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Dengue is a mosquito-transmitted virus infection that causes epi-

demics of febrile illness and hemorrhagic fever across the tropics and

subtropics worldwide. Annual epidemics are commonly observed, but

there is substantial spatiotemporal heterogeneity in intensity. A

better understanding of this heterogeneity in dengue transmission

could lead to improved epidemic prediction and disease control. Time

series decomposition methods enable the isolation and study of

temporal epidemic dynamics with a specific periodicity (e.g., annual

cycles related to climatic drivers and multiannual cycles caused by

dynamics in population immunity). We collected and analyzed up to

18 y of monthly dengue surveillance reports on a total of 3.5 million

reported dengue cases from 273 provinces in eight countries in

Southeast Asia, covering ∼107 km2. We detected strong patterns

of synchronous dengue transmission across the entire region,

most markedly during a period of high incidence in 1997–1998, which

was followed by a period of extremely low incidence in 2001–2002.

This synchrony in dengue incidence coincided with elevated temper-

atures throughout the region in 1997–1998 and the strongest El Niño

episode of the century. Multiannual dengue cycles (2–5 y) were

highly coherent with the Oceanic Niño Index, and synchrony of these

cycles increased with temperature. We also detected localized trav-

eling waves of multiannual dengue epidemic cycles in Thailand, Laos,

and the Philippines that were dependent on temperature. This study

reveals forcing mechanisms that drive synchronization of dengue

epidemics on a continental scale across Southeast Asia.
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Dengue virus (DENV) is an arbovirus transmitted by Aedes
mosquitos in the tropics and subtropics of the world. The virus

causes an estimated 390 million infections per year, resulting in 96
million clinically symptomatic cases (1). DENV has four serotypes
(DENV-1, DENV-2, DENV-3, and DENV-4) that each circulate
worldwide. The spatial propagation of dengue transmission at short
distances by the mosquito vector is well-understood, but the
mechanism of long-distance spread has remained unclear. Disease
transmission over large geographical distances is difficult to
measure directly, but epidemiological coupling of locations
revealed by synchrony in population-level disease patterns has
been used successfully in the past to infer mechanisms of spread

(2–4). For example, synchrony and its spatial hierarchies in-
dicated that measles in the United Kingdom spread from urban
centers to rural areas through a mechanism of fadeout and
reintroduction (2). Other studies have suggested that influenza in
the United States spreads through workforce commuting (3) and
that dengue spreads along a major road in Cambodia (5). Studying
epidemic synchrony requires data at high spatiotemporal resolu-
tion for a large sample of locations. Data limitations have restricted
previous studies on disease spread and synchrony to small geo-
graphical areas within country boundaries. Given the increased
(cross-border) mobility of populations, strong evidence of global
warming, and potential for rapid, global spread of highly pathogenic
infectious diseases, a better understanding of the mechanisms of
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long-distance disease spread and spatial synchrony is becoming
essential for global health security.
Some infectious diseases in endemic settings, such as dengue or

influenza, occur annually in well-defined cycles that depend on
climate factors, such as precipitation. In addition to an annual
cycle, significant variability at multiannual periodicities has been
observed for dengue (6, 7). This multiannual periodicity is thought
to be driven by cycling of immunity in the host population and has
been observed to vary over time (6). To better understand the
spatiotemporal dynamics of large epidemics, previous studies used
various time series decomposition methods to isolate multiannual
oscillations from background annual cycles and higher frequency
noise. For example, previous work on disease spread focused on
the 1.5–3 y cycle for measles (2), the 3.5–4.5 and 5–6 y cycles for
pertussis (8), and the 2–3 y (9, 10) and 3–4 y cycles (6) for dengue.
Whereas mechanisms that cause spatial patterns of multiannual

cycles of diseases, such as measles and pertussis, are known (2, 4,
11), these mechanisms remain unclear for dengue. Previous studies
have suggested that immunity-driven extinction–reintroduction dy-
namics of DENV serotypes can play a role, particularly around
urban centers (6, 12). The role of multiyear climate variation has
also been studied but without consistent results (13).
We studied the synchrony of multiannual dengue cycles across a

large geographical area of eight countries in Southeast Asia that
span 3,500 km east to west by 2,500 km north to south, with a
combined population of 320 million in 2010. We used monthly
dengue surveillance data that represent ∼3.5 million reported cases
at the provincial level. High dengue transmission rates across all
countries combined with extensive diversity in population density,
climate, and geology make this region ideal to investigate the long-

distance spread of major dengue epidemics that occurred in this
region during the past decades.

Results

Strong Region-Wide Synchrony of Dengue Transmission. We found
strong synchrony across the entire region of multiannual dengue
cycles and also, for annual cycles and unfiltered incidence rates
(IRs) (Figs. 1A and 2). The average power (amplitude) of statis-
tically significant multiannual cycles changed over time and was
the highest in 1993–2004 (Fig. S1A). In comparison, the average
power of annual cycles was more constant over time but reduced
in 1997–2001 (Fig. S1B). We found few statistically significant
multiannual cycles in the northern provinces and few annual cycles
in the north and the south. Temperatures were too low in the
north and too constant in the equatorial south to support cyclical
dengue transmission. Synchrony of multiannual cycles changed
over time, with the strongest median synchrony of 0.59 (inter-
quartile range = 0.48–0.76) in the 1996–2000 time window (Fig. 3).
In comparison, the regional median for annual cycles was con-
sistent over time, ranging between 0.50 and 0.64. The median
synchrony of the unfiltered IRs fell between that for the annual
and multiannual cycles. Using the average wavelet coherency of
dengue cycles as an alternative metric for synchrony over time, we
found equivalent patterns (Fig. S1 C and D). Using the entire time
series, the average synchrony decreased as the distance between
province pairs increased up to ∼1,000 km. (Fig. S2). Synchrony of
multiannual cycles peaked at 0.55 [95% confidence interval (95%
CI) = 0.45–0.67] compared with annual cycles at 0.70 (95% CI =
0.64–0.75) at short distances.

