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Abstract

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have
implicated novel genes using gene-based collapsing methods. However,
pathogenic mutations may be concentrated in specific genic regions. To
address this, we developed two collapsing strategies, one focuses rare
variation collapsing on homology-based protein domains as the unit for
collapsing and another gene-level approach that, unlike standard methods,
leverages existing evidence of purifying selection against missense
variation on said domains. The application of these two collapsing methods
to 3,093 ALS cases and 8,186 controls of European ancestry, and also
3,239 cases and 11,808 controls of diversified populations, pinpoints risk
regions of ALS genes including SOD1, NEK1, TARDBP and FUS. While
not clearly implicating novel ALS genes, the new analyses not only pinpoint
risk regions in known genes but also highlight candidate genes as well.

Introduction
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Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative
disease characterized by progressive motor-neuron loss leading to
paralysis and death, most often from respiratory failure. Roughly 60-70% of
familial and 10% of sporadic cases have an identifiable mutation in a
known causal ALS gene, the majority of which are repeat expansions in
C90ORF72 and point mutations in SOD1'. Recent efforts in gene discovery,
largely driven by advances in sequencing and identification of rare variants,
have implicated and confirmed several new genes in ALS pathogenesis
including TBK1, NEK1, ANXA11 and CCNF #'°. Despite this progress, the

majority of sporadic cases still remain to be resolved genetically.

The now established paradigm for case-control analyses of exome or
genome sequencing data of complex diseases and traits involves a gene-
based collapsing framework in which all qualifying variants in a gene are
treated as equivalent. Genes are associated with the trait when they exhibit
a significant excess of qualifying variants occurring anywhere in the gene.
This approach has implicated disease genes in a growing number of other
complex conditions beyond ALS, including idiopathic pulmonary fibrosis

(IPF), myocardial infarction (MI) and Alzheimer’s disease '''°.

While clearly effective, the power of this approach is limited by the inclusion
of benign variants that reduce statistical power. However, for genes where
pathogenic mutations are localized to specific regions, such as functional
domains, power can be increased by using these regions as the unit for the
collapsing analysis. In ALS-associated genes, there are several examples
of genes that show regionally localized pathogenic variation. For example,
in TARDBP, highly-penetrant ALS variants are concentrated in a glycine-
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83  rich domain near the C-terminus '*. Furthermore, the gene FUS, which has
84 a similar structure as TARDBP, has pathogenic mutations clustering in two
85 regions: exons 13—-15 (encoding an Arg-Gly-Gly-rich domain and the
86 nuclear localization signal) and exons 3, 5-6 (encoding GIn-Gly-Ser-Tyr-rich
87 and Gly-rich domains) *°.

88

89  Recognizing that undiscovered ALS-associated genes might similarly have
90 specific domains where pathogenic variants cluster, we now apply two
91 complementary regional approaches to gene collapsing analyses to identify
92 localized signals of rare variation in a data set of 3,093 ALS cases of
93 European ancestry (2,663 exomes and 430 whole genomes) compared
94 with 8,186 controls of matched ancestry (7,612 control exomes and 574
95 whole genomes). We further apply these analyses to a set of samples of
96 diversified ancestry origins, consisting of 3,239 cases and 11,808 controls.
97 We compare the regional approaches to the standard gene collapsing
98 analysis and highlight the importance of a regional view specifically for ALS
99 genetics.

100

101 Results

102

103 Collapsing analyses using homology-defined protein domains

104

105 The standard approach to gene discovery focuses on the burden of rare
106 variants across an entire gene by comparing the frequency of qualifying
107  variants in cases and controls. The qualifying variants can be defined by
108  various criteria such as function and allele frequency (illustrated in figure
109 1A).
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110

111 In this study, we describe two additional approaches to rare variant
112 collapsing: 1) a regional approach, where the unit for collapsing is not the
113 gene, but rather the functional domains within the gene (figure 1B), and 2)
114 a gene-based approach where the definition of qualifying variants is
115 informed by regional intolerance to missense variation (figure 1C).

