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Abstract: A modified regional algorithm to quantify the coccolithophore concentration in the north-
eastern part of the Black Sea under conditions of intense bloom is presented. To modify the algorithm,
the data of in situ measurements of coccolithophore Emiliania huxleyi abundance performed in June
2017 and 2022 (when the maximum values were 9 × 106 and 13 × 106 Cells L−1, respectively), as
well as the data from hydro-optical and satellite measurements, were used. In addition, the ratio
between the number of detached coccoliths and coccolithophore cells was taken into account. Based
on the expanded array of in situ data, the optimal values of the regional algorithm parameters
were obtained. The modified algorithm makes it possible to obtain more accurate results in areas
of high coccolithophore concentrations and takes into account the contribution of coccoliths. To
test the sensitivity of the algorithm to variations in bio-optical characteristics, model calculations
were performed using Hydrolight software. The updated algorithm is significantly less sensitive to
variations in chlorophyll concentration and CDOM absorption coefficient than its previous version.

Keywords: coccolithophore bloom; Hydrolight; ocean color; quantitative phytoplankton analysis;
remote sensing reflectance

1. Introduction

Phytoplankton in the world ocean play an important role in the regulation of the
planet’s climate. They contain almost half of all carbon assimilated [1,2]. The ocean is
the main depositor of absorbed atmospheric carbon; it has 50 times more carbon than
the atmosphere [3–5]. The flow of carbon dioxide at the ocean–atmosphere boundary, its
biological assimilation into the ocean water, and the further transfer of carbon in organic
form from the upper layers to the deep ocean and to the ocean floor is carried out through
a process called the ‘carbon pump’ [6,7]. Due to this, carbon pump global carbon export
occurs, and it is currently estimated at between 5 and 15 × 1015 g of carbon per year [8,9].
At the ocean–atmosphere interface, the transport of CO2 molecules takes place. Its speed
and direction depend on the difference in the partial pressures of carbon dioxide in the
atmosphere and in the ocean surface layer.

In water, phytoplankton convert dissolved carbon into organic form through photo-
synthetic reactions, and this process is called the ‘organic pump’, while some researchers
suggest the term ‘soft tissue pump’ [10]. Diatoms are mainly responsible for the operation
of the organic pump in the ocean [11]. The concentration of chlorophyll is an indicator
reflecting the functioning of the organic pump [12].

However, in the ocean, evolution has proposed another biological way of fixing dis-
solved carbon. Calcite is a mineral formed by calcium carbonate (CaCO3). It is also formed
in the ocean in addition to organic carbon. This type of carbon assimilation process is called
the ‘carbonate pump’; the main contributors to its work are coccolithophores, which have
one important property of forming a calcite cell shell [13–15]. This shell consists of separate
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plates—coccoliths. The release of a CO2 molecule, as a result of the formation of a single
calcite molecule, is important for the functioning of the carbonate pump. In other words, if
the organic pump reduces the partial pressure of carbon dioxide in water, the carbonate
pump, in contrast, increases it. Therefore, during the coccolithophore bloom (CB), the
concentration of carbon dioxide in the water increases and, as a result, there is a significant
decrease in its flow into the water or even its release into the atmosphere [16–18]. Therefore,
the ratio of diatoms and coccolithophores is a fundamental indicator characterizing the
state of the carbonate system [19].

Emiliania huxleyi is the main phytoplankton species that determines the functioning of
the carbonate pump in the ocean. This species is widespread throughout the Northern and
Southern Hemispheres, but its blooms are recorded mainly in high latitudes [20–24]. In the
Black Sea, the intensive growth in coccolithophore abundance was noted in the 1950s [25].
In the beginning of this century, their role in the phytoplankton structure increased, as
was noted in field observations [26–28]. Long-term observations of the phytoplankton
structure in the northeastern part of the Black Sea have established that in the end of May
and beginning of June, an intensive growth of Emiliania huxleyi is observed almost annually,
and the abundance of this species exceeds 106 Cells L−1 [28].

The method of field observations does not allow creation of a unified picture of
coccolithophore bloom distributions. Such capabilities are provided by ocean remote
sensing, which allows blooms to be studied in a wide range of spatial and temporal
scales. Only remote sensing methods give an opportunity to obtain the data necessary for
the creation of carbon export global models from the upper layers to the deep ocean [9].
Coccolithophores differ from other phytoplankton species in terms of strong low-selective
light scattering, which makes it possible to observe bloom according to satellite ocean
color scanner data [15,29–33]. Satellite data are used to observe the CB in the Black Sea,
starting with the SeaWiFS ocean color data [34]. The results of observations show that
during late spring and early summer, extensive bloom areas are observed, covering most of
the sea [29,35–40].

Previously, a regional algorithm for the northeastern part of the Black Sea based on
bio-optical measurements from 2004–2008 was developed to evaluate the coccolithophore
concentration [29]. Using this algorithm, monthly average maps and diagrams for the
period 1998–2018 were drawn, and were presented in the Atlas of Bio-optical Characteristics
of the Ocean Optics Laboratory at the Shirshov Institute of Oceanology of the Russian
Academy of Sciences (SIO RAS) [41]. However, the coccolithophore concentrations obtained
in the expeditions, using the results of which this algorithm was created, did not exceed
2.5 × 106 Cells L−1 in most cases. They are significantly lower than the values that
can be observed during the period of intense blooms. For example, according to the
regional algorithm, the monthly average concentration of coccolithophores in June 2017
exceeded 6 × 106 Cells L−1 [41]. Such a significant difference in the range of values used
for the algorithm development with the results of its application requires verification and
appropriate modification of the regional algorithm.

Specifically, the purpose of this work is the development of a new algorithm for
high coccolithophore and coccolith concentrations using the latest data from in situ and
simultaneous satellite measurements.

