.   

 

Consequently there a genuine need to identify this minimal algebraic structure, 

which is hidden so far, unrecognized so far, for practicing the elementary algebra 

and higher algebra.  

 

3.2      Introducing a new algebraic structure  „Region‟  
 

In the previous section it has been justified in length that there is a genuine need 

to introduce a new algebraic structure  having unique independent self-identity  in 

order to provide the minimal but sufficient platform based upon which the 

elementary algebra or higher algebra can be fluently practiced by the 

mathematicians with valid algebraic right and driving license (i.e. computing 

license).   We call this new algebraic structure by “Region”, as defined below.  
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3.2.1 Region 

 

Consider a non-null set A with three binary operators  , * and   defined over it  

such that  for a given field  (F, +, .),  the following three conditions are satisfied:- 

(i) (A, ,*)  forms a field, 

(ii)       (A, , )  forms a linear space over the field  (F, +, .),   and   

(iii)      A satisfies  the   property  of  “Compatibility with the scalars of the      
           field F”,  

        i.e.   (a  x ) * (b y )  =  (a.b) (x*y)    a, b   F  and  x, y  A. 

Then the algebraic structure (A, ,*, ) is called a  Region over the field (F, +, .).   

 

If  there  is  no confusion,  we may simply use the notation  A to  represent the 

region  (A, ,*, ),   for brevity. 

 

We now study the various interesting properties of a region A. 

 

Two Fields :     Inner Field   and  Outer Field (Base Field) 

See that there are two fields used in the definition of region. The field  (A, ,*) is 

called the “inner field” of the region  (A, ,*, );  and the field ( F, +, . )  of the 

linear space (A, , ) is called the  “outer field” or the  “base field”  of the region  
(A, ,*, ).   

 

3.2.2 Three Multiplication Operators in a Region      

See that there are three multiplication operators used in the definition of region. 

Let us call them by First Multiplication Operator,   Second Multiplication 

Operator,    and  Third Multiplication Operator (or Base Multiplication Operator).  

 

The sequence of the three operators “ ”, “ * ”,  and “  ” appearing in the  
notation (A, ,*, )    representing  the region A   is  important   in the sense that  

the operator  “ * ”  of the region A  which is the multiplication operator of the 

inner field (A, ,*) is called the “first multiplication” operator  of the region A. 
 

The operator “ ” of the region A which is the multiplication operator of the linear 
space (A, , ) is called the “second multiplication” operator of the region A.    
 

The multiplication operator  “.” of the base field F  is called the “third 
multiplication” operator   or   the “base multiplication” operator  of the region A.    
 

Out of these three multiplication operators, the first two are defined over the set A 

itself, and the third is defined over the base field F.  

 

3.2.3 Three Addition Operators in a Region              

 

See that there are three addition operators used in the definition of region. Let us 

call them by First Addition Operator, Second Addition Operator and Third Addi- 
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tion Operator.  

 

The operator “ ” of the region (A, ,*, )    which  is  the addition operator of 

the inner field (A, ,*)   is called the  “first addition” operator of the region A.    
 

The operator “ ” of the region (A, ,*, ) which  is  the addition operator of the 

linear space (A, , )  is called the  “second addition” operator of the region A.    
 

The operator “+”  which is the addition operator of the base field (F, +, .)  is called 

the “third addition” operator   or   the “base addition” operator  of the region A.   
 

It may be noted that the First Addition Operator and the Second Addition 

Operator are same. Consequently there are in general at most two addition 

operators in the definition of a region which could be distinct.  

 

Thus in a region A, we deal with two distinct addition operators and three distinct 

multiplication operators, in general.  It is obvious from the definition that a region 

A must have at least two elements.    It may also be noted that every region is an 

„algebraic structure over a field‟,   but the converse is not true in general.   
 

As a simple instance, it could be now seen that an equality (identity)  I  of type  

given by 

                                   
2

3

x

y

     
   

  =  
2

3

x

y

 
  

,  

 

which can not be verified,  in general,  in a group  or  in a ring  or in a field  or in a 

linear space  or  in an associative algebra over a field,  or  in a division algebra or  

even not in a simple „algebra over a field‟,  now can be well  verified or 
established in  the algebraic structure „region‟ alone.  
 

As another simple instance, it could be now seen that an identity like  

                  

2

2 2

2 2

1 1 2
( )

a x
a x a x

b y b y b y

                    
 

which can not be verified in any of the existing standard algebraic structures,  now 

can be well  verified or established in  the algebraic structure „region‟.  
 

And it can be also be seen now that even  a simple computation of   „cross-

multiplication‟  C  of  secondary school level elementary algebra  like : 

 

          if  
2

7

x

y




 = 
5

3

z

t




  then  6 x t  =  35 y z      (and  conversely). 

or,    a  very simple square identity I  like : 
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2

3

7

x

y

 
  

 
= 

2

2

9

49

x

y




  

 

which can not be verified in any of the existing standard algebraic structures,  now 

can be well  verified or established in  the algebraic structure „region‟.  
In the region (A, ,*, ) over the field (F, +, .),  one of its component algebraic 

structures is the algebraic structure (A, ,*)  which is a field called by inner field 

of the region.  Thus we see that the region A is a commutative  and also a division 

algebra, but a division algebra is not a region in general.  Besides that the other 

component algebraic structure (A, , )  of the region A is a linear space over the 

field F. Considering the distributive properties of the field  (A, ,*)   along with 

the condition(iii) mentioned in the definition of region above,  it is observed that 

the region A is also a F-algebra.  But a F-algebra is not a region in general. 

Integrating these three facts, we can see that a region is a composition of 

commutative property, Division Algebra and F-algebra. Consequently a region 

can be equivalently regarded as a  “commutative division F-algebra”. An algebra 
satisfying only the property of „commutative‟ is not sufficient to define the 
algebra we have been in quest here, satisfying only the properties of „division 
algebra‟ is not sufficient to define the algebra we have been in quest here, 
satisfying only the properties of „F-algebra‟ is not sufficient to define the algebra 
we have been in quest here. At minimum it must be a region.  

