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Abstract—Automating the detection and localization of seg-
mental (regional) left ventricle (LV) abnormalities in magnetic
resonance imaging (MRI) has recently sparked an impressive
research effort, with promising performances and a breadth of
techniques. However, despite such an effort, the problem is still
acknowledged to be challenging, with much room for improve-
ments in regard to accuracy. Furthermore, most of the existing
techniques are labor intensive, requiring delineations of the
endo- and/or epi-cardial boundaries in all frames of a cardiac
sequence. The purpose of this study is to investigate a real-time
machine-learning approach which uses some image features that
can be easily computed, but that nevertheless correlate well with
the segmental cardiac function. Starting from a minimum user
input in only one frame in a subject dataset, we build for all the re-
gional segments and all subsequent frames a set of statistical MRI
features based on a measure of similarity between distributions.
We demonstrate that, over a cardiac cycle, the statistical features
are related to the proportion of blood within each segment. There-
fore, they can characterize segmental contraction without the need
for delineating the LV boundaries in all the frames. We first seek
the optimal direction along which the proposed image features are
most descriptive via a linear discriminant analysis. Then, using the
results as inputs to a linear support vector machine classifier, we
obtain an abnormality assessment of each of the standard cardiac
segments in real-time. We report a comprehensive experimental
evaluation of the proposed algorithm over 928 cardiac segments
obtained from 58 subjects. Compared against ground-truth
evaluations by experienced radiologists, the proposed algorithm
performed competitively, with an overall classification accuracy
of 86.09% and a kappa measure of 0.73.
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I. INTRODUCTION

E ARLY and accurate detection of segmental (regional)

left ventricle (LV) abnormalities in magnetic resonance

imaging (MRI) is widely accepted as a predictor of cardiac

diseases, the leading cause of death worldwide [1]. In routine

clinical procedures, segmental cardiac function is considered

an essential diagnosis and follow-up component [2]. It is often

assessed visually following the American Heart Association

(AHA) [3] standard, which prescribes selecting representative

2-D cardiac slices so as to generate 17 standardized LV seg-

ments. Based mainly on visual assessments, current radiologic

practices are subject to high inter-observer variability [4],

[5], and are subjective and nonreproducible. For instance, the

clinical study in [4] showed that the mean kappa measure of

detecting regional wall motion abnormalities by three dif-

ferent radiologists could be as low as 0.43. The difficulties

come from the subtle visual differences between normal- and

abnormal-segment motions. Alternatively, automating the de-

tection and localization of regional abnormalities has recently

sparked an impressive research effort [6]–[11], with promising

performances and a breadth of techniques. However, despite

such efforts, the problem is still acknowledged challenging,

with the need for significant improvements in accuracy. For

instance, the recent publication in [8] reports an accuracy of

63.70% (base), 67.41% (middle), and 66.67% (apex) when

visual wall motion scoring is used as reference.

A. Prior Art

Most of the pioneering studies of wall motion abnormality

detection targeted echocardiography [12]–[14], using concepts

from shape statistics [12], [13] and hidden Markov models

[14], among others. More recently, MRI-based wall motion ab-

normality detection has attracted significant research attention

[6]–[11]. In [10], Punithakumar et al. characterized myocar-

dial-segment motions via a nonlinear dynamic model, and used

the Shannon’s differential entropies of various segment features

(e.g., areas and radial distances) as inputs of a naive Bayes

classifier. In [13], Leung and Bosch built sparse shape models

with localized variations from four- and two-chamber echocar-

diographic sequences using principal component analysis and

orthomax rotations. The ensuing shape parameters were then
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used to assess local wall motion. In [8] and [15], Suinesia-

putra et al. built normokinetic myocardial shape models using

short-axis MR images acquired from healthy volunteers. Then,

they proposed to use an independent component analysis (ICA)

classifier that detects and localizes abnormally contracting

segments, via a characterization of local shape variations.

Lekadir et al. [11] focused on statistical modeling based on

spatio-temporal inter-landmark relationships. In [7], Lu et al.

proposed a pattern recognition technique built upon intra-seg-

ment correlation, using a normalization scheme that maps each

LV slice to polar coordinates with fixed size, intensity level, and

position. The study in [9] proposed a differentiable-manifold

analysis, following differential geometry concepts to define

a parameterization of the LV domain which is considered

as a deforming manifold. The authors of [6] investigated a

tensor-based linear discriminant analysis (LDA) classification

that conserves the spatio-temporal structure of the myocardial

function. Radial and circumferential strain as well as tissue-ro-

tation angle were used as features to train and test a classifier

via manual segmentations of the myocardium.