Fig. 1. Monthly dengue IRs (per 100,000 people) and longitudinal climate indicators. Monthly dengue IRs for each province ranked by latitude and monthly climate
indicators for corresponding latitudes and time periods.Upper showsmedian values across provinces or latitudes. NA, not available. (A) Monthly dengue IRs per 100,000
people that have been centered and reduced into z scores, log10-transformed, detrended, and imputed. We imputedmissing data by random draws from values of the
same months but for different years (Fig. S3). (B) Map of the study provinces by latitude. (C) Average monthly temperature in degrees Celsius from gridded data
covering the entire region averaged by latitude and centered and reduced into z scores. (D) The same as C but for total monthly precipitation (millimeters).
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Climate Forcing of Synchrony. The strong synchronization of mul-
tiannual dengue cycles in 1997–2001 coincided with high tem-
peratures across most latitudes (Fig. 1C) but not with an anomaly
in precipitation (Fig. 1D). High temperatures in these years were
related to the strongest El Niño episode of the past century (14,
15). We measured a strong wavelet coherency (>0.8) between
multiannual dengue cycles and the Oceanic Niño Index (ONI)
during 1993–2002 and during 2009–2010 for almost all provinces
(Fig. 4). Wavelet coherency for the latter period should be
interpreted with caution, because it is at the end of the time series
and subject to edge effects. Synchrony of multiannual dengue
cycles in the 1997–2001 time window was reduced in a corridor
running from Laos to eastern Cambodia (Fig. 3B and Fig. S4A).
This area is characterized by high altitude and low temperatures
and includes the Annamite Mountain Range (Fig. S4). When
studying synchrony between each of 12 major cities in the region
and all other provinces, we found two clusters of cities: one cluster
consisting of Bangkok, Singapore, Zamboanga (the Philippines),
Davao, Cebu, and Taipei, that was synchronous with the Annamite
corridor, and a second cluster consisting of Phnom Penh, Vientiane,
Hanoi, and Kuala Lumpur, that was synchronous with the
Annamite corridor (Fig. S4). These clusters of different synchrony
suggest at least two separate networks of epidemiologically con-
nected areas in this region, possibly determined by temperature.
Indeed, using a linear regression, we found that synchrony of
multiannual cycles was stronger at higher temperatures: synchrony
increased with 0.029 for each 1 °C increase in temperature (95%
CI = 0.026−0.031) (Table S1). For annual cycles, this coefficient
was much lower at 0.004 (95% CI = 0.002−0.005). These results
suggest that temperature plays a significant role in the spread of

major dengue epidemics. Interestingly, we also found a negative
association between population density and synchrony for both
annual (β = −0.088/log10 population density per km2) and multi-
annual (β = −0.037/log10 population density per km2) cycles. This
association suggests that more densely populated areas may be able
to determine their own nonsynchronous dynamics as independent
“pacemakers” instead of phase-locking dynamics with other areas.

Traveling Waves of Multiannual Cycles.We detected traveling waves
of multiannual dengue cycles in various parts of the region. We used
the phase difference θ to determine the difference (in months) in
epidemic timing between provinces. A province could have either a
positive- or negative θ compared with another province. A positive
θ indicated that a province was timed earlier (leading ahead) vs. the
other, and a negative θ indicated that a province was timed later
(lagging behind). Outgoing traveling waves can emerge from a
province with epidemic dynamics timed ahead of others. In contrast,
a province with epidemics lagging behind others could experience
an incoming traveling wave. For each province separately, we tested
for the presence of local incoming or outgoing traveling waves. For
provinces that were lagging behind (θ < 0), we defined an incoming
traveling wave as a decreasing lag time with decreasing distance.
For provinces that were leading ahead (θ > 0), we defined an
outgoing traveling wave as an increasing lag time with increasing
distance; 28 provinces had statistically significant incoming travel-
ing waves of multiannual dengue cycles, and 33 had outgoing
traveling waves (Fig. 5). Provinces with outgoing traveling waves
were located in west Thailand and the Bangkok area, central Laos
(Savannakhét and Khammouan), and southern Philippines
(Bohol). We found fewer incoming traveling waves for annual
cycles concentrated in the northern Philippines (n = 8) and
central-eastern Thailand (n = 21). The presence of multiannual
waves but not annual waves was statistically significantly associated
with temperature and precipitation. Provinces with outgoing
multiannual waves had an average of 1.5 °C higher temperature
(95% CI = 1.0–2.1 °C) and 53.1 mm (95% CI = 39.7–66.6 mm)
lower precipitation compared to provinces without waves. Prov-
inces with incoming multiannual waves had an average of 39.5 mm
(95% CI = 22.4–56.5 mm) lower precipitation, but no significant
temperature difference compared to other provinces.

