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Regional drought frequency analysis using L-moments and

adjusted charged system search

Amin Abdi, Yousef Hassanzadeh, Siamak Talatahari, Ahmad Fakheri-Fard

and Rasoul Mirabbasi
ABSTRACT
The parameter estimation of statistical distributions is important for regional frequency analysis

(RFA). The accuracy of different parts of RFA such as estimating the regional quantiles of the selected

statistical distribution, determining the heterogeneity measure, and choosing the best distribution

based on the Monte Carlo simulation, may be influenced by using the different values of regional

parameters. To fulfill this aim, in the present study, a new model is developed for regional drought

frequency analysis. This model utilizes the L-moments approach and the adjusted charged system

search as an advanced meta-heuristic algorithm, in which some modifications on the equations of

the algorithm are performed to improve its standard variant. The verification of the regional

parameters estimated by the new methodology yields accurate results compared to other models.

Furthermore, this study illustrates the usefulness of the robust discordancy measure against the

classic one. For this purpose, different values of the subset factors (α) are utilized in the robust

discordancy measure, and finally, the best value of subset factor is found equal to 0.8, which can

accurately recognize discordant sites within the region.
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INTRODUCTION
Drought is a normal part of any climate (Keshavarz et al.

). Generally, droughts take place when a region receives

consistently below average precipitation (Hossein et al.

). Compared with other natural hazards, the damaging

effects of droughts are non-structural, and much larger in

terms of the spatial extent (Reddy & Ganguli ), where

22% of economic damages and 33% of the number of

affected persons are related to droughts (Belayneh et al.

). Therefore, utilizing regional frequency analysis

(RFA) seems necessary to recognize the properties of this

phenomenon. RFA can circumvent the limitation of statisti-

cal estimates, such as the absence of lengthy records or too

short records (Zhang et al. ). RFA leads to more accurate

quantile estimations than at-site analysis (Santillán et al.

).
To perform RFA, the considered region should be homo-

geneous, otherwise, it should be subdivided into some

homogeneous regions (Seckin et al. ). Amongmany hom-

ogeneity tests in the hydrologic literature, the L-moments

(LMOM)-based tests proposed by Hosking & Wallis (,

) are known as the most powerful ones (Viglione et al.

). Thus, numerous studies have utilized the LMOM

approach to the RFA of hydrologic phenomena such as rain-

fall, stream flow, drought, and other fields of water

engineering (Modarres ; Chérif & Bargaoui ;

Dikbas et al. ; Rahman et al. ; Rajsekhar et al. ;

Zakaria & Shabri ; Dodangeh et al. ; Feng et al.

; Goyal & Gupta ; Sarhadi & Heydarizadeh ).

Detection of the possible outlying data in a region is an

important matter for RFA (Saf ). Hosking & Wallis
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(, ) recommended the discordancy measure based

on the mean and covariance of the LMOM ratios using

the Mahalanobis distance. This measure can be strongly

affected by the discordant sites and is not robust for outlying

data. To improve this problem, Neykov et al. () pro-

posed the robust discordancy measure. A few studies have

then used this measure in hydrology. Saf () analyzed

the effect of discordancy detection measures on regional

flood probability types and the accuracy of the estimation

on regional analysis. Ilorme & Griffis () utilized the

robust discordancy measure to determine physically discor-

dant sites and proposed a new methodology to identify the

physical attributes that are the greatest demonstrator of

extreme hydrological response. The mentioned studies

showed the capability of robust discordancy measure against

the classic one for outliers’ identification; however, the

importance of subset size for all data sets was not investi-

gated. In this study, the different subset sizes are

considered to evaluate the accuracy of the robust discor-

dancy measure.

The LMOM method is also utilized for parameter esti-

mation of statistical distribution for RFA, although there

are no simple expressions and explicit solutions for fulfilling

this aim. Therefore, several approximations or simplifica-

tions are suggested for solving such nonlinear and

complex problems (Hassanzadeh et al. ; Reddy &

Singh ). Meta-heuristic algorithms (MHA) are one

useful tool to solve these problems and various MHA have

been extensively used to solve the optimization problems

of hydrologic phenomena (e.g., Rai et al. ; Hassanzadeh

et al. ; Reddy & Singh ; Shin et al. ).

Recently, an MNA known as charged system search

(CSS) was introduced by Kaveh & Talatahari (), and

applied to different engineering optimization problems.

CSS utilizes the Coulomb and Gauss’s laws from electro-

statics, and the Newtonian laws of mechanics. There are

few studies on applying CSS in the field of water resources.

Kaveh et al. () developed four different models of compo-

site open channels and then optimized them by CSS. The

results of this method were compared to those of ant colony

optimization and genetic algorithm (GA). Talatahari et al.

() applied CSS and particle swarm optimization (PSO)

for identifying the parameters of the linear Muskingum

model. In order to evaluate these algorithms, a numerical
://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
example was utilized and the results were compared to

those of other algorithms. Sheikholeslami et al. () utilized

CSS to optimal cost design of water distribution networks.

They utilized some well-known benchmark instances as

case studies. Comparison of the results of CSS with some

otherMHA demonstrated the high performance of this algor-

ithm. In this study, an adjusted CSS (ACSS) algorithm is

applied for estimating the regional parameters of Kappa

distribution, and then the results are compared with those

of the LMOM as the conventional approach.

