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In developed countries, the number of traffic accidents caused by older drivers is

increasing. Approximately half of the older drivers who cause fatal accidents are

cognitively normal. Thus, it is important to identify older drivers who are cognitively

normal but at high risk of causing fatal traffic accidents. However, no standardized

method for assessing the driving ability of older drivers has been established. We aimed

to establish an objective assessment of driving ability and to clarify the neural basis of

unsafe driving in healthy older people. We enrolled 32 healthy older individuals aged

over 65 years and classified unsafe drivers using an on-road driving test. We then

utilized a machine learning approach to distinguish unsafe drivers from safe drivers

based on clinical features and gray matter volume data. Twenty-one participants were

classified as safe drivers and 11 participants as unsafe drivers. A linear support vector

machine classifier successfully distinguished unsafe drivers from safe drivers with 87.5%

accuracy (sensitivity of 63.6% and specificity of 100%). Five parameters (age and gray

matter volume in four cortical regions, including the left superior part of the precentral

sulcus, the left sulcus intermedius primus [of Jensen], the right orbital part of the inferior

frontal gyrus, and the right superior frontal sulcus), were consistently selected as features

for the final classification model. Our findings indicate that the cortical regions implicated

in voluntary orienting of attention, decision making, and working memory may constitute

the essential neural basis of driving behavior.

Keywords: gray matter volume, healthy older people, machine learning, on-road driving, support vector machine,

unsafe driving

INTRODUCTION

Driving requires the integration of sensory, motor, and cognitive functions (Hird et al., 2016).
Because these functions typically decline with age, older people are at an increased risk of causing
fatal traffic accidents (Anstey et al., 2005). In developed countries, the number of traffic accidents
caused by older drivers is increasing over time, along with the aging population. In Japan, the
number of licensed drivers aged over 65 years has increased in recent years, exceeding 18 million
in 2018, and the number of fatal accidents caused by older drivers has maintained an upward
trend (Ichikawa et al., 2020). Although previous studies consistently showed that individuals
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with dementia are at increased risk of unsafe driving among the
older population (Drachman and Swearer, 1993; Frittelli et al.,
2009), surprisingly, a report published by the National Police
Agency revealed that approximately half of the older drivers who
caused fatal accidents were cognitively normal (National Police
Agency, 2020). These findings suggest that detecting dementia
and mild cognitive impairment (MCI) is not sufficient to prevent
fatal traffic accidents caused by older drivers.

Despite the importance of identifying characteristics of older
drivers who are cognitively normal but at high risk of causing
fatal traffic accidents, a standardized method for assessing
the driving ability of healthy older drivers has not yet been
established. Although on-road driving tests are recognized as
the gold standard assessment for measuring driving ability, it
is not practical to perform driving tests for all older drivers
because of the cost involved (Langford et al., 2004). One previous
structural magnetic resonance imaging (MRI) study including
both healthy older people and those with MCI reported that
gray matter volume in premotor cortex was negatively correlated
with the tendency to commit driving errors assessed with the
Driving Behavior Questionnaire (DBQ) (Sakai et al., 2012). This
finding suggests that biological markers of unsafe driving might
be captured by brain MRI; however, no previous study has
assessed driving ability and investigated the neural correlates of
driving ability among healthy older people.

The current study had two main aims. First, we categorized
participants into unsafe or safe drivers using a new sensing
method for the objective evaluation of on-road driving ability
of healthy older people on the basis of vehicle behavior using
a data recorder and video cameras. Second, to describe the
neurobiological features associated with unsafe driving, we built
a classification model to distinguish unsafe from safe drivers
based on gray matter volume data using a linear support vector
machine (SVM) approach.

MATERIALS AND METHODS

Participants
The present study recruited 32 healthy older individuals
aged over 65 years from the local community through online
advertisements at the University of Tokyo and the Musashisakai
Driving School (Tokyo, Japan). All participants were diagnosed
as “cognitively normal” using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) diagnostic classification:
(1) Mini-Mental State Examination (MMSE) score between
24 and 30; (2), Clinical Dementia Rating (CDR) score of 0;
(3) normal memory function measured by education-adjusted
scores on the Logical Memory II subscale of delayed paragraph
recall from the Wechsler Memory Scale—Revised (WMS-R)
(Petersen et al., 2010). Participants were confirmed to have had
no lifetime history of diagnoses of psychiatric or neurological
conditions. Participants were also required to maintain a current
valid driver’s license and to still be actively driving at the time
of the study. After an extensive description of the study, written
informed consent was obtained from all participants prior to
enrollment and investigations were performed in accordance

with the ethical standards of the Declaration of Helsinki. The
study protocol was approved by the ethics committees of the
University of Tokyo and Keio University. After all participants
took an on-road driving test at the Musashisakai Driving School,
they were moved to Keio University Hospital and underwent
cognitive assessments, a visual function test, and an MRI scan.