2. Materials and Methods

For our purpose, the data from in situ and simultaneous satellite measurements in the
northeastern part of the Black Sea near Gelendzhik (44.56◦N, 38.08◦E) in June 2017 and
2022, obtained during the period of intense coccolithophore blooms, were used. In situ mea-
surements included both a complex of hydrooptical works and laboratory measurements of
coccolithophore plated cell and detached coccolith abundance. The median coccolithophore
concentration in the upper mixed layer according to direct measurements in those years
was 7 and 5.4 × 106 Cells L−1. Along with the expansion of the field measurements dataset,
model data obtained using Hydrolight 6.0 software [42] were used to modify the algorithm.
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2.1. Study Area and Bio-Optical Measurements

The complex optical measurements were performed in June 2017 and 2022 on the small
research vessel Ashamba on the transect from the Blue Bay (near Gelendzhik) to the center
of the sea (Figure 1a) with simultaneous ocean color satellite observations accompanied
by hydrological and biogeochemical studies. Favorable weather conditions provided
good-quality remote sensing data.
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For a number of stations in 2022, the spectra of the remote sensing reflectance Rrs(λ)
were obtained using the floating spectroradiometer PRO-1 [43]. The floating spectrora-
diometer was developed at SIO RAS and allows the measurement of spectral values of the
surface downwelling irradiance Ed(λ,0+) and the upwelling radiance below the sea surface
L(λ,0−). From the obtained values the water, radiance reflectance ρ(λ) is calculated, which
then is converted to Rrs(λ), using the following formula [44]:

Rrs(λ) = 0.165 ρ(λ)/[1 − 0.497 ρ(λ)]. (1)

PRO-1 works in the spectral range of 390–700 nm with a spectral resolution of 2.5 nm; its
accuracy is about 5%.

Figure 1b shows examples of Rrs(λ) values measured with the help of the floating
spectroradiometer PRO-1 in comparison with satellite data for two stations from June 11,
2022. The observed difference in spectra is explained well by the distinction in the intensity
of CB at these stations; according to direct measurements, the coccolithophore concentration
at station 1_22 was 4.8 × 106 Cells L−1, and at station 4_22 it was 9.3 × 106 Cells L−1.

A submerged transmissometer PUM-200 developed at SIO RAS [45] was used to
measure vertical profiles of the beam attenuation coefficient at a 530 nm wavelength c(530).
These profiles are quite valuable, as the c(530) profile depicts the vertical distribution of the
coccolithophore layer. PUM-200 measurements made it possible to determine the thickness
of the coccolithophore layer Zcoc.

2.2. Sampling

At the stations (Figure 1a), water samples were taken from different depths for lab-
oratory determination of the spectral absorption coefficient of colored dissolved organic
matter (CDOM) ag(λ), the concentration of chlorophyll a (Chl), and the species composition
of phytoplankton. Water samples were taken using 5-L Niskin bathometers mounted on a
Rosette sampler.
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An integrated cavity absorption meter (ICAM) was used to measure the absorption
spectra of seawater, filtrates, and suspended particles [46,47]. The difference between
the values of the filtrate and pure water absorption coefficients allowed the estimation
of the CDOM absorption coefficient ag(λ). The biogeochemical parameters also included
the concentrations of chlorophyll a and pheophytin a measured using a fluorometric
method [48,49].

Samples for determining the species composition of phytoplankton were fixed using
neutralized formaldehyde (final concentration 0.8–1.0%). Sample settling was the main
method of cell concentration. The identification of the species and counting of the cells were
carried out using a light microscope at 16 × 10 and 16 × 40 magnifications. Identification
was based on the described morphology [50,51] (http://www.algaebase.org, accessed on 18
April 2022, and http://www.marinespecies.org, accessed on 18 April 2022). The nano- and
microplankton cells were counted using 0.05 mL Nageotte and 1 mL Naumann counting
chambers [27]. The small flagellates (2–4, 4–6, and 6–8 µm fractions) and coccoliths were
counted using a Finuchs–Rosenthal counting chamber. A method based on the geometric
shape of cells was used to calculate biomass [52,53]. The number of coccolithophores equal
to 1 × 106 Cells L−1 was taken as the bloom threshold concentration [24].

In our study, we used the results of determining the concentration of coccolithophore
cells Ncc and separated coccoliths Ncl. Light scattering occurs both on coccolithophore cells
and on detached coccoliths. According to the work presented in [54], the values of the
specific backscattering coefficients for a coccolith are, on average, 50 times lower than for a
coccolithophore cell, that is, the contribution to the backscattering of 50 coccoliths and one
cell is approximately the same. Therefore, according to direct measurements, the value of
Ncc_cl was calculated as

Ncc_cl = Ncc + Ncl/50, (2)

while the average values for the two upper depths were used (the first one was 0 m, the
second was 5–11 m).

2.3. Satellite Data

We used the Level 2 data of the satellite spectroradiometers Moderate-Resolution
Imaging Spectroradiometer (MODIS)-Aqua and MODIS-Terra, Visible Infrared Imaging
Radiometer Suite (VIIRS)-SNPP and VIIRS-JPSS, available through the NASA website [55].
Satellite data processing was performed using the SMCS 1.9 software package developed
at the SIO Ocean Optics Laboratory [56].

The spectra of the remote sensing reflectance Rrs(λ) in the pixel closest to the station
were selected for the stations. Two satellite datasets were selected: in the first, shipboard
and satellite measurements were performed on the same day, and in the second, satellite
data were added on the previous and subsequent days. Thus, in the first dataset, the time
difference between shipboard and satellite measurements did not exceed 8 h, and in the
second 32 h. Examples of the comparison of satellite (from the first dataset) and in situ Rrs(λ)
for two stations in 2022 are shown in Figure 1b. It also shows an example of the MODIS
spectrum for station 3_17 in 2017 with laboratory estimates of Ncc_cl = 11.6 × 106 Cells L−1.