Most of the existing methods require delineations of the

endo- and/or epi-cardial boundaries in all frames of a cardiac

sequence, using either a manual time-consuming process

[6]–[9] or an automatic/semi-automatic segmentation (de-

lineation) algorithm [16], which is itself a challenging and

computationally expensive task that may result in high estima-

tion errors [16]. In general, segmentation algorithms require

either careful user interventions and/or intensive manual

training, along with a heavy computational load. Furthermore,

the ensuing segmentation results often hinge on the choice of

a large set of ad hoc parameters and training data, which may

yield high errors. These difficulties inherent to segmentation

algorithms might impede significantly segmental motion abnor-

mality detection. Moreover, some of the existing algorithms,

e.g., those based on shape analysis techniques [8], require such

delineations in the training phase, which increases significantly

the amount of manual inputs and training complexity.

B. Contributions of This Paper

While existing techniques are labor intensive, we believe

that there are other characteristics of the images that can

be computed with less effort, but that nevertheless correlate

with the segmental cardiac function. One such technique that

we describe below is based on image features and machine

learning.

The main contribution of this work is in building statistical

image features that do not require segmentations and can be

easily computed, but that can characterize well segmental car-

diac function. The new features remove the need for delineating

the endo- and epi-cardial boundaries in all the images of a car-

diac sequence. Starting from a minimum user input in a single

frame of subject data, we build for all the regional segments and

all subsequent frames a set of statistical MRI features based on

a measure of similarity between distributions. We demonstrate

that, over a cardiac cycle, the statistical features are related to

the proportion of blood within each segment. These features can

therefore characterize segmental contraction without the need

for delineating the LV boundaries in all the frames. We first seek

the optimal direction along which the proposed image features

are most descriptive via a LDA. Then, using these results as in-

puts to a linear support vector machine (LSVM) classifier, we

obtain an abnormality assessment of each of the standard car-

diac segments in real-time. We report a comprehensive exper-

imental evaluation of the proposed algorithm over 928 cardiac

segments obtained from 58 subjects. Using evaluations by ex-

perienced radiologists as ground-truth, the proposed algorithm

yielded a competitive performance, with an overall classifica-

tion accuracy of 86.09% and a kappa measure of 0.73.

A preliminary conference version of this work appeared in

MICCAI 2011 [17]. This journal version expands on [17] with

1) a wider experimental investigation that includes more patient

data, radiologist assessments, and statistical validations; and 2)

a much broader, more informative/rigorous discussion of the

subject.

II. IDENTIFYING 16 SEGMENTS IN ONLY ONE FRAME

This step requires a user-provided delineation of the endo-

and epicardium boundaries in only one single frame, which we

refer to as the reference frame. Following the AHA standard [3],

we use such a simple user input to divide the heart into 16 stan-

dard segments. Then, we superimpose the obtained segments

systematically (without additional user effort) to all the other

frames.

Constructing the 16 segments follows standard AHA pre-

scriptions [3], and is based on the following steps.

� Dividing the LV into equal thirds perpendicular to the long

axis of the heart, thereby generating three circular LV sec-

tions: apical [Fig. 1(a)], mid-cavity [Fig. 1(b)], and basal

[Fig. 1(c)]. As prescribed in [3], we use only three repre-

sentative slices containing the myocardium in all 360 .

� Dividing the basal part into six segments of 60 each, as

shown in Fig. 2(c). We used the attachment of the right

ventricular wall to the LV (septal wall) as anatomical land-

mark to identify the septum.

� Dividing the apical part into four segments of 90 each, as

shown in Fig. 2(a).

� Dividing the mid-cavity part is into six segments of 60

each, as shown in Fig. 2(b).

III. CONSTRUCTING STATISTICAL FEATURES

FROM MRI IMAGES

We propose to use image statistics as input features to classify

regional myocardial segments into normal and abnormal.

A. A Synthetic Example

Let us first describe the concept for the simple synthetic-mo-

tion example in Fig. 3. The example depicts several frames, each

containing two regions, a white disc (which we denote region

) and a black ring enclosing (which we denote region );

is an integer denoting the frame number .