Measurements
Cognitive Assessment

The general cognitive function of each participant was assessed
using the Raven’s Colored Progressive Matrices (RCPM). The
Rey Auditory Verbal Learning Test (RAVLT), the Rey–Osterrieth
Complex Figure Test (ROCFT), the Clock Drawing Test (CDT),
and the Everyday Memory Checklist (EMC) were used to
evaluate memory and visuospatial function. We estimated
attentional/executive function using the Stroop Test (ST), the
Trail Making Test (TMT) A and B, and the Dysexecutive
Questionnaire (DEX). We investigated subjective driving ability
using the DBQ. Depression severity was evaluated using the
Geriatric Depression Scale (GDS). Handedness was assessed
using the Edinburgh Handedness Inventory (Oldfield, 1971). The
CDT was scored using a five-point scoring system adopted from
the ADNI’s cognitive assessments (Iwatsubo et al., 2018). Clinical
neuropsychologists (MY and KK) administered all cognitive
assessments in an environment with adequate lighting and
reduced noise conditions.

Cambridge Neuropsychological Test Automated

Battery

In addition to these neuropsychological tests mentioned
above, we performed the Cambridge Neuropsychological Test
Automated Battery (CANTAB), which is a computer-based
test battery widely used in neurocognitive studies (Cambridge
Cognition, Cambridge, United Kingdom) (Robbins et al., 1994).
Specifically, we adopted the CANTAB battery consisting of
four cognitive domain tasks to assess subtle cognitive changes
with aging (Soares et al., 2015): (1) visual memory (paired
associates learning [PAL]); (2) attention (reaction time [RTI]); (3)
working memory (spatial working memory [SWM]); (4) control
task measuring simple psychomotor speed and accuracy (motor
screening task [MOT]). According to the standard protocol, the
instructions for the tests were explained to the participants before
initiation of the study. The standard instructions for the tests
were provided in the CANTAB manual and were translated into
Japanese. The execution of the tasks required approximately
20 min. The test battery was administered in a silent room
without distractions. Details of the procedures are available
elsewhere (Akter et al., 2015).

Functional Visual Acuity Test

We adopted binocular functional visual acuity to assess the
visual function associated with driving ability. First, we measured
corrected distance visual acuity (CDVA) using Landolt vision
charts. Second, we calculated corrected distance functional visual
acuity (CDFVA) with the AS-28 FVA Measurement System
(Kowa, Aichi, Japan) (Katada et al., 2016; Negishi et al., 2016).
CDFVA consists of five indicators: functional visual acuity
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(FVA), maximum visual acuity (MaxVA), minimal visual acuity
(MinVA), visual maintenance ratio (VMR), and average response
time (ART). FVA, MaxVA, and MinVA represent the average,
maximum, and minimum visual acuity in a period of 60 s,
respectively. VMRwas defined as the ratio of FVA to CDVA. ART
was computed as the average response time in giving the direction
of a Landolt ring, which was shown on the screen every 2 s.

Image Acquisition and Preprocessing

MR images were acquired using a 3.0-T MRI scanner
(MAGNETOM Verio, Siemens Healthineers, Erlangen,
Germany) with an 8-channel head coil. High-resolution T1-
weighted images were acquired using a magnetization-prepared
rapid acquisition with gradient echo sequence (repetition time:
1.9 s; echo time: 2.99 ms; flip angle: 9◦; field of view: 256 mm;
matrix size: 256 × 256; slice thickness: 1.2 mm; 192 sagittal
slices; voxel size: 1 × 1 × 1.2 mm). All images were first visually
checked for scanner artifacts and anatomical anomalies.

Structural MRI data were preprocessed using FreeSurfer’s
recon-all processing pipeline for cortical reconstruction
and volumetric segmentation (Fischl and Dale, 2000;
Fischl et al., 2004) (software freely available at http:
//surfer.nmr.mgh.harvard.edu/). The cortical processing stream
in FreeSurfer included Talairach transformation, removal of non-
brain tissue, segmentation of subcortical white matter and gray
matter tissue, intensity normalization and atlas registration. After
these automatic steps, a triangular mesh model of the cortical
surface consisting of over 150,000 vertices per hemisphere was
generated, and the cortical surface was parcellated into 74 distinct
cortical regions of interest (ROIs) based on curvature values
of the surface for each hemisphere according to the Destrieux
atlas (Destrieux et al., 2010). Each preprocessed image was
visually inspected and any segmentation errors were manually
corrected by a researcher. Gray matter volume for each ROI
was then calculated automatically using FreeSurfer’s recon-all
processing pipeline. Furthermore, ROI gray matter volumes were
divided by each subject’s estimated total intracranial volume
(eTIV) to adjust for individual differences in overall cranial size
(O’Brien et al., 2011).