2.4. Regional Algorithm 2014

Based on field measurements of coccolithophore concentration Ncoc performed in
2004–2008, a regional algorithm for estimating Ncoc from satellite data in the Black Sea was
created [29]. According to this algorithm, the backscattering coefficient is determined by
three components:

bbp = bbp_bg + bbp_riv + bbp_coc, (3)

where bbp_bg is its background value, bbp_riv is the backscattering coefficient due to terrige-
nous suspended matter brought by river runoff, and bbp_coc is responsible for the presence
of coccolithophores and coccoliths in seawater. The value of bbp_bg was selected as the
lowest monthly means of bbp = 0.0025 m−1, derived from satellite data over the period

http://www.algaebase.org
http://www.marinespecies.org
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2003–2010. To account for the contribution of terrigenous suspension, the following formula
was used:

bbp_riv = Kriv (ag − ag_bg), (4)

where ag and ag_bg are the absorption coefficients of CDOM at the wavelength 440 nm.
The first is determined in the algorithm [29] as a result of solving the inverse problem
of obtaining two unknown model parameters (ag and Ncoc) from the Rrs spectra for two
wavelengths. The second is determined similarly to bbp_bg based on the minimum values
of satellite ag estimates for 2003–2010, and is equal to 0.047 m−1. We used the following
expression for coccolithophore suspension:

bbp_coc = Kcoc Ncoc. (5)

The following values of Kcoc and Kriv were obtained: Kcoc = 2.74× 10−3 and Kriv = 0.157 [29].
To find two parameters of the model, the use of two spectral MODIS bands is proposed:

488 and 555 nm. In the case of VIIRS, we used close bands: 489 and 556 nm for JPSS, and
486 and 551 nm for SNPP. For model Rrs spectra obtained using Hydrolight, we used bands
488 and 551 nm.

The error estimation results for the in situ and satellite Rrs spectra for the obtained algo-
rithm turned out to be close (standard errors 1.15 and 0.99 × 106 Cells L−1). The differences
are due to the different dataset used for these estimates. Moreover, in both cases, the aver-
age concentration of Ncoc according to the results of direct measurements did not exceed
1.5 × 106 Cells L−1 and only a few spectra related to the case of Ncoc > 5 × 106 Cells L−1.
When deriving the algorithm, differences in Ncl/Ncc for different years were not taken into
account. However, it was possible to identify a set of data for which the bbp correlated
well with the ag coefficient (R2 = 0.82). This allowed us to reliably take into account the
contribution of terrigenous suspension and not show ‘false’ coccolithophore blooms in the
area of strong influence of river runoff.

In our work, we used the approach of the algorithm presented in [29], but tried to use
other values for its parameters Kcoc, Kriv, and bbp_bg in order to improve its accuracy in
conditions of intense coccolithophore bloom, which was observed in 2017 and 2022.

For the 2017 and 2022 dataset, the coefficient of determination R2 for the linear correla-
tion between bbp and ag is 0.60, which indicates less influence of terrigenous suspended
matter in these years. Therefore, reduction by multiple times was considered for the Kriv
and bbp_bg parameters.

2.5. Error Assessment

To evaluate the accuracy of the Ncoc algorithm and remote sensing reflectance values,
the root mean square error (RMSE) and mean absolute percentage error (MAPE) were
calculated as

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi − ym

i
)2, (6)

MAPE =
1
N ∑N

i=1 100%·|yi − ym
i |/ym

i , (7)

where yi and yi
m are the calculated and measured values of coccolithophore concentrations

or remote sensing reflectance.
The regional Ncoc estimation algorithm uses two spectral bands in the range of 486–489

and 551–556 nm. For the 2022 stations, when in situ measurements of Rrs(λ) were carried
out, estimates of the correspondence of satellite and in situ Rrs values in spectral bands
from the considered spectral ranges were made. For a set with satellite data on the same
day (16 pairs in total), the maximum difference for MODIS and VIIRS-JPSS for both bands
did not exceed 8%, and MAPE was equal to 4%. With an increase in the permissible time
difference between satellite and shipboard measurements to 32 h (37 pairs), the maximum
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difference reached 60%, and MAPE turned out to be equal to 15% for MODIS and 8–9% for
VIIRS-JPSS. Our estimates of the differences between satellite and in situ Rrs values during
the CB period are even slightly better than those obtained in earlier work [57], where for the
VIIRS-JPSS band 556 nm, MAPE = 9.3%, and for the 555 nm band of two MODIS sensors,
MAPE was equal to 10.3 and 12.3%, respectively. It is worth noting that [57] used a dataset
with more spectra and a time difference between in situ and satellite measurements less
than 2 h, as waters were strongly influenced by river runoff.

The acceptable difference between the satellite and in situ Rrs allowed us to use the
combined set of satellite and in situ Rrs spectra to modify the regional Ncoc estimation
algorithm.

2.6. Tuning of the Hydrolight Model

Hydrolight software was used to calculate the light field parameters. We used the case
2 water model, where inherent optical properties were determined for 4 components [58].
The parameters of pure water absorption and scattering were taken from [59,60].

The optical properties of the component associated with Chl were parameterized
through its concentration. The result of field measurements of the concentration of Chl at
the depths of 1–10 m shows insignificant (5–10%) changes, so the concentration was set
as a constant with depth. Absorption and scattering parameters were introduced using
standard models available in Hydrolight [61,62]. The parameters of the scattering phase
function represent the Morel model for “large particles” [63].

The CDOM component was considered to be non-scattering. The absorption of CDOM
was calculated relatively to the absorption value at wavelength 443 nm ag(443) [56]. This
value and CDOM spectral slope were specified using the results of laboratory ICAM
measurements, or through the GIOP Rrs(λ) decomposition algorithm [64].

The mineral suspension component was set, assuming that the suspension is rep-
resented only by coccolithophore cells and detached coccoliths, which corresponds to
more than 99% of the biomass during intense blooms, according to in situ measurements.
The absorption properties of coccolithophores and coccoliths were neglected, as they are
several times less than those of Chl and CDOM. We used the typical coccolithophore bloom
backscattering ratio value bb/b = 0.02 [65], and the spectral scattering coefficient b(λ) was
assigned as

b(λ) = b0 (550/λ)m. (8)

The parameters b0 and m were determined to spectrum bb(λ) and matched the results of
the decomposition of the Rrs spectra using GIOP. The depth of a homogeneous surface layer
with coccolithophores Zcoc was also specified, below which coccolithophore concentration
was set to zero.