Discussion

This analysis of large-scale surveillance data revealed strong
region-wide synchrony in multiannual dengue cycles. We used a
“synoptic epidemiology” approach that spans a large geograph-
ical scale but includes granular detail, providing an instantaneous
picture of region-wide and local disease dynamics. Synchrony of
multiannual cycles changed over time, with a maximal region-
wide synchronization occurring during 1997–2001, whereas syn-
chrony of the annual cycles was consistent over time. Synchrony
of multiannual dengue cycles during this period coincided with
the highest temperatures of the study period across most lati-
tudes and the strongest El Niño event of the century (14, 15). We
measured strong wavelet coherency between multiannual dengue
cycles and the ONI across most provinces during 1993–2002,
but this coherency decreased afterward. A previous study found
identical nonstationary wavelet coherency during this period be-
tween multiannual dengue cycles and El Niño Southern Oscilla-
tion indices for one province in Vietnam (Binh Thuan) (9). The
transient nature of this association over time suggests a threshold
effect, where the spread of major DENV epidemics may be
facilitated by abnormally high temperatures or high tempera-
tures for an abnormally long period. Indeed, we found that
synchrony of multiannual cycles increased as temperature increased.
Throughout 1997 and 1998, high temperatures across the re-
gion could have sustained high levels of dengue transmission,
leading to a depletion of susceptibles and low transmission in
the following years (Fig. 1A). This hypothesis is consistent

Fig. 2. Wavelet transforms. Reconstructed periodic cycles of monthly den-
gue IRs for provinces ranked by latitude. Upper shows monthly distributions
across provinces. NA, not available. (A) Reconstructed multiannual cycles. (B)
Reconstructed annual cycles.
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with the biology of the Aedes aegypti vector, which reproduces
faster and transmits DENV more efficiently at higher tempera-
tures (16, 17). Also, in 1998, a new DENV-2 strain (Cosmopolitan
genotype) emerged in Asia (18). High temperatures across a suf-
ficiently large geographical area combined with a large pool of
susceptibles could enable the spread of major synchronous dengue
epidemics when new DENV types emerge. Indeed, we found a
1.5 °C higher temperature in provinces with outgoing multiannual
traveling waves compared to provinces without these waves.
Synchrony of multiannual as well as annual cycles was inversely

associated with population density. This association could suggest
an extinction–reinvasion mechanism, where synchronous cycles
emerge in areas of low population density after a period of low
transmission. Densely populated areas are less prone to such

“fade-outs,” because they supply a constant pool of susceptibles
that can sustain ongoing transmission of all four DENV serotypes.
These urban centers could act as independent pacemakers of
epidemic dengue cycles into the surrounding areas (6, 12). This
mechanism is consistent with the two clusters of synchrony among
major cities in the region: one synchronous with the Annamite
Mountain Range and the other synchronous with the west-central
Thailand area. These areas are also the two main areas for which
we detected outgoing traveling waves for multiannual cycles,
suggesting that forcing mechanisms, such as temperature, act in-
dependently in each of these areas.
The role of human movement in the spread of disease epidemics

has been a strong focus of recent research, greatly facilitated by the
emergence of novel data sources, such as mobile phone and flight

Fig. 3. Synchrony of dengue cycles over time. We computed the average synchrony for moving, overlapping 5-y windows to detect changes over time.
(A) Distributions of average synchrony per province per time window plotted at the midyear of each window for multiannual and annual cycles and unfiltered
IRs. (B) The average synchrony of multiannual dengue cycles per province for four time windows. (C) The same as B but for annual cycles.
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data (19, 20). Strong synchrony and traveling waves of dengue ep-
idemics across Southeast Asia could be driven by (cross-border)
population movement. We were unable to formally test this because
of limited data on human movement. However, a high degree of
population connectivity and spread of DENV across country bor-
ders in Southeast Asia has been shown by phylogenetic studies,
showing that DENV genotypes circulating in countries, such as

Thailand and the Philippines, were isolated across the entire region
(18, 21–23).We found spatial structuring in time lags of dengue cycles
across provinces that was consistent with traveling waves of dengue
incidence. Outgoing traveling waves were concentrated in central
Thailand, the east Mekong, and the southern Philippines. It was also
in these countries that dengue was first recognized in the 1950s (24).
Provinceswith outgoing travelingwaves hadhigher temperatures and
lower precipitation compared to other provinces. Local climate, vi-
rus, and population conditions in these areas may have ignited the
emergence and spread of new DENV types that resulted in region-
wide synchronous dynamics through widespread high temperatures
during a strong El Niño episode and population movement.
Powerful forcing mechanisms in Southeast Asia, particularly

sustained high temperatures, can drive the synchronized spread of
major dengue epidemics on a continental scale. This analysis im-
proves opportunities for future studies on the causal mechanisms
and for predictive modeling of large-scale dynamics of dengue as
well as other infectious diseases. This study also demonstrates the
advantages of multicountry collaboration to advance infectious
disease surveillance, analysis, and control.

Materials and Methods
Data. Monthly dengue surveillance data and corresponding population (25)
and climate data (26–28) at the provincial level (29) were available for 273
provinces in Thailand, Cambodia, Laos, Vietnam, Malaysia, Singapore, the
Philippines, and Taiwan (more details on data sources and inclusion are in SI

Materials and Methods). We computed monthly dengue IRs per 100,000
people for 1993–2010 for provinces in Thailand, Malaysia, and Singapore;
1994–2010 for the Philippines and Vietnam; and 1998–2010 for the other
countries (Figs. S3 and S5 and Movie S1). All data are publicly available
through Project Tycho (www.tycho.pitt.edu).

Fig. 4. Wavelet coherency between the ONI and multiannual DENV cycles.
The monthly average statistically significant wavelet coherency between ONI
and multiannual DENV cycles across (Lower) the multiannual periodicity band
for each province ranked by latitude. Upper shows the distributions (medians
and interquartile ranges) of province average wavelet coherency per month.
NA, not available.