 

Clearly a region is not a division algebra only, but a lot of things more.  However, 

one could try to view a region by permutation/combination of some of the existing 

classical algebraic structures in other ways too.  

 

Example 3.4  

The region RR :  the most useful region in Science, Engineering & Other areas. 

 

Let R be the set of real numbers, „+‟ be the ordinary addition operator in R and „.‟   
be the ordinary multiplication operator in R.  Consider the field ( R,+, . )   of real 

numbers, and  the linear space (R,+, .)  over the field (R,+, .) .    Then  the  

algebraic  system  (R,+, . , .)   forms a region over the outer field (R,+ , .).    

 

This region (R,+ , . , .)   plays a very important role in our daily life computations, 

in particular in school level elementary algebra.  The content of the syllabus and 

corresponding instructions  at school level algebra is based on the platform of this 

region (R,+, . , .),  not on the platform of any standard algebraic structure like  

groups, rings, fields, linear spaces, algebra over a field, associative algebra over a 

field, division algebra or any existing algebraic structure. Let us name this region 

(R,+, . , .)  in short by the word  “RR”.  The region RR is the most useful region in 

all the branches of Mathematics, Statistics, Science, Engineering & other areas. 

The interesting properties of the region RR are that:  
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(i)    its inner field is (R,+, .),   

(ii)   its outer field is (R,+, .),  

(iii) all the three multiplication operators are same, and  

(iv) all the three addition operators are same.  

 

One of the most beautiful qualifications, rich merits and strengths of the Regions 

is that all the following three important associative properties collectively is not  

true in a division algebra alone by virtue of its definition and independently 

owned properties or in any standard algebraic structure alone, but they are well 

valid in any region. Interestingly they are fluently and freely being used by the 

mathematicians, scientists and engineers in their daily mathematical works and 

computations.  

 

3.2.4 Three Associativity  Properties   

 

The following three associative properties hold good in a region (A, ,*, )   over 

the field (F,+, .).   They are called  “No-Scalar Associative Property”,   “One-

Scalar Associative Property”    and   “Two-Scalars Associative Property”   

respectively.      

(i)   x (y z) = (x y) z    :     (No-Scalar Associative Property) 

(ii)   a  (x y) = (a x) y   :    (One-Scalar Associative Property) 

(iii)   (a.b)  x  =  a (b x)   :   (Two-Scalars Associative Property)  

where  a, b  F  and  x, y, z   A.  

 

Proof :   

(i) This follows by inheritance from the properties of the inner field  (A, ,*). 

(ii) Consider the  property of  “Compatibility with the scalars of  field F”  in  the 

region  (A, ,*, )  given by :   (a x)*(b y )  =  (a.b) (x*y). 

Substituting 1F  for b in the above,   we get the result of  „One-Scalar Associative 

Property‟, where 1F is the unit element of the outer field (F, +, . ). 

(iii) It follows by inheritance from the properties of the linear space (A, , ). 

 

 NOTE 3.1   About Few Conventions 

Throughout this section, the following conventions  are  to  be  assumed  in  the 

context of  region (A, ,*, )  over the field (F, +, .),  without any confusion :- 

(i) By the expression  xy z , we shall mean either side of the equality:       

x ( y z)  =  (xy) z      ; 

(ii) By the expression   x y z ,    we shall mean either side of the equality:       

x ( y z )  =  ( x y ) z      ; 

(iii) By the expression a  xy, we shall mean (a x)y, not  a (x y) ;  

(iv) By the expression  a  x y,  we shall mean either side of the equality:   

a (x y) = (a x) y      

(v) By the expression  a  x b y,  we shall mean the expression   

                        (a x) (b y).  

(vi) By the expression  a  xb y,  we shall mean the expression   
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                        (a x) (b y).     

 

(vii) By the expression a.b x,  we shall mean the expression (a.b) x. 

 
In the next subsection, we define few terminologies on a region A.  

 

3.2.5 Additive Identity  

The additive identity element of the inner field (A, ,*)  of  a  region (A, ,*, )  

is called the  „additive identity‟  element  of the region A,   and   is denoted by the 
notation  0A.   

Obviously,  the „additive identity‟  element of  a region A  is unique, by virtue of 
inheritance from the properties of the inner field (A, ,*).  The additive identity 

of a region A is also called  the „zero element‟ of the region A. 
It is obvious that  the zero-element of the linear space (A, , )  and  the zero 

element of the region A are the same element.    

 

3.2.6 Multiplicative Identity  

The  multiplicative identity element of the inner  field (A, ,*) of a region 

(A, ,*, )    is called the „multiplicative identity‟  element of the region A,   and 
is denoted by the notation  1A.  

Obviously, „multiplicative identity‟  element of  a region A  is unique, by virtue of 

inheritance from the properties of the inner field (A, ,*).  The multiplicative 

identity of a region A is also called  the  „unit element‟ of the region A.  
 

3.2.7 Additive Inverse  of an element  

For  an element x of a region (A, ,*,  ) over the field (F, +, .), the „additive 
inverse‟ of x is defined to be that element of the region A which is the additive 
inverse of  x in the inner field  (A, , ),  and is denoted by the notation  ~ x. 

Obviously, „additive inverse‟  of an element of  a region is unique, by virtue of 
inheritance from the properties of the inner field ( A, ,*). 

 

3.2.8 Multiplicative Inverse  of an element   

For  a non-zero element x  of a region  (A, ,*, )  over the field (F, +, .),   the 

„multiplicative inverse‟ of x is defined to be that element of the region A  which is 

the multiplicative inverse of  x  in the inner field  (A, , ),   and is denoted by 

the notation  x
-1

.     