Considering these points, the main contributions of this

paper are:

(1) presenting the robust discordancy measure with differ-

ent values of subset factor and comparing with the

classic discordancy measure;

(2) applying the ACSS algorithm for the parameter esti-

mation of statistical distributions; and

(3) proposing a new model to give regional parameters for

statistical distribution.
METHODOLOGY

ACSS

The ACSS algorithm as a meta-heuristic algorithm contains

a number of charged particles (CPs), where each one treats

as a charged sphere and can insert an electric force to the

others. Thus, the resultant electrical force affect a CP results

in its acceleration. ACSS uses the governing laws of motion

from the Newtonian mechanics to determine the position of

CPs. Application of these laws provides a good balance

between the exploration and the exploitation of the algor-

ithm (Kaveh & Talatahari ). The pseudo-code for the

ACSS algorithm is summarized as follows.

Step 1: Initialization. The magnitude of the charge for

each CP is defined as:

qi ¼ fi � fw
fb � fw

, i ¼ 1, 2, . . . , N (1)

where fb and fw are the best and the worst objective function

values among all of the particles; fi represents the fitness of



428 A. Abdi et al. | Regional drought frequency analysis Journal of Hydroinformatics | 19.3 | 2017

Downloaded fr
by guest
on 10 August 2
the agent i; and N is the total number of CPs. The separation

distance rij between any two CPs is defined as follows:

rij ¼
Xi �Xj
�� ��

Xi �Xj
� �

=2�Xb
�� ��þ ε

(2)

where Xi and Xj are the positions of the ith and jth CPs,

respectively; Xb is the position of the best current CP; and

ε is a small positive number. The initial positions of CPs

are determined randomly and the initial velocities of CPs

are assumed to be zero.

Step 2: Charged memory creation. A number of the

best CPs and the values of their corresponding objective

functions are saved in the charged memory.

Step 3: Force determination. The probability of moving

each CP towards the others is determined using the follow-

ing function:

pij ¼ 1
fi � fb
fj � fi

> rand or fj > fi

0 otherwise

8<
: (3)

Then, the resultant force vector for each CP is calculated

as:

Fj ¼ qj
X
i , i≠j

qi
a3

rij:i1 þ qi
r2ij
:i2

 !
pij Xi �Xj
� �

〈
j ¼ 1, 2, . . . , N

i1 ¼ 1, i2 ¼ 0 , rij < a
i1 ¼ 0, i2 ¼ 1 , rij � a

:

(4)

where Fj is the resultant force acting on the jth CP; Xi and Xj

are the positions of the ith and jth CPs, respectively.

Step 4: Force type identification. The kind of forces can

be attractive or repelling, and this is determined by using the

kind of force parameter, arij, defined as:

arij ¼ þ1 rand � kt

�1 rand> kt

�
(5)

where arij determines the type of the force, with þ1 repre-

senting the attractive force and �1 denoting the repelling

force, and kt is the force type coefficient, which controls

the effect of the kind of force. arij should be multiplied to

the resultant force.
om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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Step 5: Solution construction. Each CP moves to the

new position as:

X j,new ¼ rand j1:ka:Fj þ rand j2:kv:V j,old þX j,old (6)

V j,new ¼ X j,new �X j,old

Δt
(7)

where ka and kv are the acceleration and the velocity coeffi-

cients, respectively; randj1 and randj2 are two random

numbers; Vj,old and Vj,new are the old and new velocities

of the jth CP, respectively; and Δt is the time step which is

set to unity.

Step 6: Velocities correction. To prevent escaping CPs

from the search area, the velocities of CPs in each dimen-

sion are restricted to a maximum velocity (vj,max), as:

vi,j ¼ v j,max if vi,j > v j, max

�v j, max if vi,j <�v j,max

�
(8)

The maximum velocity is defined as:

v j,max ¼ γ x j, max � x j,min
� �

(9)

where γ is the fraction of the distance between the bounds in

the range [0,1]. xj,max and xj,min represent the upper and

lower bounds for each design variable, respectively.

Step 7: Solutions modification. The nearest limit and

reflection methods is utilized for modifying the positions

and velocities of violated CPs, respectively. Therefore, any

variable of the violated CP is regenerated as follows:

xi,j ¼ x j,min, vi,j ¼ �vi,j if xi,j < x j,min

xi,j ¼ x j,max, vi,j ¼ �vi,j if xi,j > x j,max

�
(10)

This step is utilized in the algorithm in order to direct

the unfeasible solutions.

Step 8: Updating of charged memory. The best new

vectors are included in the CM and the worst ones are

excluded from the charged memory.

Step 9: Terminating criterion control. Steps 3–9 are

repeated until a terminating criterion is satisfied.

It is notable that the steps 4, 6, and 7 are only applied in

the ACSS algorithm.
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LMOM approach

Hosking (, ) defined LMOM as linear combinations

of probability weighted moments, which can be interpreted

as measures of the location, scale, and shape of probability

distributions. Based on LMOM, Hosking & Wallis ()

proposed three useful statistics in RFA, the discordancy,

heterogeneity, and goodness-of-fit measures. Detailed

explanations and formula can be found in Hosking &

Wallis ().
Discordancy measure

A discordancy measure is used to recognize discordant site(s)

in a region to remove them. The classic discordancy measure

(Di) for the ith site in a region is defined as:

Di ¼ N
3

ui � �uð ÞTS�1 ui � �uð Þ (11)

where N is number of sites, ui¼ [t(i), t3
(i), t4

(i)]T is a vector of

the LMOM ratios for the ith site, and its components are:

t as the L-coefficient of variation (L-CV), t3 as the L-coeffi-

cient of skewness (L-CS), and t4 as the L-coefficient of

kurtosis (L-CK), respectively; �u is the regional unweighted

average and S is the matrix of sums of squares and cross-

products. The critical discordancy measure is equal to 3

and the site becomes discordant when Di> 3 (Hosking &

Wallis , ). Due to the outlier observations’ influence

on the classical estimates of �u and S, the number of discor-

dant sites for a region can be smaller than the real number.