Fig. 5. Traveling waves of synchrony across provinces. For each province, we fitted a linear model of the phase difference θ of multiannual and annual dengue cycles
vs. geographical distance (kilometers). A negative θ indicated that a province epidemic cycle was timed later than another province, possibly experiencing an in-
coming traveling wave (decreasing θ with decreasing distance). A positive θ indicated that a province was timed earlier than another province, possibly experiencing a
positive traveling wave (increasing θ with increasing distance). For θ < 0, we inversed the distance for more intuitive displays. (A) Fitted values of linear models of θ for
multiannual cycles vs. distance for each province. We fitted models separately for incoming and outgoing waves. Fitted values are only shown for provinces with a
statistically significant model coefficient. We used a Bonferroni-corrected significance level (P < 2e−4) for each province but also, showed fitted values for models with
significant coefficients at the 0.05 level (gray lines). The fitted values for the regional average model are shown as black lines. (B) The same as A but for annual cycles.
(C) Provinces with statistically significant incoming (red) and outgoing (blue) waves of multiannual cycles. (D) The same as C but for annual cycles.
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Wavelet Transforms.Weusedwaveletmethods to decompose reporteddengue
IRs into multiannual and annual cycles as described previously (2, 8, 9, 30, 31).
Wavelet transforms are appropriate to characterize nonstationary signals with
multiple periodicities, such as dengue IRs (6). We used a Morlet wavelet with a
nondimensional frequency ω0 = 6 as used previously (8, 30). This wavelet is
complex, enabling the extraction of phase angles to study epidemic timing.
We explored the influence of the selected value of ω0 on synchrony in a
sensitivity analysis and found that only extreme values influenced study results
(Fig. S6). We found that most provinces had statistically significant annual
cycles with a periodicity of 6–18 mo and statistically significant multiannual
cycles with a periodicity of 19–60 mo (Fig. S7). We analyzed reconstructions of
these cycles for provinces with statistically significant cycles in the annual or
multiannual periodicity range.

Synchrony. We used pairwise Pearson correlation coefficients of multiannual
and annual dengue cycles and unfiltered IRs between provinces to measure
synchrony ρ. Pearson correlation indicates similarity in both timing and
amplitude of epidemic cycles. We computed the average ρ for a province as
the average across all province pairs that included that province weighted
by the number of pairs with non-missing data. We computed this average
using the entire time series of dengue cycles but also, for moving, over-
lapping 5-y time windows. We also computed the average wavelet co-
herency between province pairs in the annual and multiannual periodicity
bands as described previously (7, 32) using parameter values for the wavelet
transforms as described. Wavelet coherency (ranging from zero to one)
describes the phase relationship between two time series localized in a time–
periodicity spectrum. For strong wavelet coherency, statistically significant
cycles of a specific periodicity need to be phase-locked (positively or nega-
tively). We also used wavelet coherency to assess the association between
multiannual dengue cycles and the ONI. The ONI identifies El Niño and La
Niña events in the tropical Pacific based on sea surface temperature in the
Niño 3.4 Region. To measure the dependency of synchrony on the average
level of population density, temperature, and precipitation of province
pairs, we used a multivariate linear regression with synchrony as the de-
pendent variable and these covariates as independent variables.

Phase Angles. We used phase angle transforms of multiannual and annual
cycles to study epidemic timing as described previously (2, 7, 31, 32). We
expressed the pairwise phase difference θ between province pairs in months
by assuming a 12-mo periodicity for annual cycles and 39-mo periodicity
for multiannual cycles. We defined a traveling wave for a province as a

statistically significantly linear association between θ and geographical dis-
tances for that province vs. all others (Fig. S8). A negative θ indicated that a
province epidemic cycle was timed later vs. others and that this province
could have an incoming traveling wave. A positive θ indicated that a prov-
ince was timed earlier and could have an outgoing wave. For each province,
we tested the presence of “local” incoming traveling waves (decreasing θ

with decreasing distance for θ < 0) and local outgoing traveling waves (in-
creasing θ with increasing distance for θ > 0) using a linear regression model:

θp,q =

�

C −   βpdp,q for  θ< 0,   incoming waves 
C +   βpdp,q for  θ> 0,   outgoing waves  ,

where θp,q is the lag time between provinces p and q for annual or multi-
annual cycles, and dp,q is the distance in kilometers between provinces. We
inversed the sign of distance for negative lag times for more intuitive dis-
plays of incoming waves. We defined local as distances ≤1,000 km (multi-
annual cycles) or ≤1,500 km (annual cycles). Using a linear model of θ vs.
distance including all province pairs, we found that, after these distances, θ did
not continue to statistically significantly change with distance. We defined a
statistically significant traveling wave as a positive βp using a Bonferroni-cor-
rected significance level of 2e−4 for each province, resulting in a combined
level of 0.05 across all provinces. We used a logistic regression to estimate the
role of population size, temperature, and precipitation (independent vari-
ables) on the occurrence of traveling waves (dependent binary variable).

The entire analysis was conducted in the R Statistical Package, version 3.2.1.
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SI Materials and Methods