Figure 2a shows the comparison of the scattering parameters b0 and m calculated using
GIOP from satellite and in situ Rrs (λ) spectra. In this case, all available satellite spectra
were used. The coefficient of determination R2 of the linear correlation was 0.49, which
made it possible to determine the parameter m based on the value b0:

m = 1.274 − 0.067·b0 (9)

Parameter b0 correlates well with the concentration of Ncc_cl according to direct mea-
surements (b0 = 0.207·Ncc_cl, R2 = 0.62, Figure 2b). Only satellite spectra with a measurement
time difference of less than 8 h were used here. If we expand the array of satellite data
by increasing the time interval to 32 h, then R2 will decrease to 0.49, and the correlation
equation will change slightly: b0 = 0.212·Ncc_cl. However, as can be seen in Figure 2b,
there is a significant difference in the location of the data for 2017 and 2022 relative to the
regression line for the general dataset, which can be explained by the different phases of
blooms recorded according to in situ measurements over these years. If we calculate the
regression separately for each year, then for 2017, we will obtain b0 = 0.245·Ncc_cl, and for
2022, it will be b0 = 0.145·Ncc_cl.
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3. Results
3.1. Coccolithophore Concentrations in the Northeastern Part of the Black Sea in 2017 and 2022

In 2017, intense coccolithophore bloom represented by one species Emiliania huxleyi
was observed at all stations from the shelf to stations above the depth of 1500 m. The
maximum number of coccolithophores exceeded 9× 106 Cells L−1 (Table S1), and their con-
tribution to the total phytoplankton biomass was above 99%. Coccolithophore bloom was
observed mainly in the upper mixed layer. The median concentration of coccolithophore
cells for all sampling depths was equal to 6 × 106 Cells L−1, and for the two upper ones
was 7 × 106 Cells L−1.

In 2022, coccolithophore bloom was generally less intense, although the abnormally
high value of 13× 106 Cells L−1 was obtained at one station (Table S2). Bloom also occurred
at all stations of the continental shelf and slope, and it was recorded in the upper mixed
layer. The median concentration of coccolithophore cells for all sampling depths was equal
to 4 × 106 Cells L−1, and for the two upper ones was 5.4 × 106 Cells L−1.

The median value for the Ncl/Ncc ratio for all sampling depths in 2017 was 11.5, and
for the two upper ones was 15.0; in 2022, for all depths it was 1.3, and for the two upper
ones was 2.2. Such a strong difference in the value of Ncl/Ncc, apparently, occurs due
to the difference in the bloom phase for those two years. In June 2022, the bloom was
in an earlier phase, when significantly fewer detached coccoliths were observed; in June
2017, measurements were performed near the end of bloom, so the abundance of detached
coccoliths exceeded the abundance of placed coccolithophore cells.

3.2. Sensitivity of the Ncoc Algorithm to Variations in Bio-Optical Characteristics

Figure 3 shows a comparison of the measured and model Rrs(λ) spectra using the
examples of station 1_22 (11.06.2022, 44.56N, 37.96E) and station 3_17 (08.06.2017, 44.48N,
37.85E). For station 1_22, the model spectra are compared with the field-measured Rrs(λ),
and for station 3_17, with the spectrum according to MODIS Terra data. The concentration
of Ncc_cl according to direct measurements for station 1_22 was 5.2 × 106 Cells L−1, and for
station 3_17 was 11.6 × 106 Cells L−1. In this case, for station 1_22, the best agreement of
the model spectrum with the measured one was achieved for Zcoc = 10 m, while in the case
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of more intense bloom at the station 3_17, the spectrum matched for Zcoc = 5 m. For both
stations, the value of Zcoc* was calculated, when all model spectra with Zcoc > Zcoc* hardly
differed from the one obtained with Zcoc*. This indicates that the Rrs(λ) spectrum is formed
by the upper layer of a water column with a thickness of Zcoc*. For the stations shown in
Figure 3, the Zcoc* was 15 and 10 m.
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Figure 3. The results of modeling the Rrs(λ) spectra with Hydrolight software with a change in the
values of Zcoc (a,d), Chl (b,e), and CDOM (c,f) using data from stations 1_22 (upper row) and 3_17
(bottom row). The notation Chl/CDOM ‘X’ refers to the case of an X-fold increase in the concentration
of Chl or ag(443).

To test the stability of the regional coccolithophore concentration algorithm to varia-
tions in the Chl concentration and the CDOM content, additional model calculations were
carried out (Figure 3 in the center and right column). These variations were set using
a multiplier X to the initial values of Chl and ag(443), for which the best agreement was
obtained with the measured Rrs spectra. The effect on the Rrs spectrum of the change
in CDOM is more noticeable than the change in Chl (Figure 3). The reason for this is
that the CDOM-related absorption is usually significantly greater than the phytoplankton
absorption in the northeastern part of the Black Sea. When the Chl value changes by 50%,
there is only a slight change in the Rrs(λ) spectra, while the same relative decrease in CDOM
brings not only a significant increase in Rrs, but also a noticeable change in the shape of the
spectrum. This shape is typical for coccolithophore bloom spectra in the Barents Sea [66],
where the content of CDOM is significantly lower than in the Black Sea. Only with such a
low content of CDOM or with a significant increase in Chl (3–5 times) is the effect of the
maximum absorption by phytoplankton near 450 nm noticeable in the shape of a small
deflection of the Rrs(λ) spectrum near this wavelength.