116

117 Figure 1

118

119 We first utilized the standard gene collapsing approach (figure 1A) to
120 identify the burden of rare variants in a set of 3,093 ALS cases and 8,186
121  controls of European ancestry. The demographic features of our cohort
122 reflect known epidemiological features of ALS, including male
123 predominance and the distributions of age at onset and survival
124 (supplementary Table S1). Qualifying variants were defined as non-
125 synonymous coding or canonical splice variants that have a minor allele
126 frequency (MAF) <0.1% in cases and controls (internal MAF) and also a
127 <0.1% MAF imposed for each population represented in the ExAC
128 database'®. High quality control (QC) metrics were further imposed on the
129 variants (see Methods).

130  Comparing genetic variation across 18,653 protein-coding genes found a
131 genome-wide and study-wide significant (p<4.5x10-7) case-enrichment

132 only for SOD1 ( p=1.23x10_18, figure 2A), with qualifying variants
133 identified in 43 cases (1.39%) and only 6 controls (0.07%; OR=19.2).
134  TARDBP showed the second strongest enrichment (OR=3.6,

135 p=1 .02x10—4), but with 23 cases (0.74%) and 17 controls (0.21%) it did not
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136 achieve genome-wide significance. FUS harbored qualifying variants in 20

137 cases and 37 controls (OR=1.43, p=0.23, figure 2A).
138

139 A gene-based analysis evaluating only rare loss of function (LoF) variants
140 was also performed, identifying a genome-wide and study-wide significant

141 case-enrichment of NEKT variants (OR=7.35, p=1.85x10_10), with 33
142 cases (1.07%) compared to 12 controls (0.15%, supplementary figure S1).
143 As a negative control, we included a model for rare synonymous variants,
144 and did not observe any genes with significant enrichment. The genomic
145 inflation factor, lambda (A) for this model was 1.03 (supplementary figure
146  S2).

147

148  We hypothesized that genes with clustered mutations that had weak
149  enrichments using this standard gene-based collapsing approach, such as
150 TARDBP and FUS, could be identified by a collapsing method that uses
151 functional gene regions (i.e. domains) as the unit for collapsing (figure 1B).
152 For this analysis, we utilized a list of 89,522 gene domains covering the
153 human coding sequence, as described previously'’. In short, the coding
154 sequence of each gene was aligned to a set of conserved protein domains
155 based on the Conserved Domain Database (CDD)™. The final domain
156  coordinates for each gene were defined as the regions within the gene that
157 aligned to the CDD and the unaligned regions between each CDD
158 alignment. These domains were then used as the unit for collapsing
159 compared with a standard gene-based collapsing approach (figure 1A and
160 1B).

161

162  This domain-based analysis was performed using the same cohort and
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163 coding model as the standard approach (European ancestry, non-
164 synonymous and canonical splice variants, internal and population MAF
165 <0.1%). As hypothesized, the top three case-enriched domains reside in
166 ALS genes: SOD1, TARDBP and FUS (figure 2B). For SOD1, a long
167 domain spanning the majority of the coding sequence contains most of the
168 variation found in 1.29% of cases and 0.07% of controls (OR=17.9;

169 p=4.1x10—17_figure 2B).
170
171 Strikingly, the glycine-rich TARDBP domain where known mutations cluster

172 is now identified with genome-wide and study-wide significance (OR=7;

173 p=5.84x10_7). Of note, this glycine-rich domain covers exon 6 of TARDBP
174 and was not mapped to a conserved domain from the CDD.
175

176  The same trend was observed for FUS, which shows the third strongest

177  enrichment in this analysis (OR=8.6; p=3.6x10_5, figure 2B). Specifically,
178 qualifying variants were identified in 13 cases (0.42%) and 4 controls
179 (0.05%) in the previously reported Arg-Gly rich domain covering exons 13-
180 15, which is also not considered a conserved CDD domain '*). Although not
181 at genome-wide or study-wide significance, this represents a substantial
182 improvement over the gene-based collapsing approach (OR=1.43,
183  uncorrected p=0.23).

184

185 The fourth most case-enriched domain was a conserved armadillo repeat
186 domain spanning exons 12-14 of PKP4 (plakophilin 4, also known as
187  p0071). Qualifying variants occurred in 0.61% of ALS cases and 0.13% of

188 controls (OR=4.6, p=4.1x10~2). While not genome-wide significant, PKP4
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189 is an interesting candidate gene that has been previously linked to various
190 ALS-related pathways (see Conclusions).

