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Summary

� Although genome-wide association studies (GWAS) have provided valuable insights into

the decoding of the relationships between sequence variation and complex phenotypes, they

have explained little heritability. Regional heritability mapping (RHM) provides heritability

estimates for genomic segments containing both common and rare allelic effects that individ-

ually contribute too little variance to be detected by GWAS.
� We carried out GWAS and RHM for seven growth, wood and disease resistance traits in a

breeding population of 768 Eucalyptus hybrid trees using EuCHIP60K. Total genomic heri-

tabilities accounted for large proportions (64–89%) of pedigree-based trait heritabilities, pro-

viding additional evidence that complex traits in eucalypts are controlled by many sequence

variants across the frequency spectrum, each with small contributions to the phenotypic vari-

ance.
� RHM detected 26 quantitative trait loci (QTLs) encompassing 2191 single nucleotide poly-

morphisms (SNPs), whereas GWAS detected 13 single SNP–trait associations. RHM and

GWAS QTLs individually explained 5–15% and 4–6% of the genomic heritability, respec-

tively. RHM was superior to GWAS in capturing larger proportions of genomic heritability.

Equated to previously mapped QTLs, our results highlighted genomic regions for further

examination towards gene discovery.
� RHM-QTLs bearing a combination of common and rare variants could be useful enhance-

ments to incorporate prior knowledge of the underlying genetic architecture in genomic pre-

diction models.

Introduction

The deciphering of the complex relationships between sequence
variation and complex phenotypes has been a key driver of mod-
ern genetics and genomics with important consequences for fun-
damental biology and applied breeding practice. Efforts in this
direction have been undertaken in forest tree genomics to under-
stand the adaptive diversity of trees and to provide tools to accel-
erate the long time necessary to complete a breeding cycle. For
species of Eucalyptus, notwithstanding their fast growth, breeding
cycles generally take 12–16 yr to deliver elite genotypes (Rezende
et al., 2014). Although growth traits are measured in all trees of a
progeny trial, the assessment of wood properties is typically car-
ried out in a considerably smaller number of trees in the late
stages of the breeding cycle, such that the full range of genetic
variation in wood properties is not exploited (Grattapaglia, 2014).

The development of DNA markers fueled great expectations
of the acceleration of selection for complex traits in forest trees in
general and Eucalyptus in particular. Several quantitative trait
locus (QTL) mapping studies were carried out in bi-parental
populations and some attempts to use this information for breed-
ing were made (reviewed in Grattapaglia et al., 2012). When
meant for use in selection, QTL mapping data suffer from sub-
stantial drawbacks that have been discussed extensively
(Bernardo, 2008; Grattapaglia & Resende, 2011). Only a small
proportion of QTLs underlying the target trait are detected given
the low mapping power, and the variance explained by the QTLs
is largely overestimated (Beavis, 1998). Association genetics, pro-
posed as a solution to the quandaries of QTL mapping, was
expected to result in major advances in the dissection of multifac-
torial traits (Neale & Savolainen, 2004), warranting a number of
association studies based on candidate genes (Neale & Kremer,
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2011). In the eucalypts, a few associations between polymor-
phisms in candidate genes and wood traits have been reported
(Thumma et al., 2005, 2009; Dillon et al., 2012; Mandrou et al.,
2012; Denis et al., 2013; Thavamanikumar et al., 2014). Candi-
date gene studies, however, suffer from severe bias introduced by
the a priori choice of genes and do not account for more than a
few percent of trait variation, with estimates inflated because of
the ‘winner’s curse’ effect (Goddard et al., 2009). The first
genome-wide association studies (GWAS) in forest trees have
been reported for wood (Porth et al., 2013), biomass, ecophysio-
logical and phenological traits in poplar (McKown et al., 2014).
Despite the higher genotyping density in these studies (c. 29 000
single nucleotide polymorphisms, SNPs), only c. 3500 of the
45 557 (7.7%) annotated genes were targeted, and GWAS results
captured very modest proportions of the phenotypic variance.
The only GWAS in Eucalyptus to date, carried out with relatively
low power, reported 16 marker–trait associations for growth and
two for lignin traits (Cappa et al., 2013). Despite the efforts to
discover polymorphisms associated with economically relevant
traits, much of the genetic contribution to complex traits in forest
trees remains unexplained.