Remote Sens. 2023, 15, 2219 9 of 22

Table 1 shows the sensitivity of the regional Ncoc algorithm [29] to variations in the
Zcoc, Chl, and the absorption of CDOM values. In addition to the Ncoc values for different
model spectra (Figure 3), their difference (∆, %) from the Ncoc* values calculated from
the measured spectra (Ncoc* = 3.1 and 13.4 × 106 Cells L−1 for station 1_22 and 3_17,
respectively) is shown. A decrease in Zcoc by 2 times leads to underestimation of Ncoc
estimates by almost 2 times for station 1_22, where the bloom is not so intense. For station
3_17, with a decrease in Zcoc, there is also a significant decrease in Ncoc (by more than
3 × 106 Cells L−1, ~26%). The increase in Zcoc does not play such a significant role, since the
spectrum of upwelling radiation is formed by the surface layer of the water column—Zcoc*.
In fact, a greater relative variability of Ncoc estimates in response to changes in modeling
parameters was observed for station 1_22, with a less intense CB than for station 3_17. The
Ncoc for station 1_22 changes particularly noticeably when the CDOM absorption changes.
For station 3_17, in an intense CB area, the response to changes in CDOM and Chl is
approximately the same, as the absorption of Chl becomes comparable to the absorption of
CDOM for the 488 nm spectral band used in the Ncoc algorithm. The higher concentration
of Chl (0.47 in comparison to 0.2 mg L−1) proves it, while the value of CDOM for station
3_17 is only 26% higher than station 1_22.

Table 1. The values of Ncoc (106 Cells L−1) according to the 2014 algorithm [29] and their difference ∆
(%) from the values of Ncoc* calculated from the measured spectra, depending on the parameters of
the Hydrolight model with an example for stations 1_22 and 3_17. Columns highlighted in bold refer
to calculations with the set of parameters when the best match between the measured and calculated
Rrs spectra was obtained.

St. 1_22 St. 3_17

Zcoc 5 10 15 20 3 5 7 10

Ncoc 1.4 3.1 3.6 3.8 11.0 14.3 15.7 16.4
∆ −53% 1% 19% 24% −16% 10% 21% 26%

X * Chl 0.5 1 1.5 3 0.5 1 1.5 3

Ncoc 3.5 3.1 2.8 2.0 15.2 14.3 13.6 11.8
∆ 14% 1% −10% −36% 17% 10% 4% −9%

X CDOM 0.5 1 1.5 2 0.5 1 1.5 2

Ncoc 3.8 3.1 2.4 1.7 15.0 14.3 13.6 12.9
∆ 25% 1% −22% −45% 15% 10% 5% −1%

* The notation ‘X’ refers to the case of an X-fold increase in the concentration of Chl or ag(443).

3.3. New Values of Kcoc as a Result of Hydrolight Modeling

Using a customized bio-optical model, Rrs calculations were carried out for five values
of Ncc_cl 2, 4, 7, 10, and 15 × 106 Cells L−1. For each value of the concentration of Ncc_cl, the
values of Chl (0.3, 0.5, and 0.8 mg L−1) and CDOM (0.03, 0.05, and 0.08 m−1) were varied to
cover the most likely range of changes in these optically active components (OAC), typical
for the northeastern part of the Black Sea [55,67]. The calculations were carried out under
the assumption of a homogeneous distribution of coccolithophores in the layer 15 m deep,
which generally corresponds to the results of the performed field measurements of the
vertical profiles of the beam attenuation coefficient c(530).

Thus, 45 Rrs spectra were obtained, to which the regional algorithm was applied to
estimate the Ncoc concentration. The comparison of the Ncc_cl input values used in Hydro-
light calculations and obtained Ncoc estimates is shown in Figure 4. If we use the values
of the parameters Kcoc, Kriv, and bbp_bg defined in the article [29], then the Ncoc estimates
(shown in pink circles) vary visibly in response to changes in the content of the OAC. Simul-
taneously, overestimated Ncoc evaluations are obtained for Ncc_cl = 15 × 106 Cells L−1, and
underestimated ones (in a number of cases even negative) for Ncc_cl = 2 × 106 Cells L−1.
This result arises from the fact that in our Hydrolight model, the contribution of terrigenous
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suspended matter is not taken into account. The origin of this matter is associated with
river runoff, as well as with the bbp background amount, which is parametrized through the
bbp_bg value. Therefore, Ncoc estimates were calculated for the case of Kriv = 0 and bbp_bg = 0
(blue circles in Figure 4). In this case, the influence of the OAC practically disappears,
but for all Ncc_cl data, overestimated Ncoc values are obtained, and this overestimation
increases in direct proportion to Ncc_cl, which indicates an incorrect Kcoc value. For the
best correspondence of the initial values Ncc_cl with the results of Ncoc estimates, the value
4.36 × 10−3 is used (red circles in Figure 4).
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Figure 4 also shows Ncoc estimates for the cases of Kriv = 0 (in blue) and bbp_bg = 0 (in
green). The results obtained in these cases are close to the variants of Kriv = 0 and bbp_bg = 0
and the original algorithm [29], respectively, showing that the influence of the value of
bbp_bg on the algorithm results is significantly less than the influence of Kriv.

As was previously noted (Section 2.4), there are noticeable differences for the data
we use depending on the year. Therefore, similar calculations of Rrs spectra arrays were
performed, but using the coupling equations between b0 and Ncc_cl obtained separately for
2017 and 2022 data. These arrays allowed us to obtain two more variants of the Kcoc value:
5.13 × 10−3 for 2017 and 3.10 × 10−3 for 2022. Additionally, if the first Kcoc value is almost
two times higher than the previous Kcoc estimate [29], then the second one is very close to
it. The use of these Kcoc values is discussed in Sections 3.4 and 4.5.
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3.4. Configuring Other Model Parameters

As long as the results of the Hydrolight calculations were obtained without taking
into account the terrigenous suspended matter, the presence of which is quite possible
when using real data, the data of in situ and satellite measurements of Rrs were used to
adjust two parameters of the Ncoc algorithm related to the terrigenous suspended matter
(Kriv and bbp_bg) for stations where the in situ measurements of Ncc_cl were completed. The
difference in measurement time between satellite and shipboard data did not exceed 8 h. In
total, 41 corresponding spectra were selected for 2017 and 2022.

We set the value of Kriv and bbp_bg as a fraction of their values defined in the previous
work [29], leaving values from the original algorithm or decreasing them. For example,
the notation ‘0.25_0.5’ means that Kriv = 0.25 × 0.157 = 0.03926 and bbp_bg = 0.5 × 0.0025 =
0.00125.