On-Road Driving Test

To evaluate the on-road driving ability of healthy older
individuals on the basis of vehicle behaviors, we used an
instrumented automatic vehicle with a data recorder, charge-
coupled device (CCD) cameras, and dual brake controls
(Figures 1A,B; Shino et al., 2018). The data recorder (Tough
More-eye S manufactured by Finefit Design, Aichi, Japan)
provides vehicle information, including speed, acceleration, and
gas and brake pedal positions. CCD cameras filmed the driver’s
face, gaze, and footwork and surrounding traffic and lanes. The
position and location of the vehicle was determined using data
from these cameras. On-road driving tests were performed at the
Musashisakai Driving School in suburban Tokyo. All participants
drove the instrumented vehicle on the same course in a city
area around the driving school for 30 min. To ensure participant
safety, a driving instructor accompanied participants in the car
while they drove the vehicle.

Classification of Safe and Unsafe Drivers

We evaluated participants’ driving ability at intersections with a
stop sign using on-road driving test data, because older drivers
most frequently cause traffic accidents at intersections without
traffic lights (Cicchino and McCartt, 2015; Lombardi et al.,
2017). At intersections with a stop sign, drivers generally need
to notice the stop sign, slow down the vehicle sufficiently, then
pass through the intersection without inappropriate acceleration.
More precisely, drivers must decelerate the vehicle from the
stop line to the entrance of the intersection sufficiently to be
able to stop immediately if there are other cars or pedestrians
at the intersection, and should not accelerate at the entrance
of the intersection. We thus evaluated these driving behaviors
at intersections using two parameters: the minimum speed of
a vehicle moving past the stop line to the entrance of the
intersection, and the speed of the vehicle at the entrance of the
intersection (see details in Figure 1C). Specifically, we classified
all participants into unsafe and safe drivers according to two
criteria: (1) whether the minimum speed of the vehicle between
the stop line and the entrance of the intersection was less than
5 km/h; (2) whether the speed of the vehicle was less than
5 km/h when the front of the car was at the entrance of the
intersection. We classified participants who met both criteria
as safe drivers, while we classified those who did not as unsafe
drivers (see details in Figure 1D). We used a cut-off value of
5 km/h to divide participants into unsafe and safe drivers because
automatic vehicles are designed to move forward at a speed of
less than 5 km/h when drivers release the brake pedal without
depressing the gas pedal (Nesamani and Subramanian, 2006;
Seers et al., 2015). A previous study analyzing more than 8,000
traffic accidents reported that no serious accidents occurred when
the speed of the vehicle was below 5 km/h (Kröyer, 2015). Further,
we adopted the same cut-off value (5 km/h) in our previous
study assessing the driving ability of older people based on the
speed of the vehicle at intersections (Shino et al., 2018; Yamamoto
et al., 2020). Therefore, in the present study, participants who
drove a vehicle below 5 km/h at the intersection were classified
as safe drivers.

Classification Using Machine Learning

The purpose of the current study was to build a classification
model to dissociate unsafe drivers from safe drivers using a
machine learning. Based on a previous study suggesting that
combining neuroimaging and clinical data could improve the
accuracy of predicting cognitive decline (Lahmiri and Shmuel,
2019), we made a classification model using both gray matter
volume data and clinical measures. A total of 56 clinical features
and a total of 148 parcellated cortical regions were included
for the classification model. Further, before we created the
classification model, we attempted to overcome the issue of a
small sample size for classification by selecting features used in
the classification model with the least absolute shrinkage and
selection operator (LASSO) algorithm. In general, the LASSO
algorithm performed linear regression with L1-regularization
and conducted feature selection based on the regularization
parameter α. In the current study, the optimal value of the
regularization parameter α was achieved using the Akaike
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FIGURE 1 | (A–B) Instrumented automatic vehicle for evaluating vehicle behaviors using a data recorder (Tough More-eye S manufactured by Finefit Design, Aichi,

Japan) and charge-coupled device (CCD) cameras. (A) The data recorder provides the speed and acceleration of the vehicle and the positions of gas and brake

pedal. The data recorder was placed on the front dashboard. (B) The front dashboard CCD camera filmed surrounding traffic and lanes. (C–D) Classification of a

safe or unsafe driver based on vehicle behaviors. (C) The definition of the area of the intersection having a stop sign. Vehicles are driven on the left side of the road in