Therefore, it is necessary to utilize the robust discordancy

measure in RFA (Saf ).

There are many robust estimators in statistics, such as

minimum covariance determinant (MCD), minimum

volume ellipsoid, and M-estimators (Alameddine et al.

). The MCD estimator is a highly robust estimator of

multivariate location and scatter (Rousseeuw & Van Dries-

sen ; Hubert et al. ; Rousseeuw et al. ).

Rousseeuw (, ) defined the MCD estimator, which

can be computed efficiently with the FAST-MCD algorithm.

Finding the h observations (out of N) whose classical covari-

ance matrix has the lowest possible determinant, is the main

objective of MCD. There is a relation between the subset size
://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
(h) and subset factor (α) when the value of α varies from 0.5 to

1. If α¼ 0.5, h equals ⌊ N þ pþ 1ð Þ=2⌋, and when α¼ 1, h

equals N (Pison et al. ; Neykov et al. ). For other

values of α, the h can be calculated by linear interpolation.

Neykov et al. () introduced the robust discordancy

measure (RDi) which uses the robust estimates (M and C),

instead of classic ones (�u and S) in the Mahalanobis distance

formula for RFA:

RDi ¼ RD uið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui �Mð ÞTC�1 ui �Mð Þ

q
(12)

where M and C are the average of h observation and its

covariance matrix (Pison et al. ; Hubert et al. ).

Reweighted MCD estimators can be used to increase the

finite-sample efficiency. Therefore, a weight wi is defined

based on the initial RDi by:

wi ¼ 1 if RDi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2p, 0:975

q
0 otherwise

(
(13)

where χ2 is a chi-square distribution with degrees of freedom

by p for the corresponding probability 0.975. For p¼ 3, the

critical discordancy value becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ23, 0:975

q
¼ 3:06: The

reweighted MCD estimators are calculated as:

MR ¼
PN

i¼1 wi ui

� �
PN

i¼1 wi

� � (14)

CR ¼
PN

i¼1 wi ui �MRð Þ ui �MRð ÞT
� �

PN
i¼1 wi � 1

� � (15)

The final robust discordancy measure is computed using

these reweighted estimates (MR, CR).

In this study, the MATLAB library for robust analysis,

LIBRA, introduced by Verboven & Hubert (), is used

for the computation of the robust discordancy measure.
Heterogeneity measure

One of the main steps in the RFA contains identifying hom-

ogenous regions (Saf ). For this purpose, the
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heterogeneity measure was proposed to compute the

degree of heterogeneity in a region. The steps of the hetero-

geneity measure are illustrated as below (Hosking & Wallis

).

Step 1: Calculate the regional LMOM ratios.

Step 2: Compute the V variables.

Step 3: Fit the four-parameter Kappa (KAP) distribution.

Step 4: Simulate a large number of synthetic regions.

Step 5: Drive the H indices. Finally, heterogeneity measures

are given as follows:

Hi ¼ Vi � μv ið Þ
σv i

, i ¼ 1, 2, 3 (16)

where μvi and σvi are the mean and standard deviation of

the simulated V variables.

Hosking & Wallis () suggested that a region is

‘acceptably homogeneous’ if Hi is less than 1, ‘possibly het-

erogeneous’ if Hi is between 1 and 2, and ‘definitely

heterogeneous’ if Hi is greater than 2. Also, they stated

that the H1 statistic compared to the statistics H2 and H3

has a discriminating power and is the most important het-

erogeneity measure (Rao & Hamed ).
Estimation of regional parameters

In order to determine the heterogeneity measure, it is

necessary to estimate the regional parameters of KAP distri-

bution for the sample data. In this study, three models are

considered to fulfill this aim.

Model 1: In the first model, the parameters of the KAP

distribution for each site are estimated using the LMOM and

ACSS methods, separately. The cost function which is

selected to be applied by the ACSS method in the ith site

is calculated as (Hassanzadeh et al. ):

Cost Function ¼ Minimize

Pni
j¼1 (Sij � Ŝij)

2

Pni
j¼1 (Sij � �Si)

2

8<
:

9=
; (17)

where Sij is the jth observed severity of the site i; Ŝij is the jth

computed severity of the site i; and �Si is the average of

observed severity of the site i.
om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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After estimating parameters for each site (θik), the at-site

parameters are combined to give regional parameters (θRk )

as:

θRk ¼
PN

i¼1 ni × θik
� �

PN
i¼1 ni

, k ¼ 1, 2, 3, 4 (18)

Model 2: Based on this model, after combining the sites,

the regional parameters of these sites are estimated using the

proposed methods. For calculating the cost function, the

combined data are used instead of at-site data.

Model 3: Finally, in the third model, all data of each site

are used to estimate the regional parameters. In other words,

the cost function is redefined in a way that the result will be

matched with all sites with a small error, i.e.,

Cost Function ¼ Minimize
XN
i¼1

Pni
j¼1 (Sij � Ŝij)

2

Pni
j¼1 (Sij � �Si)

2

2
4

3
5

8<
:

9=
; (19)

Due to the nature of the defined optimization problem,

the regional parameters of KAP distribution can only be esti-

mated by the ACSS method as a meta-heuristic algorithm.
Goodness-of-fit measure

Before conducting a hydrological frequency analysis, the

best-fit distribution for interested variables must be selected

by a goodness-of-fit measure. There are different goodness-

of-fit measures, such as ZDIST-based test (Hosking &

Wallis ) and LMOM ratios-based test (Liou et al.