For the Kcoc parameter, both previous values 2.74 × 10−3 and three new variants,
3.10, 4.36, and 5.13 × 10−3, obtained in Section 3.3 were used. As there is a rather large
difference between the variants of the Kcoc 3.10 and 4.36 × 10−3, two more intermediate
ones were used: 3.52 and 3.94 × 10−3. Table 2 shows the RMSE and MAPE values of
the Ncoc estimates obtained relative to the measured Ncc_cl for the selected dataset and
depending on the three parameters values of the algorithm: Kcoc, Kriv, and bbp_bg.

Table 2. The RMSE (106 Cells L−1) and MAPE values of Ncoc estimates relative to the measured
Ncc_cl for the selected dataset and depending on the value of the parameters of the algorithm Kcoc,
Kriv, and bbp_bg.

Kriv and bbp_bg * 1.0_1.0 1.0_0.5 0.5_1.0 0.5_0.5 0.25_1.0 0.25_0.5 0.1_0.1

Kcoc 103 RMSE

2.74 2.68 ** 2.57 2.70 2.77 2.90 3.05 3.47
3.1 2.75 2.54 2.40 2.32 2.37 2.37 2.56
3.52 3.08 2.82 2.52 2.32 2.31 2.16 2.06
3.94 3.46 3.21 2.85 2.61 2.57 2.35 2.08
4.36 3.83 3.59 3.23 2.99 2.93 2.69 2.35
5.13 4.41 4.19 3.86 3.64 3.57 3.35 3.01

Kcoc 103 MAPE

2.74 35% 32% 31% 29% 30% 29% 32%
3.1 36% 33% 31% 29% 29% 27% 25%
3.52 39% 36% 32% 30% 30% 28% 25%
3.94 43% 40% 36% 33% 33% 30% 26%
4.36 48% 45% 40% 37% 37% 34% 29%
5.13 55% 52% 48% 45% 44% 41% 37%

* The values of Kriv and bbp_bg are given as fractions of their values determined in the previous work [29]. ** The
underlined values of RMSE and MAPE correspond to the algorithm parameters that were used in Figure 5.

If we focus on the RMSE and MAPE values, the best correspondence between the calcu-
lated Ncoc and the measured Ncc_cl is obtained in the case of 0.1_0.1 and Kcoc = 3.52 × 10−3.
In fact, it is the option of reducing the contribution of terrigenous suspended matter to
10% of the initial one, almost regardless of the Kcoc value, that leads to a decrease in RMSE
and MAPE and, therefore, to an improvement in compliance. Comparison graphs of Ncoc
vs. Ncc_cl show that the discrepancy in the variants with different values of the algorithm
parameters are no longer so noticeable (Figure 5). The best option, “10%” (Figure 5b), does
not differ much from the original “algorithm 2014” (Figure 5a); it even has less difference
from the intermediate “50%” option (Figure 5c), although the values of RMSE and MAPE
are noticeably different for all given versions.
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column [22]. In the northeastern part of the Black Sea, weak SE winds dominate in late 
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Figure 5. Comparison of the coccolithophore concentration Ncoc calculated from Rrs(λ) with different
parameters of the regional algorithm Kcoc, Kriv, and bbp_bg, and measured Ncc_cl: (a) algorithm 2014
(1.0_1.0, Kriv = 2.74 × 10−3); (b) option “10%” (0.1_0.1, Kriv = 3.52 × 10−3); (c) option “50%” (0.5_0.5,
Kriv = 3.52 × 10−3); (d) option “10% 2017” (0.1_0.1, Kriv = 5.13 × 10−3). Notations are the same as in
Figure 2.

Figure 5d shows the variant 0.1_0.1 and Kcoc = 5.13 × 10−3, as it was the value of Kcoc
obtained in the Hydrolight calculations with the focus on 2017 data and the corresponding
best option for terrigenous suspended matter was selected from Table 2. However, even
if we only pay attention to the data for 2017, the “50%” option suits them much better
(Figure 5c). Thus, model calculations do not always allow us to find the best variant of the
algorithm parameters that works with real satellite data, because atmospheric correction
errors begin to contribute to the accuracy of the latter [57,68], as well as errors associated
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with the time difference between in situ and satellite measurements. In addition, the error
is caused by the discrepancy between the spatial resolution of shipboard and satellite data
and the interannual dynamics of phytoplankton communities.

Furthermore, we will consider the “10%” option (0.1_0.1 and Kcoc = 3.52 × 10−3) to be
the best one for the conditions of intensive CB in the northeastern part of the Black Sea. We
will denote it as ‘algorithm 2023’. The algorithm code (MATLAB script) for both algorithms
(2014 and 2023) is available in the Supplementary Materials.

4. Discussion
4.1. Coccolithophore Blooms in the Black Sea

Coccolithophore blooms are an almost annual phenomena in the Black Sea, but in
2017 and 2022, these blooms reached their maximum intensity in comparison to previous
years [28]. The maximum concentration of Emiliania huxleyi was registered in 2022, and
it has been the maximum for all the years of research since the beginning of this century.
Coccolithophore blooms grow in the upper mixed layer with high stability of the water
column [22]. In the northeastern part of the Black Sea, weak SE winds dominate in late
and early spring, and wind forcing during this period is minimal [28,69]. This contributes
to the development of a sharp seasonal thermocline, the presence of which is a necessary
condition for the bloom [22,24,28,70].

Typical features of the blooms of 2017 and 2022 are the presence of a large number
of detached coccoliths (Tables S1 and S2). In 2017, the number of detached coccoliths
per Emiliania huxleyi plated cell reached 600. In 2022, this number was lower, but still
high. This suggests that the bloom was in late phase and the number of destroyed cells
accumulated. One of the possible mechanisms for the appearance of a large number of
detached coccoliths during the bloom is the intensive consumption of living cells by species
of a higher trophic level [71].