Japan. The area from the stop line to the entrance of the intersection is shown in green. The area of the intersection is shown in yellow. The entrance of the

intersection is shown by a blue line. To evaluate drivers’ behavior, we measured (1) the minimum speed of the vehicle between the stop line and the entrance of the

intersection and (2) the speed of the vehicle when the front of the car was at the entrance of the intersection. (D) Schema of velocity distribution patterns measured

using the instrumented vehicle. Figures show examples of velocity distribution patterns of (a) a safe driver and (b) an unsafe driver. The minimum speed of a vehicle

from the stop line to the entrance of the intersection is shown by a red line. We classified all participants into two groups according to (1) whether the minimum

speed of the vehicle between the stop line and the entrance of the intersection was less than 5 km/h and (2) whether the speed of the vehicle when the front of the

car was at the entrance of the intersection was less than 5 km/h. We classified participants who met both criteria as safe drivers, and classified those who did not as

unsafe drivers.
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Information Criterion, which is widely used as a penalized
likelihood criterion (Congdon, 2010).

In the present study, a linear SVM was used to create
the classification model. The linear SVM method is widely
used as a powerful supervised learning methodology in binary
classification (Cortes and Vapnik, 1995). In general, linear
SVM classifiers separate two groups based on the value of
penalty coefficient C, which determines the learning algorithm
for classification. In the current study, the optimal value of
the penalty coefficient C was tuned using Optuna, which is a
hyperparameter optimization framework applicable to machine
learning (Akiba et al., 2019).

After fixing C for the linear SVM classifier, we evaluated the
performance of the linear SVM classifier using leave-one-out
cross-validation (LOOCV), which is a widely used validation
method for accurately assessing the performance of predictive
models. Specifically, LOOCV maximizes the training sample and
avoids possible case partition bias, even with small sample sizes
(Lopes et al., 2019). In our study, LOOCV continued for 32
rounds to test all samples one by one. At each round of LOOCV,
one participant was selected as testing data, and the remaining 31
participants were used to train the linear SVM classifier. After 32
rounds, the accuracy, sensitivity, and specificity of the linear SVM
classifier were estimated.

We used scikit-learn in Python 3.7.0 for machine-learning
analyses (Pedregosa et al., 2011).

Statistical Analysis
For clinical data, we adopted a two-tailed t-test, chi-squared test,
or multivariate analysis of variance in the group comparison
between safe drivers and unsafe drivers. IBM SPSS software
Statistics 25 for Mac OS (IBM, Armonk, NY) was used for
the statistical analysis. We used a liberal statistical threshold of
P < 0.05.

RESULTS

Demographic Characteristics,
Neuropsychological, and Functional
Visual Acuity Tests
We classified 21 participants as safe drivers and 11 participants
as unsafe drivers (Table 1). There were significant differences
between groups in the DEX, EMC, PAL total errors (six shapes,
adjusted), and RTI simple accuracy scores. There were no
differences in the sex ratio, age, duration of education, driving
experience, handedness, and results of functional visual acuity
test between the groups.

Linear SVM Classifier for Unsafe Driving
Using Gray Matter Volume and Clinical
Features
The linear SVM classifier (α = 0.043, C = 0.027) using clinical
features and gray matter volume data distinguished unsafe
drivers from safe drivers with an accuracy of 87.5% (sensitivity
of 63.6% and specificity of 100%). While 36 parameters were

selected as features for the final classification model at least
once throughout cross-validation procedures (Figure 2), five
parameters (age and gray matter volume of four cortical regions,
including the left superior part of the precentral sulcus, the
left sulcus intermedius primus [of Jensen], the right orbital
part of the inferior frontal gyrus, and the right superior frontal
sulcus) were consistently selected at every iteration (Figure 3).
In an additional analysis, when we selected only these five
parameters as input data for classification, the linear SVM
classifier (C = 0.050) successfully differentiated unsafe drivers
from safe drivers with accuracy of 87.5% (sensitivity of 81.8% and
specificity of 90.5%).

DISCUSSION

In the present study, the linear SVM classifier using both clinical
features and graymatter volume data differentiated unsafe drivers
from safe drivers with an accuracy of 87.5% (sensitivity of 63.6%,
and specificity of 100%). Furthermore, in the final classification
model, age and gray matter volume in four cortical regions,
including the left superior part of the precentral sulcus, the left
sulcus intermedius primus (of Jensen), the right orbital part of
the inferior frontal gyrus, and the right superior frontal sulcus,
were selected as consistent features, suggesting that regional
gray matter volume changes in these four cortical regions are
strongly associated with a high risk of unsafe driving among
healthy older people.