). The goodness-of-fit measure, ZDIST, which is utilized

in this study for selecting the best regional distribution, is

defined as:

ZDIST ¼ τDIST
4 � tR4 þ B4

� �
σ4

(20)

where τDIST
4 is the L-CK of the fitted distribution to the data

using the candidate distribution, DIST can be any of three-

parameter distributions, such as generalized Pareto (GPA),

generalized extreme value (GEV), generalized logistic

(GLO), lognormal (LN3) or Pearson type III (PE3). The
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value of τ4 for each probability distribution can be expressed

by the following polynomial approximations (Wu et al. ):

τ4 ¼
X8
k¼0

Ak τ
k
3 (21)

The coefficient Ak was given by Hosking & Wallis (,

Table A3).

Also, tR4 is the regional L-CK and B4 and σ4 are the bias

and the standard deviation of tR4 , respectively, as:

B4 ¼
XNsim

m¼1

t[m]
4 � tR4

� �
Nsim

(22)

σ4 ¼ Nsim � 1ð Þ�1
XNsim

m¼1

t[m]
4 � tR4

� �2
�Nsim B2

4

( )" #0:5
(23)

where t[m]
4 is the regional L-CK values for the mth simulated

region, and Nsim is the number of simulated regions with N

sites. As mentioned in the heterogeneity measure, the KAP

distribution is used in a similar way for the simulated

region. For selected distribution, if ZDIST
		 		 � 1:64, then it

can be suitable as a regional distribution (Hosking &

Wallis ).

Estimation of the regional distribution

After choosing the suitable regional frequency distribution

(s), its parameters and quantiles can be obtained. For a hom-

ogenous region with N sites, the quantile of nonexceedance

probability F for each site (Q̂i Fð Þ) is expressed as:

Q̂i Fð Þ ¼ μ̂i q̂ Fð Þ (24)

where μ̂i is the scale factor (mean of data at site i), and q̂ Fð Þ
is the regional growth curve. The dimensionless rescaled

data qij ¼ Qij=μ̂i, with i¼ 1, …, N and j¼ 1, …, ni, are the

basis for estimation q̂ Fð Þ. Then, the regional growth curve

is computed using these parameters and the nonexcee-

dance probability F. Finally, Monte Carlo simulation is

utilized to quantify the accuracy of the quantile estimates

for various probabilities. Three different measures, such
://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
as the regional average relative bias (BR Fð Þ), regional aver-
age absolute relative bias (AR Fð Þ), and regional average

relative RMSE (RR Fð Þ) have been defined by Hosking &

Wallis () to fulfill this aim and here we utilized all of

them in assessing the accuracy of quantile estimates by

the following formulas:

BR Fð Þ ¼ N�1
XN
i¼1

N�1
sim

XNsim

m¼1

Q̂ m½ �
i Fð Þ � Q̂i Fð Þ

Q̂i Fð Þ

( )
(25)

AR Fð Þ ¼ N�1
XN
i¼1

N�1
sim

XNsim

m¼1

Q̂ m½ �
i Fð Þ � Q̂i Fð Þ

Q̂i Fð Þ

					
					 (26)

RR Fð Þ ¼ N�1
XN
i¼1

N�1
sim

XNsim

m¼1

Q̂ m½ �
i Fð Þ � Q̂i Fð Þ

Q̂i Fð Þ

( )2
2
4

3
5
0:5

(27)

where Q̂ m½ �
i Fð Þ is the site-i quantile estimate for nonexcee-

dance probability F at the mth simulated region.
Cluster analysis

The cluster analysis is used to assemble objects into a set of

specific groups with a maximum similarity between the clus-

ter members (Modarres ). Generally, the clustering

algorithms can be classified into two types: hierarchical

and partitional (Demirel et al. ). Among the different

partitional algorithms, the commonest and most well-

known method is the K-means method (Sönmez &

Kömüs ̧cü ; Kar et al. ; Rahman et al. ).

Since the results can be affected by variables with differ-

ent units, the data should be normalized with appropriate

transformation functions before applying the K-means clus-

tering method. Therefore, the catchment characteristics

(variables/attributes of each site) should be rescaled as

(Chen et al. ; Dikbas et al. ; Kar et al. ):

Y ¼ X�Xminð Þ
Xmax �Xminð Þ (28)

where Y is the normalized value, and Xmin and Xmax are the

minimum and maximum values for each variable in the data

set (X ), respectively.
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To determine the optimal number of clusters (k), and to

check the success of cluster assigning, the cluster validity

indices are extensively used in a data set (Rousseeuw ;

Rao & Srinivas ). In the present study, the silhouette

width is used for this aim as:

S(i) ¼ b ið Þ � a ið Þ
max a ið Þ, b ið Þð Þ (29)

where a(i) is the average dissimilarity of the ith object with

all other objects within the same cluster and b(i) is the

lowest average dissimilarity of the ith object with all other

objects within any neighbor cluster. For the given k clusters,

the average silhouette width (�S kð Þ) is the average of the sil-

houette widths over all objects (Kaufman & Rousseeuw

).
Adaption to droughts

Since droughts are regional in nature, it is logical to utilize

RFA for drought assessment (Tallaksen et al. ). Various

indices have been introduced to define drought character-

istics, and commonly, the standardized precipitation index

(SPI) is the most popular and widely used one for drought

analysis (Raziei et al. ; Serinaldi et al. ; Santos

et al. ; Mirabbasi et al. ; Chen et al. ). Among

different time scales, the SPI values on a six-month time

scale (SPI-6) is most useful for describing the shallow soil

moisture available to agricultural crops (Reddy & Singh

; Abdi et al. a, b). After computing the SPI-6

values, the drought characteristics can be obtained from

these values. In this study, we considered the drought sever-

ity (Sd) as one of the main characteristics of drought. The

drought severity is defined based on the absolute value of

cumulative SPI values within the duration of a drought

event (Chen et al. ). The drought duration is defined as

the number of consecutive intervals (months) where the

SPI values are less than the threshold value of zero (Mirab-

basi et al. ).