1.1. Data Collection.We collected monthly dengue surveillance data
at the provincial level for Thailand, Cambodia, Laos, Vietnam,
Malaysia, Singapore, the Philippines, and Taiwan. Data for Thai-
land were provided by the ThaiMinistry of Public Health Bureau of
Epidemiology (1968–2010). Data for Cambodia were provided by
the Cambodia Ministry of Health (MOH) National Dengue Con-
trol Program (1998–2009) and supplemented with data from the
WHO DengueNet Database (1998–2010) and the WHO Western
Pacific Regional Office (1998–2001) where needed. Data for
Laos were provided by the Lao People’s Democratic Republic
MOH National Center for Laboratory and Epidemiology (1998–
2010) and supplemented with data from the WHO DengueNet
Database (1998–2007) and the WHO Western Pacific Regional
Office (1998–2001) where needed. Data for Vietnam were pro-
vided by the National Institute of Hygiene and Epidemiology
(1994–2010). Data for Malaysia were provided by the Malaysia
MOH Disease Control Division (1988–2010). Data for Singapore
were provided by the Singapore National Environment Agency
(1993–2010). Data for the Philippines were provided by the
Philippines MOH National Epidemiology Center (1993–2010),
and data for Taiwan were provided by the Taiwan Centers for
Disease Control (1998–2010). Dengue surveillance systems
were similar across countries and mostly passive, except for the
Philippines and Cambodia (sentinel system). In most countries,
dengue is predominantly reported among children. Cambodia
was the only country for which dengue surveillance was explicitly
restricted to children <15 y old. Despite these slight differences,
population-level disease patterns were comparable across
all countries. For each country, data were collected at the
provincial level. We defined a province as the smallest geo-
graphical area for which data were available (the first or second
administrative level). Where needed, surveillance reports for
dengue fever and dengue hemorrhagic fever were combined
into the total number of dengue cases. Population counts were
obtained for provinces by year for each country. Population
counts for Thailand were provided by the Thai Ministry of
Public Health Bureau of Epidemiology (1968–2010); pop-
ulation counts for Cambodia were provided by the National
Institute of Statistics (1998) and the MOH National Dengue
Control Program (2002–2010). Population counts for Laos
were obtained from the Laos Statistics Bureau (1995 and 2000–
2010). Population counts for Vietnam were provided by the
General Statistics Office of Vietnam (1995–2010). Population
counts for Malaysia were provided by the Department of Sta-
tistics (2000 and 2003–2010). Population counts for Singapore
were obtained from the US Census Bureau International Da-
tabase (25). Population counts for the Philippines were ob-
tained from the Philippines Census Bureau (2000, 2005, and
2010), and population counts for Taiwan were provided by
the Taiwan Centers for Disease Control (1998–2010). Admin-
istrative boundary files were obtained from the Global Ad-
ministrative Areas (GADM) Database (29). Monthly gridded
(0.5°× 0.5°) average air temperature (26) and total precipitation
(27) data from 1993 to 2010 were obtained from the National
Oceanic and Atmospheric Administration Earth System Research
Laboratory Physical Sciences Division for latitudes between 0° and
26.8° and longitudes between 96.2° and 127.7°. Gridded (2.5 ×

2.5 km) data on population density (per kilometer2) for the
year 2000 were obtained from the Center for International
Earth Science Information Network at Columbia University (28).
Finally, we obtained monthly data on the Oceanic Niño Index

(ONI) from the National Oceanic and Atmospheric Adminis-
tration Center for Weather and Climate Prediction (www.cpc.
ncep.noaa.gov/data/indices). The ONI indicates the strength of
the El Niño climate variation based on sea surface temperature
in the Niño 3.4 region.

1.2. Data Exclusions. Province names were standardized based on
the administrative level one or two divisions in the GADM Da-
tabase as of 2013 (29). Provinces that could not be located were
excluded (e.g., because of a split after the last update of the
boundary definition files in the GADM Database). The study
period was determined separately for each province. No data
before 1993 were included because of lack of data for most
countries. For each province, the first and last years of a study
period were defined by the first and last years with at least six
monthly observations. Provinces were excluded if 12 or more
consecutive monthly observations were missing, two-thirds or
more of all observations were missing, or if the study period was
less than 4 y (2.5 cycles of the smallest multiannual period of
19 mo). These in- and exclusions resulted in a total of 273 of 289
provinces included (94%).

1.3. Data Management. For multiple countries, the numbers and
names of provinces changed over time because of merging or
splitting events. We used province boundaries as in the GADM
Database as of 2013; we merged data for provinces that merged
and only used data after a splitting event for provinces that had
split. Geographical distances between all province pairs were
computed using latitude/longitude of province centroids according
to the World Geodetic System 1984 Revision Coordinate System.
We computed the average air temperature and precipitation per
latitude for each month. We centered and reduced the time series
for each latitude to z scores around the latitude mean. We also
extracted the average value of air temperature, precipitation, and
population density for province polygons from the gridded data.
Population estimates were not available for the entire study period
of each province. We applied country-specific, nationwide annual
population growth rates obtained from the US Census Bureau
International Database (25) to estimate the provincial-level pop-
ulation for missing years. The growth rate rc,y in country c and year
y was computed as

rc, y =
Nc, y

Nc, y−1
, [S1]

where Nc,y is the population size in country c in year y. The
population size in province p of country c in year y was then
computed from

Np, c, y = rc, y ×Np, c, y−1. [S2]

We used dengue case data and population estimates to com-
pute monthly IRs per 100,000 people for each province.

1.4. Data Transformation. IRs were log-transformed as

log10

�
105 ×

I + 1

N

�
, [S3]

where I is the incidence (i.e., number of cases), and N is the
population size. The log-transformed IRs were then detrended
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by subtracting fitted values of a linear model from the observed
values. The fitted linear model reads

IRp,m
b

=C+ βp ×m, [S4]

where βp is the linear regression coefficient, and m is the study
month. The detrended IRs for each province (p) and month (m)
are thus

IRp,m
e

= IRp,m − IRp,m
b , [S5]

where m refers to the month and IRp,m refers to the reported IRs
for each province and month. After detrending, missing IRs were
imputed separately for each province by randomly selecting an
observation for the same month but from a different year. Finally,
IRs were centered (discounted the mean) and reduced (divided by
the SD) to z scores to increase cross-province comparability.