One advantage of the present study is that we objectively
evaluated on-road driving behaviors. In previous structural MRI
studies investigating the neural basis of driving ability among
older people, interviews or questionnaires were often utilized
for driving evaluation (Sakai et al., 2012; Park et al., 2013; Jang
et al., 2018). Furthermore, even in standardized on-road driving
tests, such as Iowa’s driving test, scores are provided by a driving
instructor (Dawson et al., 2009). We therefore consider that
these measurements may not accurately estimate a participant’s
driving ability because the actual vehicle’s behaviors on the road
were not assessed. To overcome these methodological issues, we
assessed driving ability according to vehicle behaviors during on-
road driving test using an instrumented automatic vehicle with a
data recorder and CCD cameras (Shino et al., 2018; Yamamoto
et al., 2020). Specifically, focusing on driving behaviors at
intersections, we evaluated participants’ driving ability using
the actual speed of the vehicle at intersections, because older
drivers most frequently cause traffic accidents at intersections
(Cicchino and McCartt, 2015; Lombardi et al., 2017).

Our final classification model successfully dissociated unsafe
drivers from safe drivers with 87.5% accuracy. We consider
that the accuracy of our model was relatively high, because
in two previous studies using only neuropsychological tests to
predict driving ability, prediction accuracies were 66 and 90%,
respectively (Brown et al., 2005; Ott et al., 2008). Furthermore,
our final model identified age and gray matter volume of four
cortical regions as consistent features for classification. In an
additional analysis using only these five features, our model
successfully dissociated unsafe drivers from safe drivers with
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87.5% accuracy. This finding further suggested that the driving
ability of healthy older people could be predicted accurately
using only information about age and MRI data. Given that

both age and MRI data are rater-independent variables, our
classification model appears to be reliable, with a range of
potential clinical applications.

TABLE 1 | Demographics and results of neuropsychological and functional visual acuity test.