During a simulated cardiac cycle, region is shrinking and

expanding, mimicking the LV blood cavity during a cardiac
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Fig. 1. User-provided delineation in one single frame (reference image ) for three representative slices: (a) apical, (b) mid-cavity, and (c) basal.

Fig. 2. Regional segments superimposed on reference image . (a) Apical. (b) Mid-cavity. (c) Basal.

Fig. 3. Simple synthetic example which demonstrates how some segmentation-

free image statistics correlate with the dynamics of a moving region.

cycle, whereas region remains constant ( cor-

responds to the whole image domain ). Let denotes the

intensity within frame

(1)

Let and denote the probability distribu-

tions of intensity within regions and respectively

(2)

where denote the area of region within time frame , and

the area of the image domain.

Now let us consider the Bhattacharyya coefficient [18] that

measures the amount of overlap (similarity) between two distri-

butions and

(3)

where is the set of values over which the distributions are

defined. For this synthetic example, . Note that the

range of the Bhattacharyya coefficient is [0,1], with 0 indicating

no overlap between the distributions and 1 indicating a perfect

match.

Let us assume that we have a segmentation (delineation) of

region in only one frame (the first frame), i.e., only is

known (for , is not segmented). For each , we

can show that the following image statistic is directly related to

the area of region :

(4)

Notice that the computation of the image statistic in the left-

hand side of (4) does not need a segmentation of for .

This image statistic depends only on and the entire image

. Recall that region remains constant for all frames

( corresponds to the whole image domain ) and only

region is shrinking and expanding. Nonetheless, the expres-

sion in the right-hand side is related to the areas of regions

and, therefore, contains information about the dynamics of these

regions. This makes sense because the more overlap between

the distribution of region and the whole image, the larger the

proportion of pixels within region .

We will use this concept to build cardiac-segment statistics

that correlate well with regional LV function, while removing

the need for comprehensive segmentations of all the images in

a cardiac sequence.
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Fig. 4. (a) Manual segmentation of the reference (end-diastolic) frame. (b) Regional segments of the reference frame. (c), (d) Regional segments of the reference

frame superimposed systematically (without additional user effort) onto the rest of the frames.

Fig. 5. (a) Reference image . (b) Endo- and epi-cardial boundaries in .

(c) Boundary of regional segment in the reference frame.

B. Building Segmental Image Statistics for Cardiac MRI

Images

Let be a cardiac MRI sequence containing frames,1 each

comprising slices2 \ : with

. For each frame, we have regional seg-

ments3 , with .

Let us first consider the following basic definitions and nota-

tions.

� is the reference frame, which consists of three 2-D im-

ages, , , each associated with a different

slice level (apical, basal, and mid-cavity). The reference

frame corresponds to the end-diastolic phase.

� Let denote the endo- and epi-cardial

boundaries in , respectively [refer to Fig. 4(a)].

� Let denotes the boundary of regional

segment in the reference frame (refer to Fig. 5 for an

illustration).

Now, for each , let us superimpose systematically

(i.e., without additional user effort) segment boundary

onto the remaining frames as shown in Fig. 4,

and compute the corresponding image statistics (Figs. 6–8).

To formally introduce the expression of the image statistic

for each regional segment at each time step, let us consider the

following general definitions.

� Let denote the region enclosed within curve ,

.

1 is typically equal to 20 or 25.

2 is equal to 3; we used three representative slices following the AHA stan-

dard [3].

3The number of regional segments per subject is equal to 16.

� Let denote the kernel density estimate of the distri-

bution of an image within region

(5)

where is the area of region

(6)

and is the Gaussian kernel [19]

(7)

We assume the following.

� The reference-image distribution within the region inside

approximates the cavity distribution.

� The distribution of each image within approximates

the image distribution within regional segment , i.e.,

(8)

As we shall see shortly, this approximation can be effec-

tively used to compute, without the need for segmentation,

an image statistic that correlates well with the amount of

blood within segment .