191

192 Figure 2

193

194 Gene-wide collapsing analyses informed by regional intolerance to
195 missense variation

196

197 As we have demonstrated, domain-based collapsing effectively identifies

198 genes where pathogenic variants are localized to single specific regions
199 (e.g TARDBP and FUS), and highlights suggestive candidates for further
200 study (PKP4). However, to identify haploinsufficient genes where truncating
201 variants and sufficiently damaging missense mutations could both
202 contribute to risk of disease, the difficulty lies in determining which
203 missense variants should qualify in the analysis. To address this challenge,
204 we implemented a collapsing approach that leverages regional patterns of
205 intolerance to missense variation (sub-RVIS'"'®) as a way to prioritize
206 missense variants most likely to result in disease. In this ‘intolerance-
207 informed’ approach, rare missense alleles were counted as qualifying if
208 they resided in gene regions that are intolerant to missense variation,
209 whereas LoF variants were counted as qualifying regardless of location
210  within the gene (figure 1C).

211

212 As a measure of intolerance of gene regions, we applied a complementary
213 approach to subRVIS' for when there is limited resolution in the sequence
214  region of interest. This approach uses the observed to expected missense
215 ratio in a domain (OE-ratio), which is equivalent to a domain-based
216 missense tolerance ratio (MTR)™. In short, the expected rate leverages the
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217  underlying sequence context in the domain, and the observed rate is based
218 on the rate of non-synonymous variants identified in the sub-region of
219 interest based on the EXAC database, release 0.3'° (see Methods).

220

221  We focus our intolerance-informed gene collapsing approach on domains
222 that have intolerance below the exome-wide 50" percentile (OE-Ratio
223 percentile <50%), thus sub-selecting variants in genic regions that have
224 greater evidence of purifying selection acting against non-synonymous
225 variation. As mentioned earlier, for each gene, variants in these intolerant
226 regions are considered along with LoF variants independent of their
227 location within the gene.

228

229 Because intolerant coding regions are expected to have a lower rate of
230 common variation, we included samples from diversified ancestries when
231 applying intolerance-informed gene collapsing. The diversified population
232 approach increased the total number of samples by 3,768, to 3,239 cases
233 and 11,808 controls, thereby increasing the power of the analysis. For this
234 approach, we applied similar rules for qualifying variants, including low
235 population frequency (MAF <0.1% imposed for each population
236 represented in ExAC), an internal MAF <0.04% (decreased from 0.1% due
237 to a larger control cohort), coding annotation (non-synonymous and splice
238 variants) and high QC metrics, with the additional criteria of residing in the
239 lower 50" percentile of OE-ratio domains.

240

241  The genomic inflation factor (A) of the diversified populations intolerance-
242 informed analysis was 1.14, slightly higher than the European-only cohort
243 used for the standard gene level analyses (figure 2A, A=1.1). Yet, this
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244 inflation is much lower than for the standard gene based analysis using a
245  diversified population (A=1.25, supplementary figure S3), demonstrating the
246 advantage of an intolerance-informed approach for reducing the genomic
247 inflation due to variation in tolerant regions.

248

249  In this analysis, SOD1 achieved a slightly better enrichment than in either

250 gene-based or domain-based analyses (OR=20.31; p=4.13x10—22, figure
251  3A).
252 TARDBP also had genome-wide and study-wide significant enrichment

253  (OR=4.95; p=8.77x10_8; figure 3A), which presents a considerably-
254  strengthened enrichment signal for TARDBP compared to the standard
255 gene collapsing analysis observed in figure 2A (OR=3.6, uncorrected

256 p=1.02x10—4).

257

258 LGALSL (Galectin-like or Lectin, Galactoside-Binding, Soluble, Like) was
259 the third gene to have a strong enrichment of qualifying variants in cases

260 (OR=14.63; p=2.29x10—6; figure 3A) that was not study-wide significant
261 given the models tested. The enrichment of this gene originates from one
262  specific domain that harbors variants for twelve cases (0.37%) and three
263 controls (0.025%) with the addition of an African American and a Latino
264 case over the European-only analysis (figure 2). The target domain
265 harboring all LGALSL case-variants is a region comprising 378bp that is
266 mapped to a conserved protein domain intolerant to variation. Notably,
267 LGALSL LoF variants were only identified in cases and absent from nearly
268 12,000 controls. To assess the rate of LoF variants in a larger control
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269 population we looked at the EXAC cohort and found three LoF alleles in
270 60,033 individuals'®.