In order to adopt the LMOM approach to the drought

severity, the details of the methodology can be summarized

as follows:

• Consider a number of sites within the region.
om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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• Assemble the monthly precipitation data of each site.

• Calculate the SPI values and extract the drought

characteristics.

• Compute the discordancy and heterogeneity measures.

• Specify the homogeneous sub-regions by using the cluster

analysis.

• Determine the best regional distribution for each sub-

region.

Study area and data

The study area is the East-Azarbaijan province, northwest of

Iran, which covers an area of over 45,491 km2 (Figure 1).

Monthly precipitation data for a period of 31 years from

1982 to 2013 are extracted for 60 gauging sites from the

East-Azarbaijan Meteorological Organization. The recorded

minimum and maximum air temperature is �26 and þ32 WC,

respectively, with a weighted average of 10.2 WC (Zarghami

et al. ). The climate of the region is classified as semi-

arid cold climate based on the Amberje climate classifi-

cation. The attributes at all sites in the study are shown in

Table 1. The summary statistics of regional drought severity

calculated for all sites based on the LMOM are (L-CV)R¼
0.6548, (L-CS)R¼ 0.4807, and (L-CK)R¼ 0.2440.
RESULTS

Assumption of homogeneous region for all sites

First, the entire the study area is assumed as one homo-

geneous region. Hence, the classic discordancy (CDi)

measure and robust discordancy (RDi) measure with five

different values of α are computed and the discordant sites

are shown in Table 2. As can be seen, sites 2, 43, 51, and

56 are the discordant sites according to the values of CDi

and RDi. The difference between CDi and RDi with

α¼ 0.75, 0.95 is only at site 13, and with α¼ 0.80, 0.85,

0.90, it is at sites 3 and 13.

Then, the regional parameters of the KAP distribution

are estimated based on three proposed models. For model

1, the results of at-site parameters and the values of two

main goodness-of-fit tests, the root mean square error

(RMSE) and efficiency coefficient (EC), based on the



Table 1 | Considered attributes in this study

Attribute Statistic Range

Annual precipitation Average (mm) 199.9 to 508.3
Maximum (mm) 306.0 to 1,101.7
Minimum (mm) 70.1 to 287.3
Coefficient of
variation

0.2 to 0.6

Drought severity Average 4.2 to 6.4
Maximum 14.5 to 84.7
Minimum 0.0 to 0.1
Coefficient of
variation

0.7 to 2.9

L-CV 0.4 to 0.8
L-CS 0.1 to 0.8
L-CK �0.1 to 0.7

Geographical
coordination

Latitude (N) 37.1 to 39.1
Longitude (E) 45.4 to 47.9

Figure 1 | Geographical location of the study area and sites.
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LMOM and ACSS methods, are presented in Tables 3 and 4

for the selected sites, respectively. Tables 3 and 4 indicate

that the results of the ACSS method are better than the

LMOM method for all sites, especially for sites 13, 51, and

60 where the EC value becomes smaller than 0.9 for

LMOM, whereas the performances of ACSS are adequate
://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
for these sites. Also, the values of ξ and α parameters of

the LMOM results for sites 22, 42, 52, and 58 are signifi-

cantly different in comparison with these parameters for

the other sites. Therefore, the regional parameters can be

extensively affected by the weighted ratio (ni=
PN
i¼1

ni) of

model 1. In contrast, the values of these parameters have

some small variations for the results of the ACSS method.

The regional parameters of KAP distribution based on

model 1 are given in Table 5. The results of the goodness-

of-fit tests by using the regional parameters of model 1 for

each site demonstrate that LMOM performs worse than

ACSS. For 97% of sites, the results of EC are less than

zero for LMOM while for ACSS only 8% of sites have

EC< 0 and in return 65% and 30% of sites have EC greater

than 0.5 and 0.8, respectively.

The regional parameters of KAP distribution for model 2

are given in Table 5. The results of the goodness-of-fit tests

obtained by the regional parameters show that the perform-

ance of the LMOM and ACSS methods is close. However,

the value of the sum of differences of the EC (SDEC)

measure is equal to 0.4631, which shows the relative super-

iority of ACSS. In both methods, the value of EC for site 43

is less than zero. As shown in Table 2, site 43 is a discordant
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site and has the maximum value of the discordancy measure

among the others. Therefore, this model is less sensitive than

the first one to the outliers. In addition, the results demon-

strate that the percentage of sites which have EC values

greater than 0.5 and 0.8, obtained by LMOM are equal to

97% and 72%, respectively. These values are 97% and

75% for ACSS, respectively.

Table 5 presents the regional parameters of the KAP dis-

tribution estimated from model 3. Based on these

parameters, the value of the SDEC measure for this model

is equal to 1.8301. The results of the ACSS method for this

model are more accurate than those for the second model.

The value of EC in model 3 for site 43 is equal to 0.3345,

whereas less than zero was obtained for the previous

model. Indeed, this indicates that the sensitivity of model

3 to the discordant sites is less than model 2. The values

of EC obtained by the ACSS results for model 3 show that

98% and 87% of the sites have values greater than 0.5 and

0.8, respectively. Consequently, model 3 yields the global

optimal parameters, while the optimum parameters of

model 2 are local.