 

Obviously, „multiplicative inverse‟  of a non-zero element of  a region is unique, 

by virtue of inheritance from the properties of the  inner field (A, ,*).  It may be 

observed that  “multiplicative inverse”  x-1  
of an element x of a region A  is  with 

respect to  the first multiplication operator of  the region A. There is no 

multiplicative inverse of  an element x of  the region A  with respect to  the 

second multiplication operator „  ‟  and  with respect to  the third multiplication 

operator  „.‟. 
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The following proposition on a region  (A, ,*, )  over the field (F, +, .) is 

obvious, being inherited from its inner field (A, ,*)  for the results (i) and (ii),  

and  being inherited from the linear space (A, , )  for the results (iii) and (iv). 

 

Proposition 3.1 

In  a  region ( A, , *,  )  over  the  field ( F, +, . ),  for a, b  F and  for  x, y   

region A, 

(i)     if  x = y,  then  x z  =  y z   z  region A. 

(ii)    if  x = y,   then  x * z  =  y * z    z  region A. 

(iii)   if  x = y,  then  a x  =  a y    a  F. 

(iv)   if  a = b,  then  a z  =  b z   z  region A. 

 

 

The following result is true in region algebra.  

 

Proposition 3.2 

In  a  region  (A, ,*, )  over the field (F, +, . ),  for a  F and for  x ( 0A),  y   

region A,  if  y*x  =  a  x  then y = a 1A . 

 

Proof :      We have  y*x =  a  x 

                  (y *x) * x 
-1

  =  ( a x )* x 
-1

 

 

Applying  „No-scalar Associative Property‟ on LHS and „One-scalar Associative 

property‟ on RHS,  we get 
                      y * ( x * x 

-1
 )  =  a  ( x * x 

-1
 ) 

                 y  =   a  1A .        Hence proved.  

 

 

We now define Division operation in a region. It can be seen that there  are four 

types of distinct division operations in a region, unlike in a field or in a division 

algebra.  

 

3.2.9      Four types of  „Division‟  in a Region    

 

Let  ( A, , *,  )  be a  region over the field ( F, +, . ). We know that there are 

three types of multiplication operations in A. Consequently there are supposed to 

be three division operations in A. But we see that there are four types of division 

can be performed in this algebraic structure which are mentioned below. For all 

these four types of division,  we use a common notation/style  like   

 

min

numerator

deno ator
,  (assuming that there is no confusion). 
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Division Type-(1) :   

Division of an  „element of the region A‟ by another „element of the region A‟ 
 

  x, y (  0A)   region A,  the division of the element x  by  the non-zero 

element y  is  denoted by the notation 
x

y
,  and  is defined by  

                             
x

y
 =  x y 

-1
   or    y 

-1 x     (as they are commutative).  

This type of division is called by Type-(1) division.     

 

Replacing  x  by 1A   and  y by x   in the above,  we get the result                                                  

 
1A

x
 =  x 

-1   
 (where x  0 A ). 

 

Division Type-(2) : 

Division of  „an element of the region A‟  by „an element of the outer field F‟ 
 

 x A and  a ( 0F) F, the  division of  the region element x  by  the field 

element a  is denoted by 
x

a
,  and  is defined  by 

x

a
 =  a

-1 x . 

 

(It may be noted that an expression like  x  a
-1

  is not valid here in general, except  

for some particular regions).  

This type of division is called by Type-(2) division.     

 

Replacing  a by 1F , we  get the result 
1F

x
 =  x. 

Division Type-(3) : 

Division of „an element of the outer field F‟  by „an element of the region A‟ 
 

  a F  and   x ( 0A)  A,  the  division of  the field element a  by   the region 

element x  is  denoted by 
a

x
,  and  is defined by 

a

x
 =  a x

-1
 . 

(It may be noted that an expression like  x
-1 a is not valid here). This type of 

division is called by Type-(3) division.     

Replacing  a  by 1F , we  get the result  
1F

x
 =  x

-1
.      

 

NOTE 3.2 

From the two equalities x
-1  

= 
1A

x
 and 

1F

x
 =  x

-1   
(where x  0A),  we get the result   
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1A

x
 =  

1F

x
.      

i.e.     1A x
-1 

 =  1F x
-1

 

But  using Proposition 3.2  we observe that a cancellation-law  is not applicable to 

this result here,   and  consequently  the equality  1A = 1F   does not emerge to be 

necessarily true. According to Proposition 3.2  we get the result 1A = 1F 1A  

which is correct. The equality 1A = 1F  is not correct, it is absurd.   

 

Division Type-(4) :     

Division of „an element of the outer field F‟  by  another  „element of the 
outer field  F‟. 
 

This is in fact by virtue of the property owned by any field. In  the outer field ( 

F,+, . ) of the region ( A, , *,  ),  it is known by field theory  that  a, b ( 0F) 

 F, the division of the element a  by the non-zero element b  is  denoted by the  

notation 
a

b
,   and  is defined by 

a

b
  =  a. b

-1
  or  b

-1
.a,   (they are commutative).  

This type of division is called by Type-(4) division.     

 

 

NOTE 3.3     Invalid Cancellation :  two cases  

In Proposition 3.2  we have seen that  the equality  a  x = y*x    does not allow 

any kind of right-cancellation  in  the region A in general.  

Therefore,  the equality  
x

a
 = 

x

y
 does not allow any kind of cancellation  in the 

region A;  and also the equality 
a

x
 = 

y

x
 does not allow any kind of cancellation  

in the region A (in general, except  for some particular regions).  

 

3.2.10  Characterizations   

In this section an initial characterization of region is made.  It is earlier shown that 

the most useful results collectively of elementary algebra are valid in region, but 

not in any algebraic system by virtue of their respective definitions and 

independently owned properties. Region is the minimal platform which can 

provide validity, it is neither division algebra nor any existing algebra alone. May 

be few results of elementary algebra are true in division algebra, few are true in a 

F-algebra, few may be true in an Associative Algebra over a field F, but all the 

results collectively are valid in the unique algebra „region‟. That is the reason 

why region is unearthed and introduced with an independent and unique identity, 

and thus region is a subject area in its own right.   