271

272 Figure 3

273

274 Genome wide associations with age-at-onset

275

276  We next examined whether qualifying variants in known ALS genes, or
277 candidate genes identified by our novel approaches, influence age at
278  symptom onset (AAO). We found that SODT variant carriers tended to be
279  younger than the rest of the cohort (52.2 vs. 57.1 years, p=0.059; MW-
280 test). Also, subjects harboring qualifying variants in ANXA71 showed
281 delayed onset (63.8 years, p=0.037; MW-test), which is consistent with
282 prior studies®. No other known ALS genes showed significant influence on
283 AAO.

284 Interestingly, subjects harboring LGALSL qualifying variants showed a
285 mean AAOQ that is 13 years younger than the rest of the cohort (43.8 years

286 vs. 57.1, p=8.1 x10—4; Mann-Whitney test). The AAO information was
287 available for 11/12 variant carriers and 2,767/3,239 non-carriers.

288

289 The early onset in cases carrying LGALSL variants was further validated by
290 a random sampling approach where LGALSL carriers’ average AAO was
291  significantly lower than 9,983/10,000 randomly sampled sets of 11 cases
292 (p=0.0017, supplementary Methods).

293

294  Figure 4
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295
296 Discussion

297
298 Here we present a regional approach to rare variant collapsing analyses.

299  This approach has two distinct forms: 1) aggregating rare variants on genic
300 sub-regions defined using conserved protein domain annotations, and 2)
301 aggregating rare variants on a gene unit but using the pattern of purifying
302 selection to identify the most damaging missense variants and combine
303 them with loss of function mutations occurring anywhere in the gene. Both
304 approaches show improved sensitivity for known ALS genes, finding SOD1,
305 NEKT1 and TARDBP as genome-wide significant. We also find FUS’s Arg-
306  Gly-rich domain within the top three associations in our domain-based
307 regional collapsing, jumping from an insignificant OR=1.43 to a high
308 OR=8.6. These findings underscore the utility of applying a regional
309 approach to ALS genetics, especially in light of similar Gly-rich domains
310 importance in mediating pathologic RNA-protein complexes 2°.

311

312 This approach has also implicated a potential new candidate ALS gene,
313 LGALSL, encoding the galectin-like protein GRP (galectin-related protein,
314 also known as HSPC159 and lectin galactoside-binding-like protein). We
315 identified a case-enriched intolerant galectin-binding domain (Figure 4A).
316 Interestingly, while the functions of LGALSL remain largely unknown,
317 members of the galectin family, including LGALS1 and LGALS3, have been
318 implicated in ALS disease processes and progression. Specifically,
319 LGALST has been identified as a component of sporadic and familial ALS-
320 related neurofilamentous lesions®', and is associated with early axonal

321 degeneration in the SOD1%%** ALS mouse model®. Furthermore,


https://doi.org/10.1101/375774
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/375774; this version posted July 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

322 homozygous deletion of LGALSL3 reportedly led to accelerated disease

1594 mice®®. We also performed

323 progression and reduced lifespan in SOD
324 an analysis of age at onset that is independent of the predisposition
325 analysis, showing a significant association between carriers of qualifying
326 variants in LGALSL and early age at onset. This independent analysis
327 supports LGALSL as a candidate ALS gene that might be responsible for a
328 form of ALS with a younger age at onset. Because LGALSL carriers were
329 contributed by five different sites and sequenced at two sequencing
330 centers, we cannot exclude hidden variable stratification that might explain
331 the low AAO. Further study of additional LGALSL mutation carriers will be
332 required to confirm this observed genotype-phenotype correlation.