Due to a large number of plated cells and detached coccoliths in the upper mixed
layer, a kind of optical medium is created to generate optimal conditions for the growth of
coccolithophore cells, and does not allow other species in competition to win [65]. However,
it is not yet clear why intense coccolithophore blooms grow. There is a hypothesis that the
intensity of blooms is related to the nature of winters, as after cold winters, there are usually
more intense blooms [70,72]. However, the details of this connection remain unclear.

4.2. Sensitivity of the New Ncoc Algorithm

Table 3 shows the sensitivity test results of the 2023 regional algorithm to deter-
mine Ncoc with the example of the 1_22 and 3_17 stations (just as in Table 1). Firstly,
the new algorithm has allowed us to obtain Ncoc* estimates from the measured spectra
that better correspond to the data of direct measurements of Ncc_cl. For the station 1_22,
Ncoc* = 4.7 × 106 Cells L−1, and for 3_17 it is 12.3 × 106 Cells L−1, which is much closer
to the estimates of Ncc_cl: 5.2 and 11.6 × 106 Cells L−1, respectively. Secondly, the new
algorithm has become significantly less sensitive to Chl and CDOM value changes, which
is a consequence of a reduction in the contribution of terrigenous suspended matter to the
total suspension matter backscattering. With a 50% change in Chl and CDOM, the Ncoc
estimates for both stations now hardly change. The influence of the Zcoc layer thickness
has somewhat decreased, but the mechanism of this influence remains the same.
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Table 3. The values of Ncoc (106 Cells L−1) according to the algorithm “10%” and their difference ∆
(%) from the value of Ncoc* calculated from the measured spectra, depending on the parameters of the
HydroLight model for the stations 1_22 and 3_17. Columns highlighted in bold refer to calculations
with a set of the parameters when the best match between the measured and calculated Rrs spectra
was obtained.

St. 1_22 St. 3_17

Zcoc 5 10 15 20 3 5 7 10

Ncoc 3.3 4.2 4.5 4.5 11.7 14.1 15.1 15.6
∆ −30% −10% −5% −4% −5% 15% 23% 27%

X * Chl 0.5 1 1.5 3 0.5 1 1.5 3

Ncoc 4.23 4.23 4.24 4.24 14.2 14.1 14.0 13.8
∆ −10% −10% −10% −10% 16% 15% 14% 12%

X CDOM 0.5 1 1.5 2 0.5 1 1.5 2

Ncoc 4.27 4.23 4.20 4.16 14.0 14.1 14.3 14.4
∆ −10% −10% −11% −12% −5% 15% 15% 23%

* The notation ‘X’ refers to the case of an X-fold increase in the concentration of Chl or ag(443).

4.3. Comparison of Ncoc Distributions for 2014 and 2023 Algorithms

Figure 6 shows a comparison of the distributions of Ncoc concentration estimates
calculated with the old [29] and the new 2023 algorithms for the entire Black Sea. For
this figure, we used data from two VIIRS overpasses for 12 June 2017 and 17 June 2022,
which gives us an opportunity to see almost the entire Black Sea water area and relate
to the time of the expeditions in those years. For both images, the comparison of the
two algorithms shows that the main difference between their results arises primarily in
areas affected by river runoff: for example, near the mouth of the Danube River or in the
Sea of Azov. There are also noticeable differences in the area of low Ncoc concentrations.
This is especially noticeable for 2022 in the central part of the sea, where according to the
2014 algorithm, there was no CB; However, the modified algorithm indicates its presence
(Ncoc > 106 Cells L−1).

In addition, Figure 6 shows the differences in CB in the studied years. In 2017, intensive
CB with Ncoc > 4× 106 Cells L−1 covers almost the entire Black Sea area (with the exception
of the northwestern shelf area). In 2022, extremely high values of Ncoc > 15 × 106 Cells L−1

were observed near the northeastern coast, but for the rest of the Black Sea, the CB was less
intensive or absent.

Since the modification of the Ncoc algorithm in conditions of intense CB has been
carried out on the basis of field measurement data in a fairly small area in the northeastern
part of the Black Sea, the new algorithm may not be suitable for the entire sea. The
informative MODIS Terra data from 8 June 2017 were selected to see the differences
between the two algorithms’ performance in the eastern part of the sea (Figure 7). Note
that a different scale was chosen. As there are no rivers as large as the Danube or Dnieper
in the eastern part of the sea, the differences between the two algorithms appear only in
the area of relatively small Ncoc values. In addition, it is worth noting that despite a very
intense CB near the northeast coast in 2022, satellite Ncoc values were clearly lower in the
sampling area near Gelendzhik than those from 2017. Thus, the differences for satellite
estimates of the CB near Gelendzhik are consistent with the field measurement data.
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Thus, the new algorithm gives more accurate estimates in conditions of intense CB
and the absence of strong influence of terrigenous suspended matter. However, for areas
affected by significant river runoff and in areas of weak CB (Ncoc < 3 × 106 Cells L−1),
it seems that the previous version of the algorithm should be used. To set up a regional
algorithm in such waters, it is necessary to conduct complex expedition studies, including
in situ determination of the coccolithophore concentration. Note that spectral variations of
the remote sensing reflectance during coccolithophore blooms in the western part of the
Black Sea, affected by river runoff, were carried out in [57] according to AERONET-OC.
Nevertheless, the authors did not have in situ data on the coccolithophore concentration,
although it is typical for a number of other works [73–77], due to the complexity of such
measurements.
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4.4. The Comparison with PIC Product

The standard satellite data processing product particle inorganic carbon (PIC) is
widely used for CB intensity and calcite (CaCO3) concentration assessments [78,79]. In
the work [29], an equation of the relationship between Ncoc and PIC with a correlation
coefficient of 0.61 was obtained. The comparison of the distributions of Ncoc and PIC for
two satellite overpasses with intensive CB in June 2017 and 2022 is shown in Figure 6. It
can be seen that, in fact, the Ncoc and PIC distributions are visually similar. Note that for
PIC values in areas affected by river runoff (for example, near the mouth of the Danube
River) the data are masked, while the 2014 algorithm yields low Ncoc estimates in these
areas. Moreover, sometimes, areas where the algorithm for Ncoc shows an intense CB are
hidden in PIC distribution map, as was the case near the Kerch Strait (45N, 37E) for the
2017 image, for example.