 

Results  3.1 

In a region (A, , *,  )   over the field (F,+, .),   the following results are  

straightforward  x, y  A  and  a  F   (keeping in mind that  division  by 0A   
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or  by  0F   is not permissible) :-  

(i)     x n  x r  =  x n r            

(ii)    x n  x r =  x n r       

(iii)   x n  x r =  x n r  =  x 
– (n+r)

   

(iv)   ( x y ) 
n   

=  x
n  y

n
 

(v)  

n
n

n

x x

y y

 
 

 
 

(vi)  

n n

n

x x

a a

   
 

 

(vii)  

n n

n

a a

x x

   
 

 

where n and r are non-negative integers. 

 

Results  3.2 

The following results are true in a region (A, ,*, ) over the field (F, +, .), being  

inherited from the definitions  and  properties  of   the  inner field  (A, ,*)  and  

the outer field (F, +, .),  and also from the linear Space  (A, , ),  and  are listed 

below for the sake of one perusal just : - 

 x  A  and   a  F,   

(1) 0F  x   =  0A        

(2) a   0A   =  0A 

(3) 0F  0A  =  0A 

(4) 0F  0A   0F 

(5) 1F  x    =  x 

(6) 1A x   =  x    

(7) 1F  1A    1F 

(8) 1F  1A  =  1A 

(9)  a  1A    a       

(10) 1F  0A   1F 

(11) 1F  0A  =  0A     

(12) 0A x   =   0A 

(13) 0A x     0F 

(14) 1A  ~ 1A   =  0A 

(15) 1F  -  1F    =  0F 

(16) 
0A

x
 and 

0F

x
  are meaningless. 

(17) 
0A

a
 and 

0F

a
  are meaningless. 

 

Proposition 3.3 

In a region  (A, , *,  )   over the field ( F, +, . ),  x, y  A  and  a   F   
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(keeping in mind that division by 0A or by 0F  is not permissible)  the following 

results are true :- 

(i)    x  A,  ~ ( ~ x )   =   x                

(ii)   x ( 0 A )A,   (x 1 ) 1 =  x 

(iii)   ~ (x y )  =  (~x) (~y) 

(iv)    ~ ( x 1 )  = ( ~ x ) 1        

(v)   (x y) 
-1  

=  x
-1  y

-1
 

(vi)  ~ (x y)  =  (~x) y  =  x (~y) 

(vii)   ~ 
x

y
 = 

x

y


 = 

x

y
        

(viii)  ~ 
x

a
 =  

x

a


  =  

x

a
          

(ix)  ~ 
a

x
 =  

a

x


  =  

a

x
         

(x)   

1

x

y


 
 
 

=  
1

1

x

y





 
 
 

 = 
y

x
 

(xi)   

1
x

a


 
 
 

=  
1

1

x

a





 
 
 

 
 
= 

 a

x
 

(xii)   

1
a

x


 
 
 

=  
1

1

a

x





 
 
 

 
 
= 

 x

a
 

(xiii)    x (a y)  =  a (x y) 

 

Proof :     All the results are straightforward.  

 

Proposition 3.4    

In a region  (A, , *,  )   over the field ( F, +, . ),   x  A,        

                     ~ x   =  (-1F)  x  =   (~1A)  x 

Proof :  We  know    0A  =  0F x 

  or,    0A   =  (1F + (-1F ) )  x 

  or,    0A   =  1F x (-1F ) x 

  or,    0A   =      x (-1F ) x 

  or,   (~ x)0A   =  (~ x) (x (-1F ) x)  

  or,   ~ x  =  (-1F ) x    which is the result. 

Again, we have  

         0A  =    0A x 

or ,   0A   =   (1A  (~1A ) ) x 

or , 0A  =    1A x   (~1A ) x 

or,  0A  =     x (~1A ) x 

or,  ~x0A  =   ~x ( x (~1A ) x ) 

or,  ~x  =  (~1A ) x ,    which is the result. 
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Proposition 3.5 

In an infinite region A =  (A, ,*, )  over the field ( F, +, . )  where the 

characteristic of A is zero,  if  a  x = 0A  then  either  a = 0F  or  x = 0A, where x 

A and  a F.  

 

Proof :  We have   a  x  = 0A . 

If  x  0A,  then 

or,  (a x)  x 1 =   0A x 1  

or,    a 1A =  0A  

   a = 0F  

Otherwise,   if a   0F,  then 

      a 1  (a x)  =  a 1  0A 

or,  (a 1 . a)  x  =  0A  

or,  1F  x  =  0A  

or,   x =  0A    Hence the result.  

 

In a region (A, ,*, )  over  the field (F, +, .),  we  know  that  a   F  and  x 

 A, the element (a  x)  is  in A. Therefore, (a  x)  possesses its additive inverse 

in the region A. Also, if it is not the zero-element of the region A  then it 

possesses its multiplicative inverse too in the region A.   

 

The following proposition defines the additive inverse  of  the element  (a x)  in 

the region A.  

 

Proposition 3.6 

In a region ( A, ,*, )  over the field ( F, +, . ),   x  A  and  a   F,   

                ~  (a x)  =  (-a) x  =  a (~x) 

Proof :    (a x) ( (-a) x) 

  =  ( a + (-a) )  x 

  =  0F x 

  =  0A 

     ~ (a x)  =  (-a) x 

In a similar way, we can also prove that  ~ (a  x)  =  a  (~x). 

 

The following proposition defines the multiplicative inverse of the element  (a x)  

in the region A. This important result is not valid in a division algebra, in general.  

 

Proposition 3.7 

In a region (A, ,*, ) over the field (F, +, .),  x ( 0A) A and  a ( 0F)F,  

(a x) 1
 =  a 1  x 1  . 

Proof :           (a x) ( a 1  x 1 ) 

 =   (a . a 1 ) (x x 1 ) ,  using compatibility property of region A. 

 =   1F 1A 

 =   1A 



224                                                                                                        Ranjit Biswas 

 

 

Therefore,  (a  x) 1 =  a 1  x 1  . 

 

The following important result is also not valid in a division algebra, in general.  