333

334  Regional collapsing analyses also highlighted PKP4 as a new candidate
335 gene, with a single armadillo repeat domain strongly enriched for qualifying
336 variants in cases (Figure 4B). Evidence supporting PKP4's role in ALS-
337 linked processes including microtubule transport and endosomal
338 processing, in addition to its local translation in ALS-mutant FUS granules,
339  all provide evidence in favor of PKP4 as a risk factor for ALS**%’,

340

341  This study incorporated both exome and whole genome samples from a
342 large cohort of over 3,000 cases and close to 12,000 controls. Yet, despite
343 these large cohorts, the standard gene collapsing approach identified only
344 SOD1 and NEK1 (loss-of-function specific model) as achieving genome-
345  wide significance, and failed to uncover other known signals for ALS risk
346 factors. We were able to capture these signals, along with candidate novel
347  signals, using a regional approach that is informed by missense variation
348 intolerance. That being said, while confirming TARDBP, and suggesting
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349 LGALSL (0.42% of cases) as a candidate gene, the regional approach was
350 still underpowered with the current sample size to show genome-wide
351 significance for FUS and PKP4 that might reflect true associations. This
352 suggests that even with these signal optimization approaches, larger
353 sequencing studies are required in ALS. We are, however, confident that
354 the continued application of regional approaches to collapsing analyses in
355 ALS and other rare disorders will enable the identification of novel risk
356 factors with small proportions in patient populations, that were previously
357 difficult to identify due to being masked by benign variants in regions that
358 are tolerant to variation.

359

360 Methods
361

362 Subject sources

363

364 ALS samples analyzed by whole exome or genome sequencing came from
365 the Genomic Translation for ALS Care (GTAC study), the Columbia
366  University Precision Medicine Initiative for ALS, the New York Genome
367 Consortium, and the ALS Sequencing Consortium (IRB-approved genetic
368 studies from Columbia University Medical Center (including the Coriell
369 NINDS repository), University of Massachusetts at Worchester, Stanford
370  University (including samples from Emory University School of Medicine,
371 the Johns Hopkins University School of Medicine, and the University of
372 California, San Diego), Massachusetts General Hospital Neurogenetics
373 DNA Diagnostic Lab Repository, Duke University, McGill University
374  (including contributions from Saint-Luc and Notre-Dame Hospital of the

375 Centre Hospitalier de I'Université de Montréal (CHUM) (University of
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376  Montreal), Gui de Chauliac Hospital of the CHU de Montpellier (Montpellier
377  University), Pitié Salpel triere Hospital, Fleurimont Hospital of the Centre
378  Hospitalier Universitaire de Sherbrooke (CHUS) (University of Sherbrooke),
379 Enfant- Jésus Hospital of the Centre hospitalier affilié universitaire de
380 Queébec (CHA) (Laval University), Montreal General Hospital, Montreal
381 Neurological Institute and Hospital of the McGill University Health Centre),
382 and Washington University in St. Louis (including contributions from
383  Houston Methodist Hospital, Virginia Mason Medical Center, University of
384 Utah, and Cedars Sinai Medical Center).

385

386  Subject selection criteria

387

388 ALS subjects were diagnosed according to El Escorial revised criteria as
389 suspected, possible, probable, or definite ALS by neuromuscular
390 physicians at submitting centers. Subjects were considered sporadic if no
391 first or second-degree relatives had been diagnosed with ALS or died of an
392 ALS-like syndrome. Because screening for known ALS gene mutations
393  prior to sample submission was highly variable across the cohort, gene
394 status was not considered a priori. Controls were selected from >45,000
395 whole exome or genome sequenced individuals housed in the IGM Data
396 Repository. We excluded all individuals with a known diagnosis or family
397 history of neurodegenerative disease, but not all had been specifically
398  screened for ALS.

399

400 Sequencing

401
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402  Sequencing of DNA was performed at Columbia University, the New-York
403  Genome Center, Duke University, McGill University, Stanford University,
404 HudsonAlpha, and University of Massachusetts, Worcester. Whole exome
405 capture used Agilent All Exon kits (50MB, 65MB and CRE), Nimblegen
406 SeqCap EZ Exome Enrichment kits (V2.0, V3.0, VCRome and
407 MedExome), IDT Exome Enrichment panel and lllumina TruSeq Kits.
408  Sequencing occurred on lllumina GAllx, HiSeq 2000, HiSeq 2500, or HiSeq
409 X sequencers according to standard protocols.