In order to demonstrate the accuracy of the proposed

ACSS, some other MHA such as the standard CSS, PSO,

and GA are also utilized to compare the results of the best

model (model 3). The regional parameters and the mean

goodness-of-fit tests obtained by the three algorithms are pre-

sented in Tables 5 and 6, respectively. Table 6 indicates the

best value of the objective function obtained by the ACSS

method. The mean values of EC and mean values of

RMSE for the results of ACSS have maximum and minimum

values compared to the other methods, respectively. In

addition, the convergence rate histories for these algorithms

are illustrated in Figure 2. This figure shows the superiority

of the ACSS compared to the other algorithms in conver-

gence speed and accuracy.

According to the results of various models and methods,

model 3 with the ACSS method is selected for estimating the

regional parameters of the KAP distribution. However, with

regional parameters of the KAP distribution, sample sizes

the same as at-site historical data and Nsim¼ 1,000, the

heterogeneity and goodness-of-fit measures are calculated

as shown in Table 7, which indicate the study area with 60

sites is ‘definitely heterogeneous’ before removal of the dis-

cordant sites according to the H1 value. Also, based on the



Table 3 | The at-site parameters and goodness-of-fit tests obtained by the LMOM method for the selected sites

Parameters of KAP distribution Goodness-of-fit tests

Site number ξ α k h EC RMSE

13 �0.3371 0.3914 �0.6539 2.0483 0.8579 1.0119

22 �15.8244 19.6832 0.9210 4.3378 0.9809 0.1882

42 �21.7919 23.9107 0.8254 5.4338 0.9853 0.1879

51 �0.3343 0.3368 �0.6962 2.2837 0.8293 1.1716

52 �41.4305 95.4353 2.1477 3.5142 0.9515 0.2266

58 �16.3784 25.8720 1.2713 3.6308 0.9894 0.1179

60 �3.9450 3.6644 0.2142 3.4678 0.8728 0.5099

Table 4 | The at-site parameters and goodness-of-fit tests obtained by the ACSS method for the selected sites

Parameters of KAP distribution Goodness-of-fit tests

Site number ξ α k h EC RMSE

13 �0.3525 0.2005 �1.0000 3.1951 0.9975 0.1334

22 �4.7943 5.7087 0.5174 2.9539 0.9863 0.1595

42 �7.4693 7.8411 0.5289 3.6934 0.9885 0.1658

51 �0.7334 0.2095 �1.0000 4.9999 0.9988 0.0996

52 �3.9892 7.5960 1.0636 2.0900 0.9585 0.2096

58 �5.9095 8.9804 0.9055 2.6776 0.9897 0.1163

60 �8.9238 9.9841 0.6695 3.9585 0.9314 0.3744

Table 5 | The regional parameters of the KAP distribution based on the three models

Parameters of the KAP distribution

Model number Method ξ α K h

1 LMOM �3.3795 5.0803 0.1223 2.3682
ACSS �2.3047 2.9404 0.0998 2.338

2 LMOM �1.0803 1.4655 �0.0731 2.0612
ACSS �1.0179 1.4671 �0.0613 1.9648

3 ACSS �0.7107 1.4442 0.0256 1.6082
CSS �0.6209 1.3793 0.0109 1.5196
PSO �0.4925 1.2782 �0.0167 1.3974
GA �0.5197 1.2441 �0.0371 1.4939

Table 6 | The mean values of the at-site EC and RMSE values using the regional par-

ameters based on model 3

Method Best value of cost function Mean of EC Mean of RMSE

ACSS 7.6924 0.8718 0.5023

CSS 7.6958 0.8717 0.5028

PSO 7.7079 0.8715 0.5029

GA 7.7391 0.8710 0.5033
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results of goodness-of-fit measure (ZDIST), only the PE3 dis-

tribution is selected for the study area.

The LMOM ratio diagrams in terms of the L-CV, L-CS

and L-CS, L-CK of drought severity are shown in Figures 3

and 4, respectively. As expected, these figures demonstrate
://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
that the entire region is heterogeneous. Data points are

closely scattered in Figures 3 and 4. This is also supported

by the results obtained from the regional heterogeneity

measure. For example, site 43 has a maximum value based

on classic and robust discordancy measures which is separ-

ated from the other sites. Also, sites 13 and 51 are separated

from the other sites and the robust discordancy measure

with different values of α confirm this concept, whereas

according to the classic discordancy measure, only site 51



Figure 2 | Comparison of the convergence histories for model 3 obtained by different

meta-heuristic methods.
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is discordant. Consequently, it seems that the obtained

number of discordant sites according to the classic discor-

dancy measure is not exactly correct.

At last, after removing the discordant sites based on the

classic and robust discordancy measures, the heterogeneity

and goodness-of-fit measures are computed as demon-

strated in Table 7. A value of H1¼ 2.13 in this

table indicates that the study area is ‘definitely hetero-

geneous’. On the contrary, using the robust discordancy

measure with different values of subset factor for recogniz-

ing and removing the discordant sites shows an

improvement in heterogeneity measure and suggests that

the whole region is ‘possibly heterogeneous’. Also, based
Table 7 | The heterogeneity and goodness-of-fit measures for the study area

After removing di

Measure Before removing discordant sites
Classic

Rob

α¼

Heterogeneity H1 3.3 2.1
H2 5.06 4.1
H3 6.68 5.5

Goodness-of-fit GPA �3.8 �4
GEV �7.28 �8
GLO �8.01 �9
LN3 �4.39 �5
PE3 0.51 0.5

om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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on the goodness-of-fit measure, the PE3 distribution is

selected as the regional distribution for this region.

Clustering and identification of homogeneous regions

In order to identify the optimum number of clusters, the aver-

age silhouette width for some number of clusters are

computed and illustrated in Table 8. According to this

table, the maximum value of average silhouette width corre-

sponds to the best number of clusters (k), which is equal to 3.