Demographic data

Safe drivers Unsafe drivers F or T P-value

n 21 11

Sex male/female 20/1 10/1 0.631

Age (years) 74.9 ± 3.7 77.9 ± 4.1 2.02 0.052

Handedness 89.4 ± 34.3 100 ± 0.0 0.99 0.330

Education (years) 14.4 ± 2.1 14.5 ± 1.9 0.10 0.925

Driving experience (years) 51.0 ± 6.9 47.0 ± 14.5 0.83 0.424

Neuropsychological tests

Subscale Safe drivers Unsafe drivers F or T P-value

MMSE total 27.5 ± 2.2 27.8 ± 1.5 0.38 0.708

Logical memory of the WMS-R 0.54 0.586

Immediate recall 19.4 ± 5.1 17.2 ± 7.4

Delayed recall 15.1 ± 5.4 12.8 ± 6.2

RCPM 29.3 ± 2.9 31.0 ± 2.9 1.53 0.135

RAVLT 1.58 0.183

Immediate recall, 1st trial 5.2 ± 1.8 4.2 ± 1.5

Immediate recall, 2nd trial 7.2 ± 1.9 7.2 ± 2.0

Immediate recall, 3rd trial 8.8 ± 2.4 8.5 ± 1.8

Immediate recall, 4th trial 9.8 ± 2.6 10.0 ± 2.0

Immediate recall, 5th trial 10.8 ± 2.3 10.5 ± 2.3

Interference 4.6 ± 1.5 4.3 ± 1.8

Delayed recall 8.8 ± 3.1 6.7 ± 3.5

Recognition correct 14.0 ± 0.9 13.2 ± 3.9

Recognition false positive 1.1 ± 1.8 0.6 ± 1.1

Recognition false negative 1.0 ± 0.9 1.8 ± 3.9

ROCFT 1.98 0.156

Copy 35.0 ± 1.3 35.5 ± 0.8

Delayed recall 20.0 ± 5.0 23.9 ± 5.0

ST Completion time 0.64 0.598

Part I (s) 17.1 ± 2.7 18.1 ± 3.8

Part II (s) 20.0 ± 3.8 21.8 ± 4.6

Part III (s) 28.8 ± 11.2 29.3 ± 6.3

Numbers of errors 0.32 0.813

Part I 0.1 ± 0.3 0.1 ± 0.3

Part II 0.2 ± 0.5 0.3 ± 0.4

Part III 1.2 ± 1.4 0.7 ± 1.1

TMT 0.55 0.585

A 100.7 ± 33.9 97.3 ± 20.2

B 158.9 ± 79.2 133.8 ± 55.9

CDT 0.77 0.388

Copy 5.0 ± 0.0 5.0 ± 0.0

Free-drawn 4.9 ± 0.3 4.7 ± 0.4

DEX* 10.5 ± 7.3 17.2 ± 9.4 2.15 0.040

EMC* 6.7 ± 3.8 10.8 ± 3.8 2.82 0.008

DBQ 69.5 ± 14.5 73.2 ± 15.2 0.65 0.518

GDS 1.3 ± 1.5 2.5 ± 2.3 1.68 0.104

(Continued)
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TABLE 1 | Continued

Cambridge Neuropsychological Test Automated Battery

Subscale Safe drivers Unsafe drivers F or T P-value

MOT

Latency 1.64 0.211

Mean 799.0 ± 122.3 902.4 ± 275.1

Median 780.1 ± 132.8 807.2 ± 143.0

Mean error 10.6 ± 2.8 8.7 ± 2.3 1.85 0.075

PAL

TE (adjusted) 36.5 ± 23.9 32.4 ± 18.9 0.49 0.631

TE (six shapes, adjusted)* 9.5 ± 7.6 3.6 ± 3.3 2.35 0.025

RTI

Simple

Accuracy score* 8.7 ± 0.5 9.0 ± 0.0 2.34 0.030

Reaction time 1.41 0.261

Mean 307.4 ± 46.5 284.1 ± 23.6

Median 293.4 ± 40.5 278.2 ± 25.6

SD 53.5 ± 32.9 31.5 ± 9.6

Movement time 1.06 0.382

Mean 411.2 ± 119.9 408.1 ± 66.7

Median 403.6 ± 118.1 401.5 ± 63.8

SD 51.4 ± 25.9 37.5 ± 12.3

5 Choice

Accuracy score 7.9 ± 0.3 7.9 ± 0.3 0.04 0.969

Reaction time 0.20 0.896

Mean 342.1 ± 33.7 347.9 ± 45.5

Median 337.4 ± 36.2 345.5 ± 39.3

SD 43.3 ± 19.5 43.5 ± 20.0

Movement time 0.37 0.773

Mean 431.9 ± 105.7 404.9 ± 73.2

Median 432.4 ± 106.4 401.7 ± 79.0

SD 39.0 ± 14.6 40.3 ± 30.1

SWM

Between errors 48.3 ± 16.9 43.7 ± 11.0 0.79 0.434

Strategy 36.8 ± 4.0 36.0 ± 2.1 0.61 0.546

Functional visual acuity test

Safe drivers Unsafe drivers F or T P-value

FVA (logMAR) 0.123 ± 0.132 0.216 ± 0.148 1.77 0.088

MaxVA (logMAR) −0.019 ± 0.123 0.066 ± 0.104 1.90 0.067

MinVA (logMAR) 0.300 ± 0.217 0.385 ± 0.227 1.01 0.318

VMR 0.93 ± 0.06 0.92 ± 0.08 0.45 0.662

ART 1.44 ± 0.11 1.41 ± 0.08 0.67 0.511

MMSE, Mini-Mental State Examination; WMS-R, Logical Memory II subscale of the Wechsler Memory Scale—Revised; RCPM, Raven’s Colored Progressive Matrices;

RAVLT, Rey Auditory Verbal Learning Test; ROCFT, Rey–Osterrieth Complex Figure Test; ST, Stroop Test; TMT, Trail Making Test; CDT, Clock Drawing Test; DEX,

Dysexecutive Questionnaire; EMC, Everyday Memory Checklist; DBQ, Driving Behavior Questionnaire; GDS, Geriatric Depression Scale; MOT, motor screening task;

PAL TE, paired associates learning total error; RTI, reaction time; SWM, spatial working memory; FVA, Functional visual acuity; MaxVA, Maximal functional visual acuity;

MinVA, Minimal functional visual acuity; VMR, Visual maintenance ratio; ART, Average response time; logMAR, Logarithm of the minimum angular resolution; SD, standard

deviation. Asterisks indicate statistical significance between groups (P < 0.05).