410

411 lllumina lane-level fastq files were aligned to the Human Reference
412 Genome (NCBI Build 37) using the Burrows-Wheeler Alignment Tool
413 (BWA)?. Picard software (http:/picard.sourceforge.net) removed duplicate
414 reads and processed lane-level SAM files to create a sample-level BAM
415 file. Genomes (n=402) from the New York Genome Center were
416  transferred as sample-level BAM files. We used GATK to recalibrate base
417  quality scores, realign around indels, and call variants®®.

418

419 Samples quality control

420

421  The initial sample consisted of 4,149 ALS cases and 15,107 controls.
422 Samples reporting >8% contamination according to VerifyBamID* were
423 excluded. KING®' was used to ensure only unrelated (up to third-degree)
424 individuals contributed to the analysis. For controls, where sample
425 collection methods were not known, we excluded samples where X:Y
426 coverage ratios did not match expected sex. For studies where sample
427  collection and processing involved only ALS patients, mismatches were not
428  exclusionary. Further, to be eligible, samples were further subjected to a
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429 CCDS 10-fold coverage principal components analysis (PCA) and an
430 ancestry prediction filter (for European ancestry analysis).

431

432 Cohort construction: ancestry prediction

433

434  The ancestry classification model was trained using genotyped data from
435 5,287 individuals of known ancestry and 12,840 well-genotyped and
436  ancestry-informative markers that were limited to the human exome. The
437 model was trained, tested and validated on a set of individuals with
438 ancestry as follows: non-Finnish European(N=2911), Middle Eastern
439  (N=184), Hispanic (N=368), East Asian (N=539), South Asian (N=529) and
440  African (N=756). Briefly, the sample x genotype matrix was scaled to have
441 unit mean and standard deviation along each SNV and subjected to a
442  principal component analysis (PCA). For training the classifier, the
443 genotypes were projected onto the top 6 PCs and used as feature vectors.
444  The classifier is a Multi-layer perceptron with 1 hidden layer, a logistic
445 activation function, L2 regularization term, alpha = 1e-05, size of hidden
446 layer = 6 and a L-BFGS solver. The classifier was implemented using the
447  scikit-learn APl in Python. A stratified 10-Fold CV with 80:20 split of the
448  training data was used to tune parameters using a grid search. Cross
449 validation performance on the cohort yielded precision/recall scores as
450 follows: NFE: 0.99/1, AFR: 0.99/1, SAS 0.99/1, EAS: 0.99/1, HIS:0.93/0.97,
451  ME: 0.93/0.77. Samples in this study were subjected to ancestry prediction
452 using the model trained above by projecting their genotype vector to the
453 training PCA model and running the classifier to obtain a given sample’s
454  ancestry probabilities for each of the trained population.

455
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456 For samples to qualify for a European ancestry analysis, they were
457 required to have a European probability greater than 0.5 and an overall
458 genotyping rate of 0.87 across the 12,840 well-genotyped and ancestry
459 informative markers. Lower genotyping rates were considered as
460 uninformative for ancestry prediction. In the case of low genotyping rate,
461 we considered self-declared ethnicity of ‘White’ as qualifying for the
462  European based analysis.

463

464  Furthermore, once the final list was constructed, we applied an additional
465 analysis to control for population stratification by using EIGENSTRAT * to
466 remove samples that were considered as genetic outliers, this ensured that
467 the main cluster of samples was of European origins (see below).

468

469 Cohort construction: CCDS coverage PCA

470
471 To account for the variability of the coverage over the CCDS between

472 samples originating from various sequencing kits and platforms, we
473 developed a method to remove samples that are considered outliers due to
474 coverage. This step was performed for samples that passed QC and
475 ancestry prediction filters (if applied), and allowed for maximizing the
476 ~ coding region available for the analysis when harmonizing variant level
477  coverage between cases and controls.

478

479  We first randomly selected a set of 1,000 CCDS genes for a coverage test.
480 We next constructed a table where the rows are the samples used for the
481 analysis and the columns are the number of based covered at 10x in each
482 of the 1,000 random genes. Finally, we used the coverage table in a
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483  principal-component analysis. Outliers were identified as being further than
484  three standard deviations away from the center of the first four principal
485 components (PCs).