1.5. Reconstructing Annual and Multiannual Cycles.We used wavelet
analysis to isolate cycles withmultiannual and annual periodicities
from the reported IRs. Wavelet analysis is well-suited to charac-
terize epidemiological time series containing cyclical variability with
periodicities that change over time (nonstationarity). Wavelet
analysis has been used previously to study a wide range of in-
fectious diseases, such as measles, pertussis, and dengue (2, 5, 8, 9,
11, 13). Detailedmethods for wavelet analysis have been described
previously (30, 31). We computed Morlet wave transforms for
each province using a nondimensional frequency ω0 = 6 and a
periodicity step size δj of 0.25 on a linear scale. The Morlet
wavelet enables a high resolution of the periodicity scale and is
complex, which makes it possible to extract phase angles to
represent epidemic timing (7, 30). The Morlet wavelet has been
widely used previously for the study of infectious disease IRs
(2, 8, 9, 13). The value for ω0 of 6 has been used previously (8,
30), and a δj of 0.25 gives a detailed resolution of the periodicity
scale (1-mo intervals). We conducted a sensitivity analysis to as-
sess the effect of alternative values for ω0 and δj on the wavelet
transforms and resulting synchrony between province pairs. Only
extreme values of ω0 reduced synchrony, and changes in δj had no
noticeable effect (Fig. S6).
For each scale s and time interval δt, the continuous wavelet

transform of a time series xk is defined as in the work by Tor-
rence and Campo (30):

WnðsÞ=
XN−1

k=0

xkψ*
ðk− nÞδt

s
[S6]

where ψ represents the Morlet wavelet function and * the complex
conjugate. n represents the time index, ranging from zero to the
total number of time points N. We computed wavelet transforms
for periodicities (or scales) ranging from 2 to 60 mo. This range
contains all periodic cycles previously observed for dengue IRs.
Statistical significance of wavelet transforms was tested by compar-
ing the wave signal with a red noise background signal (30, 31).
For eachprovince, we computed the average ofwavelet transforms

for each periodic intervals over all time points n (global wavelet
spectrum) according to the work by Torrence and Campo (30):

W
2ðsÞ= 1

N

XN

n=0

jWnðsÞj2, [S7]

where N represents the number of observations per province.
For each province, we only explored periodicity s below the
maximum periodicity smax,p, to reduce edge effects. We deter-
mined the maximum periodicity for each province p, smax,p, as
the number of monthly observations divided by 2.5.

Similarly, for each province, we also computed the average of
statistically significant wavelet transforms per time interval δt
across periodicities in the annual (6–18 mo) and multiannual (19–
60 mo) band using the scale-averaged wavelet power according to
Torrence and Campo (30):

Wn
2
=
δjδt

Cδ

Xj2

j=j1

��Wn

�
sj
���2

sj
, [S8]

where s represents the periodicity included, δj represents the
scale interval size, and Cδ is a constant for the Morlet wavelet
(0.776). We only explored periodicities below the maximum
smax,p supported by the length of province time series. We used
j ranging from 6 to 18 mo for the average for annual cycles and
from 19 to 60 mo for the average for multiannual cycles.
We reconstructed annual epidemic cycles defined as the average

of 6–18 mo periodic cycles and multiannual cycles defined as the
average of 19–60 mo periodic cycles. We reconstructed these cycles
using the filter described in the work by Torrence and Campo (30):

x′n =
δj
ffiffiffiffi
δt

p

CδΨ0

Xj2

j=j1

ℜ
�
Wn

�
sj
�	

ffiffiffi
sj

p , [S9]

where δ j was 0.25, Cδ was 0.776 as previously used (30), and
values for j1 and j2 were 6 and 18 mo, respectively, to reconstruct
annual cycles and 19 and 60 mo, respectively, for multiannual
cycles. We only reconstructed waves for provinces that had sta-
tistically significant wavelet transforms for at least 50 time points
within the annual or multiannual periodicity bands.

1.6. Estimating Synchrony. We defined synchrony between prov-
inces as the pairwise Pearson correlation coefficient, taking into
account both timing and amplitude of the signals. We computed
synchrony for both annual and multiannual cycles. To assess the
association between synchrony and geographical distance be-
tween provinces, we used a previously described nonparametric
covariance function that estimates the underlying correlation
without assuming any particular shape (2, 33). It uses a smoothing
spline (bandwidth of 300 data points) to estimate the curve and
bootstrapping (n = 1,000) to estimate confidence limits:

~ρðδÞ=

Pn
i=1

Pn
i=1 K

�
δij

h

��
ρ̂ij
�

Pn
i=1

Pn
i=1 K

�
δij

h

� , [S10]

where K is a kernel function, h is the bandwidth, and bρij is the
autocorrelation matrix.
We measured changes in synchrony over time by computing

synchrony separately for parts of the time series within moving and
overlapping 5-y timewindows. For each timewindow, we computed
the average synchrony per province weighted by the number of
province pairs included. We did this for annual and multiannual
cycles and the unfiltered IRs (Fig. 3). We used a linear model to
estimate the association between synchrony and the pairwise av-
erage log10 population density, precipitation and temperature for
province pairs, adjusted for geographical distance between pairs:

bρp =C+ β1dp + β2tp + β3κp + β4log10ðλÞp, [S11]

where ρ is the synchrony of multiannual or annual cycles or the
unfiltered IRs between unique province pair p, d is geograph-
ical distance in kilometers, t is temperature in degrees Celsius,
κ is precipitation in millimeters, and λ is population density per
kilometer2.
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1.7. Wavelet Coherency.As an alternative metric for synchrony over
time and for comparison with the wave correlation analysis, we
measured wavelet coherency between province pairs. As previously
described, wavelet coherency uses wave transforms of two time series
to indicate their localized phase relationship in a time–frequency
spectrum (7, 32). Wavelet coherency ranges from zero to one, and
high wavelet coherency requires that statistically significant cycles of
a particular periodicity are detected in both time series and that
these cycles are phase-dependent (positively or negatively):

R2
nðsÞ=

���S
�
s−1WXY

n ðsÞ
����

2

S


s−1
��WX

n ðsÞ
��2
�
× S


s−1
��WY

n ðsÞ
��2
�, [S12]

where S is a smoothing operator. Statistical significance of wavelet
coherency was tested using Monte Carlo methods (n = 600) (32).
For the wavelet transform in the wave coherency function, we used
the same parameters as specified for the wave correlation analysis
(i.e., a value for ω0 = 6 and a δ j resulting in a periodicity step size
of 1 mo along a linear scale). We only measured wavelet coherency
for periodicities below the maximum for each province smax, p.
We studied changes over time in wavelet coherency for each

province by computing the percentages of other provinces that were
statistically significantly coherent with this province at each time
point (Fig. S1 C and D). In addition, we used wavelet coherency to
estimate the association between the ONI and the multiannual
dengue cycle for each province. For each province, we averaged all
statistically significant values of this wavelet coherency matrix
within the multiannual periodicity band (19–60 mo).