The values of the silhouette index for all sites related to

k¼ 3 are presented in Figure 5. The silhouette index for a

few sites in cluster 2 is less than zero, so the quality of clus-

tering may not be good. Thus, the exact results can be

achieved by using the heterogeneity measure for each sub-

region. Figure 6 shows the location of the sites in the ident-

ified clusters.

The classic discordancy measure and robust discordancy

measure with five different values of α are computed and the

discordant sites for three clusters are presented in Table 9.

The heterogeneity and goodness-of-fit measures are demon-

strated in Table 10, as well. The results in Table 10 show

that the third cluster is ‘acceptably homogeneous’, the first

cluster is ‘possibly heterogeneous’, and the second one is

‘definitely heterogeneous’ according to the H1 test.

In order to improve the heterogeneity measure, Table 9

demonstrates that the classic discordancy measure could

not detect any discordant site for cluster 1. Also, only

one discordant site is detected for cluster 2, whereas the

different discordant sites are identified based on the
scordant sites based on discordancy measure

ust

0.75 α¼ 0.80 α¼ 0.85 α¼ 0.90 α¼ 0.95

3 1.51 1.29 1.29 1.29 1.51
2 3.49 3.33 3.33 3.33 3.49
8 4.66 4.53 4.53 4.53 4.66

.71 �4.68 �4.62 �4.62 �4.62 �4.68

.54 �8.48 �8.36 �8.36 �8.36 �8.48

.73 �9.3 �9.18 �9.18 �9.18 �9.3

.64 �5.4 �5.38 �5.38 �5.38 �5.4
3 �0.45 �0.31 �0.31 �0.31 �0.45



Figure 4 | The LMOM ratio diagram in terms of L-CS and L-CK.

Figure 3 | The LMOM ratio diagram in terms of L-CV and L-CS.

Table 8 | The average silhouette width for a number of clusters

Number of clusters (k) Average silhouette width

2 0.4315

3 0.5122

4 0.4907

5 0.4704

6 0.4815

7 0.5050

The values in bold indicate the optimum number of cluster and its average silhouette

width.

Figure 5 | The silhouette plot.

Figure 6 | The location of sites for three clusters.

Table 9 | The discordant sites for the all clusters

Discordancy measure

Robust

Cluster Classic α¼ 0.75 α¼ 0.80 α¼ 0.85 α¼ 0.90 α¼ 0.95

1 – 23, 37,
43

37, 43 37, 43 43 43

2 56 13, 51,
56

13, 51,
53, 56

13, 51,
56

13, 51,
56

53, 56

3 – 42, 48 42, 48 42, 48 42, 48 42
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Table 10 | The heterogeneity and goodness-of-fit measures for all clusters

After removing discordant sites based on discordancy measure

Classic

Robust

Measure Cluster Before removing discordant sites α¼ 0.75 α¼ 0.80 α¼ 0.85 α¼ 0.90 α¼ 0.95

Heterogeneity H1 1 1.58 1.58 �0.93 �0.70 �0.70 0.29 0.29
2 2.14 2.03 1.37 0.87 1.37 1.37 1.63
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01

H2 1 2.09 2.09 0.50 0.59 0.59 1.24 1.24
2 3.44 3.55 2.75 2.19 2.75 2.75 3.13
3 0.85 0.85 0.85 0.85 0.85 0.85 0.85

H3 1 3.25 3.25 1.90 1.72 1.72 2.36 2.36
2 5.10 5.31 3.93 3.49 3.93 3.93 5.09
3 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Goodness-of-fit GPA 1 �2.48 �2.48 �2.52 �2.58 �2.58 �2.52 �2.52
2 �2.88 �3.25 �3.66 �3.71 �3.66 �3.66 �3.13
3 �1.93 �1.93 �1.93 �1.93 �1.93 �1.93 �1.93

GEV 1 �5.15 �5.15 v4.81 �4.86 �4.86 �4.81 �4.81
2 �5.07 �5.50 �6.00 �5.96 �6.00 �6.00 �5.17
3 �3.84 �3.84 �3.84 �3.84 �3.84 �3.84 �3.84

GLO 1 �5.88 �5.88 �5.46 �5.49 �5.49 �5.40 �5.40
2 �5.44 �5.88 �6.44 �6.37 �6.44 �6.44 �5.49
3 �4.26 �4.26 �4.26 �4.26 �4.26 �4.26 �4.26

LN3 1 �3.57 �3.57 �3.50 �3.50 �3.50 �3.33 �3.33
2 �2.87 �3.23 �3.83 �3.79 �3.83 �3.83 �3.02
3 �2.33 �2.33 �2.33 �2.33 �2.33 �2.33 �2.33

PE3 1 �0.87 �0.87 �1.25 �1.19 �1.19 �0.80 �0.80
2 0.83 0.61 �0.15 �0.13 �0.15 �0.15 0.60
3 0.23 0.23 0.23 0.23 0.23 0.23 0.23

Figure 7 | The LMOM ratio diagram in terms of L-CS and L-CK for three clusters.
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robust discordancy measure with different values of α.

Finally, after removing the discordant sites for clusters 1

and 2, the heterogeneity and goodness-of-fit measures are

also shown in Table 10. In this condition, the value of H1

demonstrates that cluster 2 is not ‘acceptably homogeneous’.

On the contrary, after removing the discordant sites (based

on robust discordancy measure with all values of α), cluster

1 is found to be ‘acceptably homogeneous’. Just α¼ 0.80

yields ‘acceptably homogeneous’ for cluster 2 and the

other values of α yield ‘possibly heterogeneous’.

The results of goodness-of-fit measure (Table 10) reveal

that PE3 has the best distribution among the others. Also,

according to Figure 7 which shows the LMOM ratio dia-

gram in terms of the L-CS, L-CK for all clusters, the best

regional distribution is PE3 for drought severity.