The recent development of a high-density 60 000 SNP chip
for Eucalyptus has opened up opportunities for GWAS and
genomic prediction experiments (Silva-Junior et al., 2015). The
multispecies SNP discovery strategy adopted for chip design has
been shown to sample variants across most of the site frequency
spectrum, mitigating ascertainment bias. Nevertheless, because of
the limited linkage disequilibrium (LD) between rare segregating
alleles and genotyped SNPs on the chip, GWAS have been shown
to lack detection power for rare genetic variants (Bodmer &
Tomlinson, 2010; Robinson et al., 2014). Instead of evaluating
each variant individually, tests that assess the cumulative effects
of multiple genetic variants in a gene or a genomic region
increase power when multiple variants in the group are associated
with a given trait, therefore increasing the likelihood of capturing
the complete effect of a QTL (Lee et al., 2014).

A relatively novel method, called regional genomic relationship
mapping or regional heritability mapping (RHM), has been pro-
posed, showing superiority when compared with other methods
in uncovering variance not accounted for by GWAS (Nagamine
et al., 2012). RHM uses a genomic relationship matrix (GRM)
between individuals based on common and rare SNP variants
found in short segments of the genome to estimate the trait vari-
ance explained by such regions. This method has been shown to
have greater power for the detection of true QTLs, with consider-
ably lower rates of false positives and larger fractions of explained
variance when compared with a number of other local test meth-
ods, either SNP-by-SNP or segment testing (Usai et al., 2014).
The power advantage of RHM has also been shown when com-
pared with gene-based association methods, such as sequence ker-
nel association test (SKAT) (Wu et al., 2011) and canonical
correlation analysis (Tang & Ferreira, 2012), under a range of
scenarios for QTLs controlled by both common and rare alleles
(Riggio et al., 2013; Uemoto et al., 2013). The use of RHM,
assessed by simulation on full sequence data, detected a larger
number of QTLs than did GWAS, although QTLs individually

explained a slightly smaller amount of genetic variance (Caballero
et al., 2015).

Although the RHM method has received increasing attention
in humans (Shirali et al., 2016) and domestic animals (Riggio
et al., 2013; Usai et al., 2014; Matika et al., 2016), to the best
of our knowledge it has not yet been applied to the study of
complex traits in plant species. In this work, we were interested
in evaluating the performance of RHM and GWAS in an opera-
tional breeding population that has undergone selection to pin-
point regions that would capture larger fractions of the additive
genetic variance. We mapped regional QTLs and carried out
GWAS for seven productivity and disease resistance traits in a
breeding population of Eucalyptus. Genomic heritabilities
accounted for large fractions of narrow-sense heritabilities and
RHM captured considerably more of the genomic heritability
than GWAS. In addition, RHM and GWAS results were com-
pared with previous bi-parental QTL mapping data, revealing
genomic regions that could merit further examination towards
gene discovery.

Materials and Methods

Population and phenotypes

The study was carried out in a Eucalyptus grandis9 Eucalyptus
urophylla hybrid breeding population belonging to Celulose
Nipo-Brasileira (CENIBRA S.A.). The population involved 768
trees distributed in 37 outbred F2 full-sib families derived from
mating 10 unrelated elite interspecific F1 hybrids. Trees were
deployed in a field trial in a randomized incomplete block design
with single-tree plots and 24–36 reps per family. Height growth
(HEI) by means of a Suunto PM-5 clinometer and diameter at
breast height (DBH) were measured at 3 yr. Puccinia psidii rust
(PPR) disease resistance was assessed by artificial inoculation in a
glasshouse on five vegetatively propagated ramets of each one of
559 trees, as described previously (Junghans et al., 2003). Four
wood properties that impact pulp yield (Gomes et al., 2015) were
measured: basic wood density (BWD) by the water displacement
method using a 3–5-cm-thick wood disk sampled at breast
height; effective alkali demand (EA) for bleached pulp; screened
pulp yield (SPY) by batch kraft digestion of 150 g of wood chips
at 15–18% effective alkali; and pulp bleaching content, also
called kappa number (KN).