The current results revealed that the risk of unsafe driving
increases with age. A recent meta-analysis of global longitudinal
cohort data revealed that all cognitive domains, particularly
attentional function, decline with age (Lipnicki et al., 2017).
Driving ability is also reported to be affected by aging. For
example, a 2-year longitudinal study that observed the change

in driving ability in older people described a gradual decline in
driving ability (Duchek et al., 2003). Similarly, a recent large-
sample study among older people concluded that age was the
most consistent predictor of on-road driving ability (Anstey et al.,
2017). However, because all of these previous studies included
both healthy people and people with MCI in their analyses, the
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FIGURE 2 | Contributions of clinical data and gray matter volume data to the classification of safe and unsafe drivers in the final model. The number of times each

parameter was selected in the cross-validation is shown for all 36 parameters. Higher numbers represent a greater contribution to the classifier. Five parameters (age

and gray matter volume of four cortical regions, including the left superior part of the precentral sulcus, the left sulcus intermedius primus [of Jensen], the right orbital

part of the inferior frontal gyrus, and the right superior frontal sulcus) were consistently selected at every iteration. JS_L, the left sulcus intermedius primus (of

Jensen); SupPrCS_L, the left superior part of the precentral sulcus; InfFGOrp_R, the right orbital part of the inferior frontal gyrus; SupFS_R, the right superior frontal

sulcus; RTI, reaction time; SupOcG_L, the left superior occipital gyrus; RAVLT 1, the first trial of the Rey Auditory Verbal Learning Test immediate recall; EMC,

Everyday Memory Checklist; SupTGLp_L, the left lateral aspect of the superior temporal gyrus; PosVCgG_R, the right posterior-ventral part of the cingulate gyrus;

MFG_R, the right middle frontal gyrus; PAL TE, paired associates learning total error; ROCFT delay, Delayed recall of the Rey–Osterrieth Complex Figure Test;

InfFGTrip_L, the left triangular part of the inferior frontal gyrus; InfOcG/S_R, the right inferior occipital gyrus and sulcus; ATrCoS_L, the left anterior transverse

collateral sulcus; MOT, motor screening task; RAVLT delay, Delayed recall in the Rey Auditory Verbal Learning Test; IntPS/TrPS_R, the right intraparietal sulcus

(interparietal sulcus) and transverse parietal sulci; ST III, Time taken to finish the Stroop Test part III; RCPM, Raven’s Colored Progressive Matrices; ATrCoS_R, the

right anterior transverse collateral sulcus; MaxVA, Maximal functional visual acuity; TPl_L, the left temporal plane of the superior temporal gyrus; InfFGTrip_R, the right

triangular part of the inferior frontal gyrus; LoInG/CInS_R, the right long insular gyrus and central insular sulcus; SupOcS/TrOcS_L, the left superior occipital sulcus

and transverse occipital sulcus; SbPS_R, the right subparietal sulcus; PosDCgG_L, the left posterior-dorsal part of the cingulate gyrus; MFG_L, the left middle frontal

gyrus; InfTS_L, the left inferior temporal sulcus; SbCG/S_R, the right subcentral gyrus (central operculum) and sulci.

FIGURE 3 | The four cortical regions identified as consistent classification inputs were located within the cortical regions involved in cognitive functions essential for

driving, such as voluntary orienting of attention, decision making, and working memory. SupPrCS_L, the left superior part of the precentral sulcus; JS_L, the left

sulcus intermedius primus (of Jensen); InfFGOrp_R, the right orbital part of the inferior frontal gyrus; SupFS_R, the right superior frontal sulcus.

effect of age on driving ability in healthy older people was not
evident. The present results therefore expand on prior findings to
the extent that even in cognitively normal older people, there is a
strong relationship between unsafe driving and aging.

The current data revealed that regional gray matter volume
changes are highly predictive of driving ability in healthy older
people. This finding suggests that gray matter volume accurately

reflects changes in cortical structure related to decreased
driving ability among healthy older people. One previous study
examining the association of cortical changes with driving ability
among older people reported that gray matter volume was
correlated with driving ability, supporting the current results
(Sakai et al., 2012). In the present study, four cortical regions
(the left superior part of the precentral sulcus, the left sulcus
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intermedius primus [of Jensen], the right orbital part of the
inferior frontal gyrus, and the right superior frontal sulcus) were
identified as consistent classification inputs to dissociate unsafe
drivers from safe drivers using the linear SVM.