Now, as a statistical feature for each regional segment ,

we consider the following Bhattacharyya similarity measure be-

tween distributions

(9)

In a way conceptually similar to the synthetic example we

discussed earlier, we expect that feature is related to the

proportion of blood within regional segment . We further

demonstrate experimentally such a relationship by the typical

examples in Figs. 6–8, which show that the more overlap

(similarity) between the distributions of the cavity and regional

segment , the larger the proportion of blood within the

segment. Therefore, we anticipate that over a cardiac cycle, the

set of features , , can characterize segmental

cavity contraction. Another way to see how features can

describe segmental function is to consider the extreme case

where the regional segment does not move. In such case, the
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Fig. 6. (a)–(c) Regional myocardial segments of an apical slice superimposed on subsequent frames. (d)–(f) Image statistics corresponding to regional segment 13.

Fig. 7. (a)–(c) Regional myocardial segments of a mid-cavity slice superimposed on subsequent frames. (d)–(f) Image statistics corresponding to regional seg-

ment 7.

proportions of blood is constant over a cardiac cycle, and so

are the features.

Fig. 9 summarizes the procedure for estimating the statistical

image-based features.

IV. DIMENSIONALITY REDUCTION VIA LINEAR

DISCRIMINANT ANALYSIS

The Bhattacharyya statistics from training subjects can be

viewed as a cloud of points in the -dimensional Euclidean
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Fig. 8. (a)–(c) Regional myocardial segments of a basal slice superimposed on subsequent frames. (d)–(f) Image statistics corresponding to regional segment 1.

Fig. 9. Procedure of estimating the statistical image-based features.

space. We proceeded to a LDA [20]–[23] to reduce the dimen-

sionality of the image features. Following LDA [20], one can

assume that these points lie within a lower-dimensional space.

Consider the following definitions and notations.

� Let feature vector be a

-dimensional row matrix containing the Bhattacharrya

statistics for a given training subject .

� Assume that each feature vector belongs to one of

two classes and , where and represent respec-

tively normality and abnormality condition of the corre-

sponding regional segment.

� Let be the mean of feature vectors in class ,

(10)

where is the number of the feature vectors in class .

� Let be the mean of all feature vectors

(11)

The between-class scatter matrix [24] is defined as

(12)

and the within-class scatter matrix [24] is defined as

(13)

where is the number of the feature vectors in both classes.

In LDA [24], a projection vector is chosen so as to maxi-

mize the following ratio:

(14)

Maximizing such a ratio seeks to reduce dimensionality while

preserving as much of the class discriminatory information as

possible. In the two-class case, LDA can only produce a scalar.
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Fig. 10. Overview of the training phase.

Fig. 11. Overview of the testing phase.

It finds a vector that maps original data

to a scalar

(15)

This amounts to projecting the data onto a line that maximizes

the class separability of the scalars.

In the next step, we use a LSVM classifier to classify the pro-

jected features ensuing from a given testing subject into normal

or abnormal. Fig. 10 summarizes the overall classification pro-

cedure.

V. LINEAR SUPPORT VECTOR MACHINE CLASSIFICATION

OF REGIONAL SEGMENTS

This step consists of classifying regional myocardial seg-

ments with a LSVM, given projected features (refer to

Fig. 11). Let , , be an annotated

training set, with denoting the labels associated with .

Variable has two possible values , 1

corresponding to the abnormal-segment class and 1 to the

normal-segment class. The two-class LSVM classifier evalu-

ates the sign of a linear function the form [25]–[29]

(16)

where denotes a fixed feature space, and indicates a bias

parameter. The sign of indicates the class of input .We as-

sume that the training features are linearly separable, i.e., there

exists at least one choice of that satisfies for fea-

tures having and for features having

. SVM approaches this problem through the concept of

the margin, which is defined to be the smallest distance between

the decision boundary and any of the features (for an illustration,

refer to [29, Fig. 7.1]). To find the decision boundary, we need

to maximize the margin, i.e., the perpendicular distance charac-

terizing the feature-point that is closest to the decision boundary

[29]. Thus, the maximum-margin solution is sought by solving

(17) (for further details, refer to [29, p. 327])

(17)

The direct solution to this optimization problem is quite chal-

lenging. However, one can resort to some assumptions andmod-

ifications so as to convert (17) into minimizing a quadratic func-

tion subject to a set of linear inequality constraints, which can

be solved via a standard Lagrangian-multiplier method. Further

details can be found in [29, Ch. 7].