SNP genotyping and quality control

SNP genotypes were obtained using the Illumina Infinium
(Gunderson et al., 2005) EuCHIP60K (Silva-Junior et al., 2015),
which includes 47 069 SNPs located inside or at < 10 kb distance
of 30 444 of the 36 376 (84%) annotated gene models. SNP
genotypes were called from intensity files obtained through
GENESEEK (Lincoln, NE, USA) using GENOMESTUDIO 2011.1
(Illumina Inc., San Diego, CA, USA) following standard geno-
typing and quality control procedures with no manual editing of
clusters (Silva-Junior et al., 2015). The average SNP call fre-
quency across samples was > 90% and the sample call rate across
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SNPs was > 95%. SNP data were then filtered by keeping SNPs
with minimum allele frequency (MAF) > 0.01.

Linkage disequilibrium and structure analysis

Pairwise estimates of LD, measured by the squared correlation of
allele frequencies r2, were obtained using all 24 806 filtered SNPs
with MAF > 0.01 to inform the appropriate window length for
RHM. LD was estimated using LDcorSV (Mangin et al., 2012),
correcting for population structure (r2S ). Population structure
analysis was performed with STRUCTURE v.2.3.1 (Pritchard et al.,
2000) and the most probable value of K (K = 2) defined by DK
(Evanno et al., 2005). Decay curves were fitted using a standard
exponential function.

Genome-wide association study

The following model was used for the GWAS:

y ¼ Xbþ Fsþ Sbþ Zg þmi þ e Eqn 1

where the vector y represents the phenotypic values, b is the
vector of fixed effects (i.e. overall mean and environmental
effects), s is the vector of the fixed effect of population struc-
ture, b is the vector of the random effect of blocks within sites,
g is the vector of the random genomic polygenic additive
genetic effect, mi is a scalar referring to the fixed effect of the ith

marker, e is the vector of residual effects, X and F are the inci-
dence matrices of fixed effects, and S and Z are the incidence
matrices of random effects. Analyses were run nm times, where
nm is the total number of SNP markers. The random polygenic
additive genetic effect (in g) was fitted to provide an estimate of
the overall additive effect whilst accounting for both family and
population structure. The optimal threshold for declaring a sig-
nificant association was estimated for each trait using a permu-
tation test. A Bonferroni correction for multiple tests
(Hochberg, 1988) with a global a ¼ 0:05 was then applied to
the threshold following the method originally used for RHM
(Nagamine et al., 2012). In the traditional GWAS context with
the analysis of one marker of fixed effect at a time, the marker
coefficient of determination (analogous to a heritability) is esti-
mated by Eqn 2:

h2mi
¼

2pið1� piÞm
2
i

r2y
; Eqn 2

where pi is the allele frequency of the i
th SNP marker, mi is the

marker effect from Eqn 1 and r2y is the phenotypic variance.

Regional heritability mapping

QTL mapping using the RHM method was performed as
described previously (Nagamine et al., 2012; Riggio et al., 2013).
The mixed model was fitted using the R package REGRESS (Clif-
ford & McCullagh, 2006) as shown in Eqn 3:

y ¼ Xbþ Fsþ Sbþ Z1g þ Z2rþ e; Eqn 3

where r is the vector of random regional genomic additive effects,
Z1 and Z2 are the incidence matrices of random effects, and the
other terms are as described for Eqn 1.