Proposition 3.8 

In a region (A, ,*, )  over the field ( F, +, . ),   for x, y  A  and  for a, b F,   

if  b  and y  are not zero elements  then  

        
a

b


x

y
  =  

a x

b y




           

Proof :         
a

b


x

y
   =   (a . b

-1
)   (x*y

-1
)     

              =   (a  x) * (b
-1

  y
-1

)   

                  =   (a x) * (b y)
-1

   

                                    =   
a x

b y




 

 

The results of the following proposition are straightforward in a region. 

 

Proposition 3.9 

In a region (A, ,*, )  over the field ( F, +, . ),  x, y A  and  a, b   F   

(keeping in mind that  a  zero element have its inverse),   

(i) ( a (x y) ) 1
 =  a 1  x 1  y 1  

(ii) ~ ( a  (x y) )   =  (-a) (x y) 

                                         =  a ( (~x) y ) 

                                         =  a ( x (~y) ) 

(iii)      (a x b y) 
-1

    =   ( a 1  x 1 ) ( b 
-1 y 1 ) 

(iv)      ~ (a x   b y)   =   ( ~(a x) ) (b y)   =   (a x) ( ~(b y) ) 

(v)       ( (a.b)  x ) 1   =   (a 1 . b 1 ) x 1  

(vi)      ~ ( (a.b)  x )  =  ((-a) . b)  x  =  (a . (-b))  x  =  (a.b) (~x) 

 

Many of the frequently practiced cancellation laws are not valid in a Division 

Algebra or in any existing standard algebraic structure alone, by virtue of their 

respective definitions and independently owned properties.   

For example,  the result  

 

                               

a x

a y




  =  
x

y    

 

 

is not valid in a Division Algebra or in any existing standard algebraic structure 

alone, by virtue of their respective definitions and independently owned 

properties.  But this is well valid in a region.  

 

The following cancellation laws are valid in a region and thus ensures the 

superiority of region over any existing algebraic structure as a single brand.  
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Proposition  3.10         Cancellation Laws  

Let  (A, ,*, )   be a region over the field (F, +, . ).  Since  (A, ,*)   is a field,  

the following cancellation laws hold good in a region  (A, ,*, )   by virtue of 

inheritance  :- 

(1)    If   xy  =  x z,  then  y = z     where  x, y, z  A. 

(2)    If   xy  =  zy,  then  x  = z    where  x, y, z  A. 

(3)    If   x y  =  x z  where  x  0A ,   then  y = z   where  x, y, z   A.  

(4)    If   x y  =  z y  where  y  0A ,   then  x = z   where  x, y, z   A. 

 

However,  it can be easily shown that the following two cancellation laws too  

hold  good in a region A  :- 

(5)    If  a  x = a y  where  a   0F,  then  x = y  where  x, y  A  and  a   F.   

(6)    If a  x  = b x   where  x   0A,   then a = b  where  x   A  and  a, b   F. 

 

Besides the above six,  there are a number of  kinds of cancellation operations 

valid in  the  region (A, ,*, )  over  the  field  (F,+, .),  few of  which  are  

quoted below :- 

 

If  x, y  A and a, b  F,  then 

(7)     If (a.b) x  =  (a.c) y     where  a 0F,  then b x = c y.  

(8)    
a x

a y




 = 
x

y
,  where a 0F  and  y 0A. 

(9)    
( )

( )

a b x

a c y

 
 

  =  
b x

c y




,  where  a 0F.    

(10)    
( )

( )

a c x

b c y

 
 

  =  
a x

b y




 ,  where  c 0F.    

(11)    
( )

( )

a x y

b x z

 
 

 = 
a y

b z




, where  x 0A.    

(12)   
( )

( )

a x y

a z t

 
 

 = 
x y

z t




,  where  a 0F.     

 

Proof :       Although the proof of all the above results are straightforward,  

nevertheless we present below the proof of one result  (of result-(8)).  

      
a x

a y




 =  (a x) (a y)
-1

 

      =  (a x) (a
-1  y

-1
)     

                 =  (a.a
-1

) (x  y
-1

),   using compatibility property of region A. 

                 =  1F  (x y
-1

) 

                 =   x y
-1

 

      = 
x

y
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NOTE 3.4 

Proposition 3.2  states  that  in a region (A, ,*, )  over the field (F, +, .),   for a 

 F  and  for  x ( 0A),  y region A,   if  y*x  =  a x   then y =  a  1A,   and   

thus  there is no kind of  right cancellation  holds good  here.     

 

Proposition 3.11 

In a region (A, ,*, )   over the field (F, +, .),   the following results are true 

(keeping in mind that division by  0A  or  0F  is not permissible) :- 

If  x, y, z, t  A,  and  a, b, c, d  F,    then  

(i) 
x

y


z

t
  =   

x z

y t




 

(ii)      
x y

z


 =  

x y

z z

      
   

 

(iii)      x 2 ~ y 2 =  (x y) (x~y) 

(iv)     
x

y
 z

t
 =  

( ) ( )x t y z

y t

  


,      

(v)      
a x b y

c z

  
  

=  
a x b y

c z c z

              

=  
a x b y

c y c z

              
      

 

 

Proof :       All the results are straightforward,  nevertheless we present the proof 

of result-(iv)  here. 

      
x

y
 z

t
 

 =    ( x y
-1 

) ( z  t
-1

 ) 

  =    ( (x t) (y
-1

  t
-1

) )  ( (y z) (y
-1

  t
-1

) ) 

 =    ( (x t) (y z) )  (y
-1

  t
-1

) 

 =    ( (x t) (y z) )  (y t)
-1

 

 =    
x t y z

y t

  


 

 

The results of the following proposition is also straightforward in any region, but 

not true in a Division Algebra in general. 

 

Proposition 3.12 

In a region (A, ,*, ) over the field ( F, +, . ),  for any non-negative integer n,   if  

x  A  and   a, b  F  then the following results are true. 