We trained the LSVM classifier by providing the training-set

features and the corresponding ground-truth annotations

(Fig. 10 depicts an illustration). Then, the optimal hyper-

plane is computed by solving (17), and is used as a decision

boundary to classify new (testing-subject) features into normal

or abnormal segments.

VI. EXPERIMENTS

A. Data Acquisition

The data contain 58 3 short-axis image datasets (i.e., apical,

mid-cavity, and basal), each consisting of 20 functional 2-D im-

ages acquired from 21 normal and 37 abnormal hearts, using

1.5T MRI scanners with fast imaging employing a steady state
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TABLE I

DETAILS OF THE DATASETS USED IN THE EVALUATION

OF THE PROPOSED METHOD

Fig. 12. User input to specify initial segmentation and anatomical landmarks

on the first frame.

Fig. 13. Projected apical features obtained following the LDA transfor-

mation.

acquisition (FIESTA) mode. The details of the datasets are pre-

sented in Table. I. The data consist of images from 41 male and

17 female subjects, and an average age of 52.3 15.0 years.

The temporal resolution is 45.1 8.8 ms.

For each subject, slices were chosen from apical, mid-cavity

and basal frames, and anatomical landmarks were identified

manually on the first frame4 (see Fig. 12 for an illustration).

A cubic spline interpolation was used to sample points

along each endo- and epi-cardial boundary. The higher , the

better the estimation accuracy. However, the computational

complexity of the algorithm increases with the values of .

The apical, mid-cavity and basal slices were automatically

partitioned into 4, 6, and 6 segments, respectively, following

the standard procedure outlined in [3], which results in 16 seg-

ments per subject. The 17th segment, apex, was not analyzed.

The results of 928 myocardial segments (58 subjects 16

segments) were compared to a single ground truth classifica-

tion.5We classify a segment as abnormal if that segment is hy-

pokinetic, akinetic, or diskinetic. Among the 37 abnormal sub-

jects, 12 were diagnosed with infarction, 10 with dilated car-

diomyopathy, and 15 with various heart diseases including re-

suscitated cardiac arrest, coronary artery occlusion, cardioem-

bolic cerebrovascular accident, and pseudo-aneurysm.

B. Linear Discriminant Analysis

Figs. 13–15 show the projected features obtained fol-

lowing the LDA transformation for apical, mid-cavity, and basal

segments. Fig. 13 demonstrates that the apical-segment trans-

formation is more discriminative than those obtained for basal

and mid-cavity segments. This can be explained by the fact that

the image-distribution estimation within apical segments is not

affected by the occurrences of papillary muscles in the blood

pool.

C. Linear SVM Classifier

We used 16 LSVM classifiers, each assessing one of the 16

standard segments (normal/abnormal). Figs. 16–18 show the de-

cision boundaries that separate normal and abnormal classes.

Fig. 16 depicts the projected features of four apical segments

for each of the 58 subjects; the total number of apical seg-

ments is 232 (129 normal and 103 abnormal). Fig. 17 shows the

projected features of a total of 348 mid-cavity segments (209

normal and 139 abnormal), where each of the 58 subjects has

six mid-cavity segments. Fig. 18 depicts the projected features

of 348 basal segments (221 normal and 127 abnormal). The

larger the distance between the support vectors of normal and

abnormal classes, the more reliable the decision boundary. The

decision boundaries obtained for apical segments is more reli-

able than those obtained for mid-cavity and basal slices. This is

expected given the fact that the image features within the apical

segments are not affected by the papillary muscles.

4As suggested by [3], the attachment of the right ventricular wall to the LV is

used to identify and separate the septum from the LV anterior and inferior free

walls.

5Each myocardial segment was marked following a binary score, either

normal or abnormal. The ground truth was built by three experienced radiolo-

gists, each of whom annotated a different portion of the data set. Among the

928 segments, 579 segments were marked as normal and 349 as abnormal.
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Fig. 14. Projected mid-cavity features obtained following the LDA transformation.

Fig. 15. Projected basal features obtained following the LDA transformation.

D. Classification Performance

We used two types of criteria to measure the performance of

each classifier: 1) the receiver operating characteristic (ROC)

curves with the corresponding area under the curve (AUC) and

2) the Bhattacharyya measure [30] to assess the discrimina-

tive power of the features. Furthermore, we assessed the classi-

fier performance with a leave-one-third-of-the-subjects-out ap-

proach, i.e., by training our algorithm using 2/3 of the dataset

and testing on the remaining data.
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Fig. 16. Decision boundaries and support vectors for the apical segments.