The distributions and variance structures of the elements of
both models 1 and 3 are described as follows:

yjb;V�N Xb;Vð Þ;

bjr2
b �Nð0; Ir2

bÞ;

gjr2
g �Nð0;Gr2

gÞ;

rjr2
r �Nð0;Gregr

2
r Þ;

ejr2
e �Nð0; Ir2

eÞ;

Whole-genome and regional heritabilities are h2g ¼ r2
g=r

2
y (in

a model fitted without r) and h2r ¼ r2
r =r

2
y , respectively, and, in

the full model 3, the phenotypic variance is given by
r2
y ¼ r2

g þ r2
r þ r2

b þ r2
e . Variance components were estimated

using restricted maximum likelihood (REML) (Patterson &
Thompson, 1971). The G matrix is the full genomic relation-
ships matrix associated with the random effect accounting for
relatedness and family structure, and is represented by Eqn 4 as
follows:

G ¼
WWT

Pmi

1 2pi 1� pi
� � ; Eqn 4

where W is the SNP marker incidence matrix assuming
W � �1; 0; 1f g and pi is the allele frequency of the ith SNP
marker present in the W matrix. The Greg matrix follows Eqn 3,
but using a subset from W. To circumvent numerical linear alge-
bra problems, the diagonal of the Greg matrix is constrained to
have an average value of unity. The subsets were determined by
genomic ‘regions’ of 2Mb in length overlapping by 1Mb (e.g.
the first three regions were therefore 0–2, 1–3 and 2–4Mb), cali-
brated to the extent of usable LD estimated for this population
(r2 ≤ 0.2; see the Results section). According to the density of
polymorphic SNPs across the genome, a minimum of nine and a
maximum of 158 SNPs were present in a genomic region span-
ning 2Mb. The mean, median and mode of the number of SNPs
within a region were 81, 82 and 62, respectively. To test for the
presence of regional variance ðr2

r Þ against the null hypothesis of
no regional variance, the maximum likelihood ratio test (LRT)
was adopted as follows:

LRT ¼ �2loge
L0

L1

� �

; Eqn 5

where L0 and L1 represent the likelihood values for the hypothe-
sis of the absence (H0) or presence (Ha) of regional variance,
respectively (i.e. complete model of Eqn 3 vs the reduced model
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without the term r). To explore the statistical test distribution of
the null hypothesis and to find the optimal threshold for each
trait, the same permutation test with Bonferroni correction for
multiple tests with a global a = 0.05 used for GWAS was also
used for RHM. The genomic segments displaying significant r2

r

were declared as regional QTLs. The same whole-genome rela-
tionship G matrix was used to analyze all genomic regions, and
the SNPs in the particular region under analysis were not
removed. Thus, any consequential correlation generated between
whole-genome and regional relationships would be very small
and would nevertheless reduce the likelihood of detecting a
regional effect (Nagamine et al., 2012). Under such conditions,
the likelihood of a detected regional effect was therefore very
high.

Definition of threshold heritabilities

We estimated the threshold heritability values for declaring
significant GWAS or regional mapping QTLs. These express the
significance levels taking into account multiple tests applied
simultaneously. This relationship can be derived theoretically
from the biometrical expressions for sample sizes for a model
with SNPs treated as fixed effects (Nf) and for a model with SNPs
treated as random effects (Nr) required for the detection of signif-
icance at a specific a level for a stated power b, given by:

Nf �
Zð1�a=2Þ þ Zð1�bÞ

� �2

h2GWAS

Eqn 6

for associations treated as fixed effects in GWAS, and

Nr �
Zð1�a=2Þ þ Zð1�bÞ

� �2
ð1� h2Þ

h2REG
Eqn 7

for regions treated as random effects in RHM. The Z values are
ordinates of the normal curve. The derivations of these expres-
sions are given in Supporting Information Methods S1. From
these equations and for the sample size for each trait analyzed, we
estimated the heritability thresholds for significance for the
GWAS and regional heritability QTLs using the expressions:

h2GWAS �
Zð1�a=2Þ þ Zð1�bÞ

� �2

Nf
Eqn 8

h2REG �
Zð1�a=2Þ þ Zð1�bÞ

� �2
ð1� h2Þ

Nr
Eqn 9

for a = 10�5 and a power of detection b = 0.90.