After the selection of PE3 distribution as a suitable

regional frequency distribution, the regional parameters of

the respective distribution are estimated using model 3
om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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and by the ACSS method, then the regional quantiles of

various return periods for all clusters are illustrated in

Table 11.



Table 11 | Estimation of regional parameters and quantiles for the PE3 distribution

Cluster

Regional parameters Regional quantiles

γ α β T¼ 10 T¼ 25 T¼ 50 T¼ 100 T¼ 200

1 1.0000 2.7212 0.1482 9.92 15.88 21.52 28.01 35.26

2 1.0000 3.2201 0.1524 11.61 19.12 26.21 34.33 43.38

3 1.0000 3.1939 0.1461 12.04 19.86 27.28 35.84 45.41
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The estimated regional growth curve values and the rela-

tive RMSE for each cluster are determined in Table 12. The

results verify that by increasing the value of the return

period, the accuracy of the regional growth curve decreases.

In addition, Monte Carlo simulation is used to assess the

accuracy of the estimates of the determined homogeneous

regions, by generating the same sample sizes as those of

the original sample. The number of random samples, Nsim,

is set to 10,000 for selected quantiles corresponding to

return periods of 10, 25, 50, 100, and 200 years. Table 13

shows the results of the BR(F), AR(F), and RR(F). According

to Tables 12 and 13, the values of the RMSE of the estimated

growth curve values are always less than the estimated
Table 12 | The regional growth values and the relative RMSE values

Cluster

Regional growth curve

T¼ 10 T¼ 25 T¼ 50 T¼ 100 T¼ 200

1 2.01 3.22 4.37 5.69 7.16

2 2.25 3.70 5.07 6.65 8.40

3 2.17 3.57 4.91 6.45 8.17

Table 13 | Summary of simulation results

Measure Cluster

Return period (years)

T¼ 10 T¼ 25

BR(F) 1 �0.1280 �0.2256
2 �0.1583 �0.2580
3 �0.1453 �0.2601

AR(F) 1 0.1435 0.2280
2 0.1634 0.2629
3 0.1540 0.2601

RR(F) 1 0.2056 0.2753
2 0.2306 0.3059
3 0.2311 0.3067

://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
quantiles for the same return periods, which represent the

uncertainty in the estimated scale factor. These results are

verified by Saf () and Hussain ().
CONCLUSIONS

In the standard CSS algorithm, search agents or CPs affect

each other according to laws from electrostatics and mech-

anics. Here, a new ACSS is developed to improve the

performance of CSS. The ACSS and CSS algorithms use

the governing laws from electrical physics and Newtonian

mechanics to determine the amount and the direction of a
RMSE

T¼ 10 T¼ 25 T¼ 50 T¼ 100 T¼ 200

0.1174 0.1582 0.1820 0.2021 0.2196

0.1464 0.1951 0.2252 0.2516 0.2752

0.1368 0.1677 0.1792 0.1860 0.1901

T¼ 50 T¼ 100 T¼ 200

�0.2604 �0.2791 �0.2892
�0.2906 �0.3070 �0.3150
�0.3026 �0.3271 �0.3420

0.2604 0.2791 0.2892
0.3014 0.3243 0.3408
0.3026 0.3271 0.3420

0.3052 0.3237 0.3358
0.3384 0.3591 0.3730
0.3405 0.3611 0.3739
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CPs movement. The CSS and ACSS algorithms can dis-

tinguish the local search and the global search phases, and

utilize suitable relationships in these phases resulting in a

good balance between exploration and exploitation. How-

ever, applying some controlling limits and the constraints

is the main difference between the ACSS and CSS

algorithms.

On the other hand, a newmodel is introduced to estimate

the regional parameters of the statistical distributions. Then,

the ACSS method is utilized to estimate the accurate par-

ameters and quantile estimates for a region. Also for the

Monte Carlo simulation, this new model is employed to gen-

erate samples from the selected distribution. In addition, the

robust discordancy measure with different subset factors is

developed to detect and remove the discordant sites, which

causes some improvements in the heterogeneity measure.

The data used in this study are drought severity extracted

for 60 sites in East-Azarbaijan, Iran. The relevant conclusions

can be summarized as follows:

• The ACSS has the ability to improve the search and con-

vergence speed compared to the standard CSS.

• The ACSS algorithm has stable convergence character-

istics and good computational ability, and is an effective

algorithm compared to other algorithms, such as the

GA and PSO, for RFA.

• The ACSS can estimate the global optimum (or at least

near it) of parameters without using nonlinear complex

equations and any approximations.

• The new model is the best model among the others. This

model is based on the participation of all the data of sites

in a region for estimating the regional parameters and

quantiles, while other models are based on the weighted

at-site parameters or the combination of the sites.

• Identifying discordant sites using the robust discordancy

measure is more accurate than the classic discordancy

measure. Among the different values for the subset

factor, the value of 0.8 is found suitable for robust discor-

dancy measure and to detect the discordant sites of a

heterogeneous region.

• The study area is divided into three sub-regions, south,

northeast, and northwest by using the K-means clustering

method and the Pearson type 3 distribution is found the

best regional distribution for all sub-regions.
om http://iwaponline.com/jh/article-pdf/19/3/426/391486/jh0190426.pdf
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Finally, this method can be applied for RFA of other

hydrological phenomena, such as rainfall and stream flow.

Also, the multivariate RFA framework based on the multi-

variate LMOM approach is suggested for future

application of this work. In addition, another goodness-

of-fit measure, the LMOM ratios-based test, can be applied

and compared with the ZDIST-based test for selecting the

best regional distribution.
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