1) ROC/AUC: The ROC curves depicted in Figs. 19–21

demonstrate the performances of the proposed method. The

best performance is obtained for apical segments. Table II

reports the corresponding AUCs.

2) Bhattacharyya Measure: We used the Bhattacharyya dis-

tance metric to evaluate the overlap between the distributions of

features over normal and abnormal classes

(18)

where and are the distributions over normal and

abnormal hearts, respectively. The higher , the more discrim-

inative the classifier. The Bhattacharyya distances obtained in

Table II are consistent with the ROC/AUC evaluations.

3) Classification Accuracy: We evaluated the classifier per-

formance by computing the accuracy, specificity, and sensitivity

over all the datasets

(19)

where denote true positives (number of segments correctly

classified as “Abnormal”), and true negatives (number of

segments correctly classified as “Normal”). The total number of

“Abnormal” and “Normal” segments are and , respectively.

Table III reports an overall classification accuracy of 86.09%,

with a sensitivity of 93.96% and a specificity of 81.82%. The

highest performance was achieved for apical slices with 89.75%

for accuracy, 94.10% for sensitivity, and 86.29% for specificity.

To show the benefit of combining LDA and SVM in our case,

we further evaluated the performance of the algorithm without

the dimensionality reduction step, i.e., we applied the SVM

classifier to the full feature set. Table IV reports the obtained

performance. The overall classification accuracy decreased

to 71.03%, with a sensitivity of 81.56% and a specificity of

61.88%. These results demonstrate that the combination of

LDA and SVM yields a significant improvement in accuracy

over applying SVM to the initial feature set. Such combination

makes sense when the number of samples is not large enough

to learn the correlation between the features. Recall that, in

our case, each segment has 20 features and 58 samples. As

the number of samples is not sufficient to learn the corre-

lation between 20-dimensional features, we proceeded to a

dimensionality reduction. Such LDA/SVM combination is also

consistent with several prior-art studies in pattern classifica-

tion. For instance, in [31]–[33], the authors investigated such

combination and showed that LDA reflects global properties of

the class distribution whereas SVM is based on local properties

of the dataset. As LDA/SVM combination reflects both local

and global properties of the features, it is not surprising that it

can perform well in our case.

Table V reports comparisons of the obtained results to visual

scores by experienced radiologists. We computed the Kappa

statistic [34] between the proposed method and radiologists’

findings. The Kappa statistic is given by

(20)

where is the observed percentage agreement

(21)

and is the overall probability of random agreement

(22)

denotes false positives (number of segments incorrectly

classified as “Abnormal”), and false negatives (number

of segments incorrectly classified as “Normal”). We obtained

a kappa statistic of 0.73, a value which indicates a substan-

tial agreement [34] between the proposed method and visual

scoring.

E. Comparison With Other Methods

Table VI compares the proposed method with several other

recent methods with respect to the user-input/segmentation

requirements, accuracy, processing time, size of the used data

sets, and types of the processed slices. In the second column,

the description “manual-first” means that the corresponding

method requires a manual segmentation of the first frame, while

“manual-all” means that manual segmentations are required

for all frames. “Reg” means that the corresponding method

requires an inter-frame registration process so as to find the LV

boundaries in all the frames of a sequence. In the last column,

A, B, and M denote apical, basal, and mid-cavity, respectively.

All the methods in Table VI analyze apical, basal and midcavity

slices except the method proposed by Lu et al. [7] which shows

preliminary results for basal slices only.

User-Inputs/Segmentations: The proposed method requires

manual segmentation of a single frame as user input. On the
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Fig. 17. Decision boundaries and support vectors for the mid-cavity segments.

Fig. 18. Decision boundaries and support vectors for the basal segments.
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Fig. 19. ROCs for apical segments: the closer the curve to the left-hand top

corner, the better the classification performance.

Fig. 20. ROCs for mid-cavity segments: the closer the curve to the left-hand

top corner, the better the classification performance.