 

(i)    (a x) n
 =  a n  x n  

(ii)  

n

a x

b y

 
  

= 
n n

n n

a x

b y




 = 
n n

n n

a x

b y
  

 
where  b 0F   and y 0A. 
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NOTE 3.5      
The equality  a  x = b y  implies the following equalities  (keeping in mind that 

division by 0A or by 0F  is not permissible)  : 

(i)  
1F

b
 x  =  

1F

a
 y . 

(ii)   a
1A

y
 =  b 1A

x
. 

(iii)  
x

b
 = 

y

a
        

(iv)  
a

y
 = 

b

x
. 

But it is important to observe that the  equality  a  x = b y   in a region can not 

imply that 
a

b
=

y

x
. In fact this is an invalid and absurd equality, although both 

a

b
 

and  
y

x
 are individually meaningful. However, it surely implies the following 

equalities :- 

(i)  
y

x
= 

a

b
 1A              (ii) 

x

y
 =  

b

a
 1A 

 

One of the most useful and most important properties fluently used by the 

mathematicians in their daily practices is „Cross Multiplication Property‟.  The 
following simple Cross Multiplication Property is not valid in a division algebra 

alone or in any existing standard algebraic structure alone, by virtue of their 

respective definitions and independently owned properties. But the „Cross 
Multiplication Property‟ is well valid in a region A. 
 

Proposition 3.13         Cross Multiplication Property 

In a region (A, ,*, )  over the field (F, +, .),  the Cross Multiplication Property 

is well valid.   i.e.    

      If 
a x

b y




 = 
c z

d t




,  then (a.d) (x t)  =  (b.c) (y z)   and  conversely,      

where  x, y, z, t  A,  y 0A t  and  a, b, c, d  F,  b 0F d. 

 

Proof :    We have  
a x

b y




 = 
c z

d t




 

i.e.  (a x) (b y)
-1

  =  (c z) (d t)
-1

 

or,  (a x) (d  t)  =  (b y)  (c z)  

or,  (a.d) (x t)  =  (b.c) (y z).    

 

Proposition 3.14 

In a region (A, ,*, )  over the field (F, +, .),   if  a x = b y  then     
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a x

b y




 = 1A   and  conversely,         

 

where  x, y  A,  a, b  F  and  b y   0A.     

 

The so important result (result-(ii) below) of Componendo & Dividendo  Rule is 

not valid in a Division Algebra alone or in any existing standard algebraic 

structure alone, by virtue of their respective definitions and independently owned 

properties. But the Componendo & Dividendo Rule is well valid in a region A. 

 

Proposition 3.15         Componendo & Dividendo  Rule 

In a region (A, ,*, )  over the field (F, +, .),  the following „Componendo &  
Dividendo‟ rules are well valid:    

(i) If 
x

y
= 

z

t
,   then 

x

y
= 

z

t
  =  

x z

y t




  = 
~

~

x z

y t
 ,    

            where x, y, z, t  A,   and  denominator   0A.    

(ii)    If 
x

y
= 

z

t
,  then      

        

x

y
 =  

z

t
  =  

( ) ( )

( ) ( )

a x b z

a y b t

  
  

  =  
~

~

a x b z

a y b t

 
 

  

where  x, y, z, t  A,  and  denominator 0A.    

 

Proof :        

(i)   We have 
x

y
 = 

z

t
    

or,   x y
-1

  =   z t
-1

 

or,   (x y
-1

) (y t)  =  (z  t
-1

)  (y t) 

or,   x t  =  z y 

or,   x yx t  =  x y z y 

or,   x (y t)  =  (x z) y 

or,  
x

y
 =  

x z

y t




 

In a similar way we can establish that  

x

y
 = 

~

~

x z

y t
.    Hence the result. 

 (ii)    We have 
x

y
= 

z

t
 

 Now, 
x

y
 =  x y

-1
 

 =  (a.a
-1

)   (x  y
-1

),    

 =  (a x)   (a
-1   y

-1
),   using compatibility property of region A. 

 =  (a x)   (a  y)
-1 
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 =  
a x

a y




 

Similarly, we can also establish that 
z

t
 = 

b z

b t




 .  

Now, we have 

 

x

y
 = 

a x

a y




 = 
b z

b t




 = 
z

t
 

Applying now the result (i),  we have  

 

x

y
= 

a x b z

a y b t

  
  

 = 
~

~

a x b z

a y b t

 
 

 = 
z

t
 .         

 

3.2.11 Characteristic of a Region 

In Region Algebra, the characteristic of a region A denoted char(A)  is defined to 

be the smallest number of times one must use its multiplicative identity 1A  in a 

sum to get the additive identity element 0A.  A region is said to have characteristic 

zero if this sum never reaches the additive identity.  For example, for the region 

RR we have Char(RR) = 0.  

 

3.3     Categories of  Regions 

In this section three special types of regions are discussed which are useful in 

Region Mathematics.  

 

3.3.1 Real Region  

A region  (A, ,*, )  over the field ( F, +, . ),  is  called  a  Real Region  if  its 

outer field  F  is the classical field  R  of real numbers.      

Example 3.5        
The regions RR, C  are examples of real region. 

 

The following simple results/formulas (Proposition 3.16, 3.17, 3.18)  are  very 

useful and important results valid in regions,  but all these collectively are not 

valid in general in a division algebra alone or in any of the existing classical 

algebraic structures alone by virtue of their respective definitions and 

independently owned properties.   

These results reduce to the corresponding important classical results of elementary 

algebra as special cases.  
 

Proposition  3.16 

The following results hold good in a real region (A, ,*, ) :  

(i)     (1Ax) 2 =  1A2 xx 2 ,     x  A 

(ii)    ( xy) 2 =   x 2 2 x yy 2 ,     x, y  A 

(iii)   (x ~ y) 2 =  x 2 ~ 2 x yy 2 ,      x, y   A 

(iv)   (xy) 
3
  =  x

33 x
2 y3 x y

2y
3
,      x, y  A 

(v)    (x ~ y) 
3
  =   x

3
 ~ 3 x

2 y3 x y
2
  ~ y

3
,     x, y  A 
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However, the above results in general are not true in a region which is not a real 

region.  A generalized result is given below. 