486 In the Caucasian analysis 3,866 cases and 9,426 controls passed initial QC
487 and ancestry filters and were subjected to the coverage PCA filter. The
488 coverage PCA maintained 3,314 cases and 9,214 controls.

489 In the diversified population analysis 4,075 cases and 14,494 controls
490 passed initial QC and were subjected to the coverage PCA filter. The
491 coverage PCA maintained 3,468 cases and 13,957 controls.

492

493 Cohort construction: Eigenstrat PCA threshold adjustment

494
495 EIGENSTRAT®* PCA was used for removing genotypic outlier samples as

496 a final cohort pruning step before running the collapsing analysis. The
497  default threshold for removing outliers is six standard deviations from mean
498  over the top ten PCs. This process, including recalculation of the PCs, was
499  repeated five times.

500

501 In the Caucasian analysis 3,208 cases and 8,821 controls passed initial
502  QC, ancestry, coverage PCA and kinship filters and were subjected to the
503 final EIGENSTRAT PCA filter. The EIGENSTRAT PCA maintained the final
504 3,093 cases and 8,186 controls used for the collapsing analysis, including
505 383 out of 420 whole genome cases that were mapped by the New-York
506 Genome Center (NYGC).

507

508 In the diversified analysis 3,353 cases and 13,373 controls passed initial
509 QC, coverage PCA and kinship filters and were subjected to the final
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510 EIGENSTRAT PCA filter. The default EIGENSTRAT PCA threshold
511 removed all 420 NYGC whole genomes. This was the result of the addition
512 to the Caucasian analysis of over 3,000 exomes, which reduced the
513  standard deviation and resulted in the exclusion of NYGC whole genomes
514 in the third PC. As these samples were very high quality and were included
515 in the Caucasian only analysis, we adjusted the threshold of the third PC to
516 seven standard deviations, thus maintaining 402 out of 420 NYGC whole
517 genomes. In total, following stratification phase, we maintained 3,239 cases
518 and 11,808 controls for the collapsing analysis.

519
520 Variant-level quality control

521

522 Quality thresholds were set based on previous studies **. Variants were
523 required to have a quality score of at least 30, quality by depth score of at
524 least 2, genotype quality score of at least 20, read position rank sum of at
525 least -3, mapping quality score of at least 40, mapping quality rank sum
526 greater than -10, and a minimum coverage of at least 10. SNVs had a
527  maximum Fisher’s strand bias of 60, while indels had a maximum of 200.
528 For heterozygous genotypes, the alternative allele ratio was required to be
529  greater than or equal to 25%. Variants were excluded if they were marked
530 by EVS as being failures **. Variants were annotated to Ensembl 73 using
531  SnpEff .

532

533  Variant-level statistical analysis

534

535  Our primary model was designed to search for non-synonymous coding or
536 canonical splice variants that have a less than 12 cases with a recurring
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537 variant in cases and controls (internal MAF) and also a <0.1% MAF
538 imposed for each population represented in the EXAC database’®.

539 We've tested this model in three forms: a standard gene-unit collapsing
540 analysis, a domain-unit analysis and an intolerance-informed gene
541 collapsing analysis. A further gene-based analysis evaluating only rare loss
542 of function (LoF) variants was also performed.

543 For each of the four models we tested the list of 18,653 CCDS genes. For
544 each gene, we counted the presence of at least one qualifying variant in
545 the gene. A two-tailed Fisher's exact test (FET) was performed for each
546 gene to compare the rate of cases carrying a qualifying variant compared
547 to the rate in controls. For our study-wide significance threshold, after
548  Bonferroni correction for the number of genes tested across the four non-
549 synonymous models, the study-wide multiplicity-adjusted significance

550 threshold a = (0.05/ [4*18653]) = 6.7x10~7. We did not correct for the
551 synonymous (negative control) model.

552

553 OE-ratio intolerance for coding domains

554

555 The OE-ratio is calculated using the same approach as the missense
556  tolerance ratio (MTR) that is described by Traynelis et al '°. This approach
557 uses the observed to expected missense ratio for the 89,522 domain
558 coordinates that are described by Gussow et al."’.