Fig. 21. ROCs for basal segments: the closer the curve to the left-hand top

corner, the better the classification performance.

other hand, Punithakumar et al. [10], [35] use a manual seg-

mentation of the first frame, and propagate this result via a

registration algorithm to obtain the epicardial boundaries in all

TABLE II

AUCS CORRESPONDING TO FIGS. 19–21 AND THE CORRESPONDING

BHATTACHARYYA DISTANCE METRICS ℬ OF NORMAL/ABNORMAL

DISTRIBUTIONS. THE HIGHER THE VALUES, THE MORE DISCRIMINATIVE

THE ABILITY OF THE CLASSIFIER

TABLE III

CLASSIFICATION ACCURACY USING A LEAVE-ONE-THIRD-OF-THE-

SUBJECTS-OUT APPROACH. PROPOSED METHOD ACHIEVED AN

OVERALL CLASSIFICATION ACCURACY OF 86.09%

TABLE IV

CLASSIFICATION ACCURACY WITHOUT THE DIMENSIONALITY REDUCTION

STEP (i.e., WE APPLIED THE SVM CLASSIFIER TO THE FULL FEATURE SET)

TABLE V

COMPARISONS BETWEEN THE PROPOSED METHOD AND VISUAL

ASSESSMENT SCORING BY EXPERIENCED RADIOLOGISTS.

PROPOSED METHOD YIELDED A KAPPA MEASURE OF 0.73, A sub-

stantial agreementWITH RADIOLOGISTS’ RESULTS

the remaining frames. Similarly, Suinesiaputra et al. [15] use

manual segmentations in end-diastolic and end-systolic frames

followed by a registration algorithm to find the myocardium

boundaries in the remaining frames. Garcia–Barnes et al. [36]

use manual segmentation of the first frame followed by a

B-spline registration applied the the myocardium boundaries

in all frames. Lu et al. [7] show preliminary results for only

basal slices; in this method, each of the epicardial boundaries

is obtained from manual mouse clicks and spline interpolation.

Similarly, the works in [6] and [8] need manual segmentations

of all the frames as user inputs.

Accuracy/Speed: The meta-analysis of accuracy in Table VI

shows that the proposed method can yield a competitive

performance while reducing the computational load and user

efforts.
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TABLE VI

COMPARISONS OF THE PROPOSED METHODWITH RECENT EXISTING METHODS OF REGIONAL MYOCARDIAL ABNORMALITY DETECTION. ALL THE EXISTING

METHODS REQUIRE EITHERMANUAL OR AUTOMATIC (REGISTRATION-BASED) SEGMENTATIONS OF SEVERAL FRAMES IN A CARDIAC SEQUENCE

VII. CONCLUSION

We proposed a real-time machine-learning and image-

statistic based approach to automating the detection and lo-

calization of segmental (regional) myocardial abnormalities

in MRI. Unlike the existing techniques, the proposed method

did not require delineations of the endo- and/or epi-cardial

boundaries in all the frames of a cardiac sequence. Starting

from a minimum user input in only one frame in a subject

data set, we built a set of statistical MRI features, based on

the Bhattacharyya measure of similarity between distributions,

for all the regional segments and all subsequent frames. We

demonstrated via synthetic and real examples that, over a car-

diac cycle, such statistical features are related to the proportion

of blood within each segment, and can therefore characterize

segmental contraction at a much lower cost in terms of both

computation and user effort. We sought the optimal direction

along which the proposed image features are most descriptive

via an LDA. Then, using these results as inputs to a LSVM

classifier, we obtained an abnormality assessment of each of the

standard cardiac segments in real-time. We reported a compre-

hensive experimental evaluation of the proposed algorithm over

928 cardiac segments obtained from 58 subjects. Compared

to ground-truth evaluations by experienced radiologists, the

proposed algorithm yielded an overall classification accuracy

of 86.09% and a kappa measure of 0.73. We further reported

meta-analysis comparisons with several recent methods, which

showed that the proposed method can yield a competitive

performance, while significantly reducing the computational

load and user effort.

It is worth noting that the proposed method assumes the

global/local motion between two frames is not substantial.

Such an assumption may not be valid for abnormal hearts,

which undergo twisting motion and/or large shifts in short- or

long-axis direction. In such cases, the proposed features may

not fully characterize regional motion abnormality. A possible

extension would be to investigate the use of motion features.

Another possible extension of the proposed algorithm would

be to apply a segmentation algorithm [16] to the first frame so

as to fully automate the process.
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