 

Proposition  3.17 

In a real region  (A, ,*, )   the following equality is valid  x, y   A :      

                 ( xy ) 
n
   =  

0

n

r


n

r

 
 
 

   ( x
n-r

  y
 r
) 

where the notation  stands for summation over the symbol   of  first addition 

operator of the region A,  and  n is a positive integer.   

(However,  this result in general is not true in a region  if  it is not a real region). 

 

NOTE 3.6 

The RR region is the actual algebraic structure in which most of the results, 

expressions, equalities of school algebra are studied and taught.  In RR region, the 

results of Proposition 3.16 & Proposition 3.17  are being written in traditional 

style as below :- 

 

(i)   ( 1  + x ) 2  =  1  +  2x  +  x 2  

(ii)   ( x + y ) 2  =  x 2   +   2xy  +  y 2  

(iii)  ( x  - y ) 2  =  x 2   -   2xy  +  y 2  

(iv)  ( x + y ) 3  =   x
3
  +   3x

2
y  +  3xy 2  +  y

3
 

(v)  ( x - y ) 3   =   x
3
  -   3x

2
y   +  3xy 2  -  y

3
 

(vi)  ( x + y ) 
n
   =   

0

n

r


n

r

 
 
 

 x
n-r

  y
 r
 

which are taught at secondary school level to the students.  

 

 

The following results are also not valid in a division algebra alone or in any of 

the existing classical algebraic structures alone by virtue of their respective 

definitions and properties, but well valid in a real region.   

 

Proposition  3.18 

If  (A, ,*, )  be a real region, then  the following results are true   x, y   A   

and    a, b  R  :  

(i)   ( a xb y ) 2
  =    a

2  x
2 b

2 y
2  (2.a.b)  (x y). 

(ii)   ( a xb y ) n
  =   

0

. ( )
n

n r r n r r

r

n
a b x y

r

 



  
   

  
 . 

 

NOTE 3.7 

However,  in RR region  the above results  are written in traditional style as  

below :- 

            (i)   ( ax + by ) 2  =   a
2
x

2   
+  b

2
y

2  
+ 2abxy 
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           (ii)   ( ax + by ) n  =  
0

n
n r r n r r

r

n
a b x y

r

 



  
  
  

  

 

3.3.2 Region over a Region  (ROR)  

Let   (A, , , )  be  a  region  over  a field  (F, +, . ). If  the  algebraic  system 

(F, +, . , . )  itself be a region over a field  ( K,  ±,  . ),  then we say that A is a  

„Region over a Region‟ (or, ROR). In such case the region F is called the „base 
region‟ of  the ROR A. 
 

3.3.3 Region over a Real Region (RORR)  

If the base region is a real region, then  A is called a „Region over a Real Region‟ 
(or, RORR).      

An example of RORR is the region RR.  

 

Proposition  3.19 

If  A =  (A, , , )   is  a  region  over  a  real region F,  then   x   A     

(i)     xx  =   (2.1F)  x 

(ii)  
1

n

r

x

  =  (n.1F)  x 

 Proof :  xx  =  ( 1F x) (1F x)  

   =  (1F +1F) x 

   =  (1.1F +1.1F)  x 

   =   (2.1F)  x         Hence the result. 

The result (ii)  can be proved similarly.  

 

Proposition  3.20 

If  A = (A, , , )  is  a  region  over  a  real region F, then  x, y   A     

(i)   (1Ax) 2  =  1A (2.1F) x x 2  

(ii)   (xy) 2
  =   x 2   (2.1F) x y y 2  

(iii) (xy) n
  =   

0

.1
n

n r r

F

r

n
x y

r





  
   

  
    where  x 0 = 1A  and a 0 = 1F. 

(iv)   (a xb y) 2
  =    a

2  x
2 b

2 y
2    (2.(a.b)) (x y) 

(v)   (a xb y) n   =   
0

( )
n

n r r n r r

r

n
a b x y

r

 



  
     

  
  

 

The following  results are straightforward. 

Proposition 3.21 

If the region  (A, , , )  is a real region, then  x, y  A the following results 

are true  (not necessarily true in general if the region A is not a real region) :- 

       (i)   x 2 y 2  =  (x y) 2 ~ 2. (x y) 

                             =  (x~y) 2 2.(x y) 
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(iii)  (x ~ y) 2    =  (xy) 2 ~ 4.(x y) 

(iv)  ( xy ) 2
 =  (x~y) 2 4.(x y) 

(iv)  x 3 ~ y 3
  =   (x~y) (x 2 x yy 2 ) 

                =   (x~y) 3   3. ( (x y) * ( x~y) ) 

(v)   x 3 y 3    =   (xy) * (x 2 ~ x yy 2 ) 

                        =  (xy) 3 ~ 3.( (x y)  (xy) ) 

 

There are many algebraic problems of elementary algebra at secondary school 

level which we solve without knowing the identity of the minimal algebraic 

structure based upon which we are having our right to solve them.  For example, 

the following problem is a very simple problem of school level „elementary 
algebra‟ which can not be solved in general  in groups alone, or in rings alone,  or 

in modules, fields, module, linear spaces, algebra over a field, associative algebra 

over a field, division algebra alone or in any existing classical algebraic structure  

alone, by virtue of their respective definitions and independently owned 

properties. But these problems can well be solved in a region or in an algebraic 

structure which is at least a region.  

 

Problem 3.1. 

Obtain an expression for x in terms of y and t from the following equation in the 

real region  (A, , , )  :      

                3 x*y  =  2  y3 t ,     

where  x , y (  0A),  t   A.   