559  For calculating a domain OE-ratio, the following requirements are applied:
560 1) adequate coverage - at least 50% of the bases within the domain must
561 have at least a 10-fold coverage in the ExXAC database, release 0.3'°. 2) At
562 least five distinct variants (of any annotation) are required to perform a
563  binomial exact test depletion of missense at uncorrected alpha of p<0.05.
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564  There were 67,890 domains that passed the above requirements and were
565 scored for their OE-ratio. The average size of the remaining unscored
566 domains was usually very short (mean=21bp; median=12) and they
567 accounted for 0.77% of the protein-coding exome. Unscored domains were
568 considered as below the intolerance ratio required for the intolerance-
569 informed analysis (figure 3) to prevent loss of gene level information. Once
570 a domain lacking OE-ratio is implicated in an analysis, its intolerance is
571 examined using the average missense intolerance ratio (MTR)' of the
572 domain in question (http:/mtr-viewer.mdhs.unimelb.edu.au).

573

574 In the case of LGALSL, the last three codons of the coding transcript are a
575 short independent domain that was not mapped to a conserved domain
576  from the CDD. However, this small region is still considered part of the gal-
577 binding domain by other databases *. The MTR score for these three
578 codons is below the 30" percentile of intolerance, marking this region at
579 least as intolerant as the implicated galectin binding domain (OE-ratio
580 percentile of 37).

581
582

583 Figure and table legend
584
585

586 Figure 1. Gene and Regional Collapsing. (A) A standard gene-based
587 approach for collapsing analysis of non-synonymous and canonical splice
588 rare variants in cases (green) and controls (black) on example Gene A. (B)
589 A domain-unit based regional approach where only the domains that are
590 intolerant to functional variation are considered as units for collapsing. (C)

591 Intolerance informed gene collapsing: a regional approach to gene
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592  collapsing where the unit for collapsing is the entire gene, yet missense
593 variants only qualify for the analysis if they reside in domains that are
594 intolerant to variation (domain 2). Loss-of-function variants (big circles)
595 continue to qualify regardless of whether they reside in a tolerant or
596 intolerant domains of the gene. Bright blue background marks qualifying
597  variants.

598

599 Figure 2. Q-Q plots of gene and domain level collapsing. (A) The
600 results for a standard gene level collapsing of 3,093 cases and 8,186
601 controls. 18,065 covered genes passed QC with more than one case or
602 control carrier for this test. The genes with the top associations and FUS
603 gene are labeled. The genomic inflation factor, lambda (A), is 1.10. (B) The
604 results for the domain-based collapsing of 3,093 cases and 8,186 controls.
605 70,603 covered domains passed QC with more than one case or control
606 carrier for this test. The genes with the top associations are labeled and
607 genome-wide significant genes are in bold. A=1.046.

608

609 Figure 3. Intolerance informed gene level collapsing with
610 unified/diversified ancestry samples. (A) A g-q plot presenting the
611 results of the gene-based intolerance-informed collapsing of 3,239 cases
612 and 11,808 controls from diversified ancestries. Missense variants are
613 aggregated only if they reside in an intolerant domain that is lower than 50"
614 percentile OE-ratio score, while loss-of-function variants are aggregated
615 independent of location. 17,795 genes passed QC with more than one case
616 or control carrier for this test. The genes with the top associations are
617 labeled. A=1.14. (B) A g-q plot of a gene-based intolerance-informed


https://doi.org/10.1101/375774
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/375774; this version posted July 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

618 collapsing of 3,093 cases and 8,186 controls of European ancestry. 18,135
619 genes passed QC with more than one case or control carrier for this test.
620 The genes with the top associations are labeled and genome-wide
621  significant genes are in bold. A =1.073.

622

623  Figure. 4. Distribution of functional coding variants across LGALSL
624 and PKP4. The distribution of LGALSL (A) and PKP4 (B) coding variants
625 across domains (LGALSL transcript ENST00000238875 and PKP4
626 transcript ENST00000389757). The y-axis corresponds to the total number
627 of variants identified at a specific location. The blue boxes highlight the (A)
628 LGALSL carbohydrate binding domain and (B) PKP4 armadillo repeat
629 domain 2 (ARM2) found to be enriched for variants in cases (green)
630 compared to controls (black). Each domain’s OE-ratio percentile is marked
631 above for both tolerant (bright blue) and intolerant (orange) domains.

632
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