The superior part of the precentral sulcus is located in the
dorsal premotor cortex (PMC) including the frontal eye field
(FEF). The FEF plays a decisive role in saccade programming
and shows enhanced responses to a visual stimulus when it
is the saccade target (Ptak and Schnider, 2010). The sulcus
intermedius primus (of Jensen) is located in the inferior parietal
lobule (IPL), including the supramarginal and angular gyri, which
is involved in visual attention or motion perception (Zhang
and Li, 2014). Importantly, the dorsal attention network (DAN)
linking the FEF with the IPL is involved in voluntary orienting
of visuospatial attention (Ptak, 2012; Tamber-Rosenau et al.,
2018). Furthermore, the DAN improves target detection and
behavioral performance by activating the visual cortex prior to
the appearance of the target, particularly during anticipatory
attention, in which advanced information is utilized to orient
visuospatial attention to the location of an impending target,
such as a road sign (Bressler et al., 2008). The DAN thus
plays a key role in a goal-directed control of perceptual
processing (i.e., top-down attention) (Meehan et al., 2017).
In contrast, the ventral attention network (VAN) is engaged
in the detection of salient and unexpected events (Corbetta
and Shulman, 2002). The VAN redirects attention from the
present focus to the novel stimulus of interest when very
important or noticeable events are detected outside of the
present focus of attention, such as a sudden pedestrian
crossing, and the VAN is thus considered to be involved in
bottom-up attention (Long and Kuhl, 2018). Regarding older
drivers, top-down attention has been shown to compensate
for reduced road hazard detection due to age-related bottom-
up attentional decline, and diminished top-down attention has
been shown to lead to vehicle accidents caused by older drivers
(Feng et al., 2018).

The right orbital part of the inferior frontal gyrus plays a
crucial role in decision making (Besnard et al., 2017; Vaidya
and Fellows, 2020). A previous longitudinal neuroimaging study
reported that less thinning of the orbitofrontal cortex during
adolescence is associated with risky driving behavior in young
people (Vijayakumar et al., 2019). Given that a previous driving
simulator study reported that the number of violations and
accidents was positively correlated with the tendency to make
risky decisions in dilemma situations (Ba et al., 2016), structural
alterations of this cortical region may have strong effects on
unsafe driving behaviors.

The superior frontal sulcus has been repeatedly shown
to contribute to working memory in functional MRI studies
using the N-back task (Carlson et al., 1998; Heinzel et al.,
2016). In our previous study examining the associations
between neuropsychological tests and driving ability in healthy
older people, lower working memory function was associated
with greater risk of unsafe driving (Yamamoto et al., 2020).
Furthermore, working memory has been reported to be
associated with a driver’s ability to retain traffic information
for several seconds (Da-Wei et al., 2017) and predict traffic

conditions (Jipp and Ackerman, 2016). Considering that our
final model identified the cortical regions involved in cognitive
functions essential for driving, such as voluntary orienting of
attention, decision making, and working memory, as important
inputs, the current study provides new insights into the neural
basis of driving behavior.

Limitation and Future Works
The results of the current study should be interpreted with
caution because of several limitations. First, the number of
participants per group was relatively small. In general, small
numbers of participants can induce over-fitting. To mitigate this
problem, we created a sparse model using the LASSO algorithm.
However, it would be optimal to train our classification model
with an independent cohort to generalize the model. Future
studies with larger samples at multiple sites may be useful
for addressing this issue. Second, although we measured on-
road driving ability using a data recorder and CCD cameras,
we only evaluated one aspect of driving ability. Because we
decided not to use other data, including data regarding the
pedal position, gaze and footwork, to simplify the classification
criteria, it may be valuable to establish a new objective method
with which to measure various types of driving ability. For
instance, examining driving behaviors when turning right
at an intersection or making a lane change could provide
useful results. Third, we used a cut-off value of 5 km/h
to divide participants into unsafe and safe drivers based on
the past findings (Nesamani and Subramanian, 2006; Seers
et al., 2015). However, even though using such criteria for
the classification, we are not able to completely eliminate
the possibility of arbitrariness. Therefore, future studies with
large samples are needed to confirm the validity of our
classification of safe and unsafe drivers. Finally, previous studies
reported that motor dysfunction (Anstey et al., 2017) and
hearing impairment (Edwards et al., 2016) are associated with
unsafe driving. However, motor and hearing functions were
not systematically evaluated in the current study, although the
participants were apparently free from these problems. Future
studies should be conducted to evaluate motor and hearing
functions in more detail.

CONCLUSION

Overall, we built a reliable classification model for identifying
the on-road driving ability of healthy older individuals with
an accuracy of 87.5%. Five parameters (age and gray matter
volume in four cortical regions, including the left superior part
of the precentral sulcus, the left sulcus intermedius primus [of
Jensen], the right orbital part of the inferior frontal gyrus, and
the right superior frontal sulcus), were consistently selected
as features for the final classification model. Importantly, the
current findings revealed the neural bases of unsafe driving
in healthy older people, suggesting that age and gray matter
volume data can provide useful information for identifying
unsafe drivers, potentially leading to the development of new
interventions to prevent fatal traffic accidents.
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