According to the 8 June 2017 MODIS Terra data in the eastern part of the Black
Sea (Figure 7 upper image), the pixel-by-pixel comparison of PIC and Ncoc values was
performed for both Ncoc algorithms. The proportionality coefficients between Ncoc and PIC
transpired to be 252 and 250, which is quite consistent with the previous value of 223 [29].
It is of interest to make comparisons under non-typical Saharan dust transfer conditions,
for which additional data correction is recommended [80].
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4.5. The Effect of the Bloom Phase (The Difference for Two Years)

To select the best algorithm for estimating Ncoc in conditions of intensive CB in the
north-eastern part of the Black Sea, we focused on the correspondence of the measured and
calculated Ncoc values for the total dataset for two years. Moreover, it was seen that, on
the whole, the data in these years have their own peculiarities (see Figure 5). In addition,
according to direct measurements, a different ratio was recorded for them between the
concentrations of placed coccolithophore cells Ncc and detached coccoliths Ncl, which may
be the result of a different bloom phase during field measurements. In order to select the
best algorithm for each year separately, the statistical parameters (RMSE and MAPE) of the
calculated Ncoc and measured Ncc_cl are presented separately for each year (Table 4).

Table 4. The RMSE (106 Cells L−1) and MAPE values of the Ncoc estimates relative to the measured
Ncc_cl for the 2017 and 2022 data separately and depending on the value of the parameters of the
algorithm Kcoc, Kriv, and bbp_bg.

2017 2022

Kriv and bbp_bg 1.0_1.0 0.5_0.5 0.1_0.1 1.0_1.0 0.5_0.5 0.1_0.1

Kcoc 103 RMSE

2.74 2.53 3.92 5.31 2.76 1.68 1.31 *
3.1 1.94 2.60 3.68 3.17 2.11 1.43

3.52 2.16 1.86 2.39 3.54 2.58 1.83
3.94 2.76 1.95 1.79 3.85 2.96 2.24
4.36 3.38 2.45 1.88 4.09 3.29 2.61
5.13 4.35 3.46 2.76 4.44 3.75 3.16

Kcoc 103 MAPE

2.74 23% 35% 50% 42% 26% 21%
3.1 16% 23% 33% 48% 33% 21%

3.52 17% 16% 21% 53% 39% 27%
3.94 22% 16% 15% 57% 44% 33%
4.36 28% 19% 15% 61% 49% 38%
5.13 38% 29% 22% 67% 55% 46%

* The underlined values of RMSE and MAPE correspond to the algorithm parameters for which the best corre-
spondence between the calculated Ncoc and the measured Ncc_cl was obtained (see text).

As in the case of a general data array, the smallest difference between the measured
and calculated values was obtained with the smallest fraction of terrigenous suspension
(option 0.1_0.1). Although the Kcoc = 3.94 × 10−3 value suits 2017 better, for 2022, it
should be changed to 2.74 × 10−3. However, this choice is rather arbitrary as for other
parameters of the algorithm almost the same compliance estimates were obtained. For
example, for the 2017 data, RMSE = 1.79 and MAPE = 15% in the case of the 0.1_0.1 option
and Kcoc = 3.94 × 10−3, while for the 0.5_0.5 option and Kcoc = 3.52 × 10−3, we obtain
almost the same difference parameters: RMSE = 1.86 and MAPE = 16%. This means that
although the regional algorithm can be customized for specific bloom phases, the algorithm
without taking into account the bloom phase will give almost the same Ncoc estimations
equally well, which should certainly be attributed as one of its advantages. A number of
previously developed optical methods can be used to detect different bloom phases [81,82].

4.6. Influence of the Spectral Index m Values for the Suspended Matter on the Rrs Spectra

To determine the parameter m of the spectral dependence of backscattering by sus-
pended matter in HydroLight calculations, we used Equation (9) with a low coefficient of
determination value (R2 = 0.49). The value of m could vary in the range 1.0–1.3 (Figure 2).
To check what effect the m value has on the model Rrs(λ) spectrum, HydroLight calculations
for station 3_17 with different values of m (Figure 8) were performed. It can be seen that
even for extreme values of 1.0 and 1.3, the model spectra differ only very slightly. For the
551 nm band, they coincide and for 488 nm, the difference is 3%. That is, in the HydroLight
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calculation model, in order to improve the Ncoc estimation algorithm, it is possible to use
Equation (9) or a fixed m value from the range 1.0–1.3 with good accuracy.
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5. Conclusions

A modified regional algorithm to quantify the concentration of coccolithophores
in the northeastern part of the Black Sea under conditions of intense bloom is presented.
Compared to the data underlying the previous version of the algorithm, over recent years, it
has been possible to significantly expand the accumulated dataset of in situ coccolithophore
and coccolith concentration determinations. In addition, the ratio between the number
of detached coccoliths and plated coccolithophore cells was taken into account. The
undoubted advantages of the new algorithm include its lower sensitivity to variations in
the values of chlorophyll concentration and CDOM absorption, which are not associated
with coccolithophorid blooms. In the future, much attention should be paid to the Western
part of the Black Sea, where the problem of separating the contribution of the Danube and
Dnieper rivers into the remote sensing reflectance signal arises, as well as developing an
algorithm for quantifying the concentration of coccolithophorids during winter blooms.
This means that it will be necessary to carry out extended expeditionary studies for the
mentioned region and season, including direct determinations of the concentration of
coccolithophorids. In general, the proposed approach with the separation of particulate
matter into two components (terrigenous and coccolithophore) can be used to create
regional or seasonal algorithms for estimating the concentration of coccolithophores in any
region of the world ocean during any period. It is only necessary to have the data of field
measurements of coccolithophore concentration and simultaneous shipboard or satellite
measurements of the remote sensing reflectance for the selected region and period.
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