1.8. Phase Differences.As previously described, we computed phase
angles for annual and multiannual cycles as indicators of epidemic
timing (2, 30, 31). For each province and for annual and multi-
annual periodicities separately,

ϕnðsÞ= tan−1

 
ℑ
�
WXY

n ðsÞ
	

ℜ
�
WXY

n ðsÞ
	
!
. [S13]

We computed the average phase angle-ϕn for annual and
multiannual cycles as the circular average of periodicity-specific
phase angle-ϕnðsÞ across the annual or multiannual periodicity
bandwidth (6–18 and 19–60 mo, respectively) as described pre-
viously (32). Because we only reconstructed annual and multi-
annual cycles for provinces with statistically significant cycles in
these bandwidths, we only computed phase angles for provinces
with statistically significant cycles.
We used these phase angles to compute the phase angle dif-

ference θ between provinces for annual and multiannual cycles.
The phase angle difference θ was constrained between −π and π.
We expressed θ in months and assumed a cycle length of 12 mo
for annual and 39 mo for multiannual cycles. We used a linear
model with a linear spline to measure the relation between θ and
geographical distance. We used unique absolute values of θ to
only include unique province pairs and included a linear spline to
detect the distance after which the relation between θ and dis-
tance, dp, would become nonsignificant:

��� bθp
���= C+ β1dp + βSp,s=500

��
dp = s

�
×

�
dp − s

��
, [S14]

where we varied s with increments of 100 km from a minimum of
500 km up to a maximum S of 2,500 km and selected the best
fitting model based on Akake’s Information Criterion. The asso-
ciation between θ and distance was only statistically significant
before the spline point s. We used the spline point of the best
fitting model as the distance radius within which we detected local

traveling waves. For multiannual cycles, the s of the best fitting
model was at 1,000 km, and for annual cycles, it was at 1,500 km.

1.9. TravelingWaves.Wedefined a local traveling wave for a province
as a statistically significant positive linear association between θ and
geographical distances between that province and the other prov-
inces. A province could have a negative or positive θ with other
provinces. A negative θ (lag time) indicated that a province was
timed later compared to the other province (lagging behind), and a
positive θ (lead time) indicated that the province was timed earlier
compared to the other province (leading ahead). Outgoing traveling
waves can emerge from provinces that are timed ahead of others.
Incoming traveling waves can occur for provinces that are timed
behind others. For provinces that were lagging behind (negative θ),
we defined an incoming traveling wave as a decreasing θ with de-
creasing distance. For provinces that were leading ahead (positive θ),
we defined an outgoing traveling wave as an increasing θ with in-
creasing distance. For each province and separately for annual and
multiannual cycles, we used a linear model to detect traveling waves:

θp,q =

�
C− βpdp,q θp,q < 0;   incoming  waves  for  province  p
C+ βpdp,q θp,q > 0;   outgoing  waves  for  province  p

,

[S15]

where p is a province, and q indicates all other provinces. We only
included values of d below 1,000 (multiannual cycles) or 1,500 km
(annual cycles). We inversed the sign of distance dp,q for θp,q values
below zero for more intuitive displays of incoming waves (Fig. 5).
We tested statistical significance of βp for incoming and outgoing
waves separately for each province. We used Bonferroni-corrected
significance levels of 0.0002 per province for a combined signifi-
cance level of 0.05 for each group of tests: incoming waves of
multiannual cycles, outgoing waves of multiannual cycles, incom-
ing waves of annual cycles, and outgoing waves of annual cycles.
We measured the association of having multiannual or annual
traveling waves (binary variable) for provinces with their average
population size, temperature, and precipitation using a logistic
regression model. For incoming and outgoing waves of annual
and multiannual cycles separately:

τp =C+ β1sp + β2tp + β3κp, [S16]

where τp is a binary variable specifying the presence or not of a
traveling wave for a province, sp is the average population size of
a province across study years, tp is the average monthly temper-
ature in degrees Celsius for a province, and κp is the average
monthly precipitation in millimeters. Given that we used this
model separately for four different waves, we used a Bonferroni-
corrected significance level for a combined level of 0.05.

1.10. Sensitivity Analysis. We conducted a sensitivity analysis on the
effect of the value for the wavelet parameters ω0 and δ j on syn-
chrony. We computed wavelet transforms as described above for
annual and multiannual cycles while varying the value of ω0 from 2
to 10. For each value of ω0, we computed the average synchrony
between each province and all of the other provinces weighted by
the number of pairwise observations (Fig. S6 A and B). We did the
same for values of δ j ranging from 0.05 to 0.5 (Fig. S6 C and D).

1.11. Computing Environment.All analyses were conducted using the
R System, version 3.2.1. We used the package dplR for the wavelet
analysis with a modified Morlet function with a linear periodicity
scale. We used the package biwavelet for wavelet coherency with
modified wtc and wt functions with a linear periodicity scale. We
used the function Sncf for the nonparametric analysis of the
correlation between synchrony and geographical distance.
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Fig. S1. Changes in periodicity over time in months as shown by wavelet transforms and wavelet coherency. For each province, we computed the average

power of statistically significant wavelet transforms per month in the multiannual or annual periodicity band. We also computed for each province the

percentage of other provinces that had statistically significant wavelet coherency with this province. Upper shows monthly distributions. NA, not available.