 

Solution :     We have the following equation  in the region A :   

                    3 x * y  =  2 y3 t 

Using the properties of region, we then can write 

         
1

3
 (3 x*y)     =    

1

3
 (2 y   3 t )                        

        or,          
1

3
3

  
 

 (x*y)    =   
1

(2 )
3

y
   
 


1

(3 )
3

t
   
 

 

        or,           1F (x*y)     =     
1

2
3

  
 

 y  1
3

3

  
 

 t 

        or,  x*y    =   
2

3
 y1F  t 

        or,  x*y    =   
2

3
 y t 

        or,    ( x*y )*y 
-1

   =   
2

3
y t

   
 

*y 
-1   

 

        or,     x * ( y * y 
-1 

)   =   12
( )

3
y y

   
 

 ( t * y 
-1

 ) 
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        or,      x*1A   =   
2

1
3

A

  
 

 ( t * y 
-1

 ) 

        or,      x    =   
2

1
3

A

t

y

 
  

 
,  which is the solution. 

 

 

An interesting analysis of the above solution steps is presented in NOTE 3.8. 

 

 

NOTE 3.8   

 

Let us analyze now the solution to the above Problem 3.1 slightly in a different 

way to feel the unique potential of „Region‟.  For this, we begin with an element 

of imagination mentioned in (i) and (ii) below.  

 (i) Imagine that the identity of the algebraic structure A  in the above Problem 3.1  

is “unknown” to us at this moment,  and  

(ii) let us also accept that the solution steps presented above are well valid and 

correct in this “unknown” algebraic structure A (without borrowing the 

cooperation of any other algebraic structure other than A).  

 

Now in the above solution steps, it can be carefully observed that :-   

There are few steps which are allowed by virtue of the definition and properties of 

„vector space‟, and there are few steps which are allowed by virtue of the 
definition and properties of „division algebra‟.  It is obvious that a „division 
algebra‟ can not give license to all the steps of the above mentioned solution-

method by virtue of its definition and independently owned properties (for 

example, „compatibility with scalars‟ is not a licensed step in division algebra, 
even not the commutative property). Besides that, see that few division operations 

are executed in the solution steps. Hence A can neither be just an „algebra over a 

field‟ nor  an „associative algebra over a field‟.    
 

Consequently, considering the validity of all the involved operations collectively  

in the steps of the above mentioned solution-method, it is now obvious that this 

unknown algebra A has to be at minimum a „region‟, not less  (i.e. not a Division 
Algebra, not any of the existing standard algebraic structures). Otherwise, the 

above problem can not be solved for x in the algebraic structure A.    

 

4.     Conclusion 
 

The work to introduce the new algebraic structure “Region” was not initiated in 
my mind with any pre-posed problem or plan. I did not have any pre-proposed 

synopsis for it. It was an accidental development in my mind  while I observed 

that in general the existing standard algebraic structures  viz.  groups, rings, 

modules, fields, linear spaces, algebra over a field, associative algebra over a  



234                                                                                                        Ranjit Biswas 

 

 

field, division algebra, etc. can not validate many of the fundamental and classical 

equalities, identities,  expressions, equations, formulas, results of  “elementary 
algebra” (of secondary school level or higher level)   by virtue of their respective 
definitions and independently owned properties. Few examples are presented and 

explained in Case-5 in section-3.1, but there exist an infinite number of such 

examples.  The „Abstract Algebra‟ as a subject needs to identify an appropriate 
but minimal algebraic structure, on the platform of which the most practiced 

classical equalities, identities, expressions, equations, formulas, results of 

elementary algebra stand valid,  can be computed and can be verified to be true.  

Yes, it is fact that an infinite number of algebraic structures can be defined by an 

algebraist if he desires,  but the objective of this work is not just for introducing a 

new one. The objective is very much genuine as „Region‟ is highly significant to 

all the branches of mathematics. The existing literature on Abstract Algebra is so 

rich and voluminous that it does not need any new algebraic structure which is 

redundant.  The sole objective of this work is to introduce “Region” because it  

provides the minimal platform to make the fundamental and classical equalities, 

identities, expressions, equations, formulas, results, etc. valid  (i.e. can be 

computed and verified); to provide us an algebraic right to use the standard and 

most practiced equalities, identities, expressions, equations, formulas, results, etc 

of it fluently in the everyday algebraic computations. Identifying this minimal 

algebraic structure and then defining it uniquely with an independent self-identity 

is therefore important for us. Consequently in Section-3 a new but very sound and 

complete algebraic structure called by “region”  has been introduced. Various 
properties of the algebraic structure „regions‟ are studied, and a lot of 

characterizations is done. Region in a very hidden way has been happening to be  

the most practiced algebra in the study of Science, Technology, Engineering, etc. 

Considering the enormous unique potential of “Region” to give license to the 
mathematicians to practice the existing simple and useful results, equalities, 

identities, formulas etc. of elementary algebra, we can not ignore the deserving 

and genuine claim of “Region Algebra” to have a self independent identity. The 

region algebra is applied in the newly discovered “NR-Statistics” (Biswas[9]) in 

which the population data are not always real numbers but any kind of other real 

life objects (viz. a population of 50 paints of beautiful TAJMAHAL by 50 junior 

artists in a school level competition held at Calcutta High school, a collection of 

10 X-ray images of a patient during last ten days in Calcutta Medical Hospital, 

etc). In “NR-Statistics” various new statistical region measures [9] like: region 

mean, region standard deviation, region variance, etc. with algebraic approach 

were studied for real life NR-populations. The region algebra is also applied in the 

application areas of heterogeneous Data Structure „r-Atrain‟ for Big Data 
(Biswas[10]), in the mathematical Theory of Solid Matrices and Solid Latrices.  

 

The subject Abstract Algebra can not be complete and sound without „region‟, the 
most important algebraic structure of it as justified in length in this work.  

Philosophically, if we consider the evolution of various algebraic structures,  in 

particular considering their flexible roles and volume of contributing capabilities  



„REGION‟ : The unique algebraic structure in abstract algebra                        235 

 

 

towards the subjects from „elementary algebra‟ to „higher algebra‟, we could 
visualize the unique location of “Region” as mentioned below:   

Group → Ring → Field → Linear Space →  Division Algebra → Region. 
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