(A) Average power of statistically significant wavelet transforms in the multiannual periodicity band per month for each province ranked by latitude. (B) The

same as A but for the annual periodicity band. (C) For each province ranked by latitude, the percentage of other provinces that had statistically significant

wavelet coherency with this province for periodicities within the multiannual band. (D) The same as C but for the annual periodicity band.
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Fig. S2. Cross-correlation function of geographical distance vs. pairwise Pearson correlation. (A) Average cross-correlation functions (solid lines) and regional

averages (dashed lines) of annual and multiannual cycles and log10 IRs centered and reduced to z scores. (B) Average cross-correlations and 95% CIs (solid lines)

and the regional averages (dashed lines) for log10 IRs centered and reduced to z scores. (C) The same as B but for annual dengue cycles (6–18 mo). (D) The same

as B but for multiannual dengue cycles (19–60 mo).
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Fig. S3. Dengue IRs and transformations. Monthly values for each province ranked by latitude in color coding. NA, not available. The distributions across

provinces per month are shown in Upper. (A) Reported dengue IRs per 100,000 people. (B) Log10-transformed IRs. (C) Log10-transformed IRs that were de-

trended by subtracting fitted values of a linear model. (D) The same as in C but with missing data imputed.
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Fig. S4. Average synchrony of multiannual dengue cycles between each of 10 major cities and all other provinces across the entire study period. We found

two clusters of cities with different synchrony dependent on temperature. (A) Average synchrony of multiannual dengue cycles per province for cities that

were not synchronous with the Annamite region. Two of the largest metropolitan areas, Manila and Ho Chi Minh City, had relatively low synchrony with most

of the other provinces in the region, including the Annamite region, and are not shown. (B) Average annual temperature per province in degrees Celsius.

(C) Average synchrony of multiannual dengue cycles per province for cities synchronous with the Annamite region.
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Fig. S5. Monthly data available by province ranked by country. For each province, the months between 1993 and 2010 were included in the analysis for a total

of 273 provinces. Upper shows the total number of provinces included per month. The length of the time series determined the maximum periodic cycle that

could be studied by wavelet analysis. To reduce edge effects, we defined the maximum periodicity for each province as the number of observations divided by

2.5 (i.e., the time series should be able to contain at least 2.5 repeats of a periodic cycle).
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Fig. S6. Sensitivity analysis of average synchrony per province for different values of ω0 and δ j. We reconstructed multiannual and annual cycles using dif-

ferent values for the wavelet parameters ω0 and δ j and recomputed the average correlation coefficient per province weighted by the number of province pairs

with non-missing data. We used an ω0 of 6 and a δ j of 0.25 in our analysis. NA, not available. (A) Average synchrony of multiannual cycles for values of ω0. (B) The

same as A for annual cycles. (C) Average synchrony of multiannual cycles for values of δj. (D) The same as C for annual cycles.
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Fig. S7. Variance explained by different periodicities for each province. We used wavelet analysis for periodicities ranging from 2 mo to the maximum

periodicity for a province, with a 1-mo step size along a linear scale. (A) The global wavelet power spectrum using only statistically significant wavelet

transforms per province ranked by latitude. Upper shows the distributions across provinces. NA, not available. (B) The average multiannual periodicity across

periodicities ranging from 19 to the maximum supported by a province time series weighted by the average power for each periodicity.

van Panhuis et al. www.pnas.org/cgi/content/short/1501375112 10 of 12

www.pnas.org/cgi/content/short/1501375112


Fig. S8. Local traveling waves for Bangkok and four hypothetical example provinces. (A) Location of Bangkok and four hypothetical provinces at varying

distances. (B) IRs (per 100,000 people) for each location. (C) Wavelet reconstruction of multiannual (19–60 m) dengue cycles. (D) Phase angles of multiannual

dengue cycles. (E) Linear model fit of the association between lag time in months and geographical distance from Bangkok. For negative phase angle dif-

ferences, we inversed the geographical distance for a more intuitive display. Incoming traveling waves into Bangkok were defined as decreasing lag times with

decreasing distance (other provinces timed ahead of Bangkok). Outgoing waves emerging from Bangkok were defined as increasing lag times with increasing

geographical distance (other provinces timed after Bangkok). We measured the presence of these incoming or outgoing traveling waves for each province in

our study (Fig. 5).
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Table S1. Linear models of annual and multiannual synchrony vs. climate and population

covariates

Periodicity and covariate Coefficient (95% CI) P value

Annual*

Distance (100 km) −0.006 (−0.007 to −0.006) <0.00001

Temperature (°C) 0.004 (0.002 to 0.005) 0.0002

Precipitation (cm) −0.012 (−0.013 to −0.012) <0.00001

Log10 population density (population per 1 km2) −0.088 (−0.095 to −0.081) <0.00001

Multiannual†

Distance (100 km) −0.006 (−0.007 to −0.006) <0.00001

Temperature (°C) 0.029 (0.026 to 0.031) <0.00001

Precipitation (cm) 0.001 (0.000 to 0.002) 0.0079

Log10 population density (population per 1 km2) −0.037 (−0.047 to −0.028) <0.00001

For each province pair, we regressed synchrony vs. the pairwise average of each covariate, except for distance.

*R2
= 0.14.

†R2
= 0.06.

Movie S1. Monthly IRs (per 100,000 people) were log10-transformed and detrended, and missing values were imputed. For each province, IRs were then

centered and reduced (normalized) to z scores (SDs from the mean) to increase cross-province comparability. This movie shows maps of these z scores for each

month in the 1993–2010 time series.

Movie S1
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