Results

SNP data and LD

Of the 49 042 genotyped SNPs at a call rate > 95%, 24 806 were
polymorphic at MAF > 0.01 and were kept for GWAS and

RHM analyses (Table 1). As expected, the r2 estimates at 1Mb
were slightly larger than those at 2Mb, although the genome-
wide averages were similar. Considerable differences were seen in
the average LD across chromosomes (Table 1), as shown by the
LD decay plot (Fig. 1), consistent with the variable recombina-
tion rates reported previously in Eucalyptus (Silva-Junior & Grat-
tapaglia, 2015). For example, chromosome 6 showed a much
slower rate of LD decay when compared with chromosome 3,
suggesting considerable differences in their rate of recombination.
Using r2 < 0.2 as a canonical threshold for usable LD, the LD
decays in this population at < 1Mb, consistent with its small
effective population size (Ne = 10) and hybrid origin.

GWAS

Summary statistics and genetic correlations among the seven
traits provide a general overview of the range of variation

Table 1 Summary statistics of the numbers of single nucleotide
polymorphisms (SNPs) genotyped and effectively used in the analyses and
the individual chromosome estimates of linkage disequilibrium r2 in the
Eucalyptus grandis9 Eucalyptus urophylla hybrid breeding population

Chr.
Chr. size
(Mb)

Total
SNPs

SNPs
MAF > 0.01

r2

average
r2

(1Mb)
r2

(2Mb)

1 40.275 3.595 1.874 0.072 0.158 0.145
2 64.221 5.388 2.748 0.055 0.142 0.133
3 79.945 4.860 2.460 0.054 0.134 0.128
4 41.928 3.469 1.769 0.075 0.173 0.159
5 74.729 4.555 2.217 0.053 0.116 0.111
6 53.886 5.425 2.625 0.068 0.212 0.19
7 52.405 3.977 1.945 0.065 0.174 0.159
8 74.308 5.937 3.113 0.050 0.135 0.127
9 39.001 3.557 1.860 0.078 0.179 0.162

10 39.352 3.939 1.977 0.081 0.196 0.177
11 45.396 4.340 2.218 0.064 0.175 0.158

605.446 49.042 24.806 0.062 0.164 0.153
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Fig. 1 Decay of linkage disequilibrium (LD) estimated by r2 (y-axis) along
physical distance in Mb (x-axis) with correction for family and population
structure for each of the 11 Eucalyptus chromosomes.
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observed in the population (Tables S1, S2). All traits displayed a
considerable amount of phenotypic variation and heritabilities
were moderate to high (0.36–0.57), with the highest values
observed for BWD and DBH. A total of 173 642 association tests
was performed (24 806 SNPs vs seven traits). Following multiple
testing correction, 13 SNPs with genome-wide significant associ-
ations were found. Between one and four associated SNPs were
found for each trait, some positioned very close on the same
chromosome (e.g. for KN) (Table 2). Fractions of genomic heri-
tability explained by single associations were small, capturing
between 3.7% for EA and 6.6% for HEI of the additive genetic
variation. The most significant association based on the differ-
ence between the �log10 scaled P-value (5.56) and the trait-
specific threshold (4.13) was found for PPR on chromosome 3,
followed by the association for BWD (5.22 to 4.04) on chromo-
some 2. All SNP variants associated were common with 2p
(1 – p) > 0.4, with the exception of an SNP for DBH on
chromosome 7.

Regional heritability mapping

A total of 603 genomic windows was subjected to RHM, each
covering a variable number of polymorphic SNPs, providing an
average genome-wide scanning density of one SNP every 24.3 kb.
Twenty-six QTLs were mapped by RHM, each encompassing
between 41 and 150 SNPs across six chromosomes (Table 3).
Regional QTLs for DBH, HEI, SPY, KN and PPR were located
on single chromosomes, whereas QTLs for BWD and EA were
mapped on several different chromosomes. Nearby QTLs on
chromosome 2 were detected for HEI, SPY and KN. Although
SPY and KN are correlated traits (Table S2), the overlapping
result for HEI was unexpected. Overlapping QTLs for PPR and
EA on chromosome 3 were observed, consistent with putatively
shared genetic control of secondary metabolites of the lignin
pathway involved in disease resistance and pulp yield (see the

Discussion section). Heritabilities captured by individual regional
QTLs were, on average, higher (0.062) than the estimates for the
GWAS QTLs (0.047), and a number of regional QTLs explained
considerably larger proportions of the additive variation (e.g. on
chromosome 5 for BWD, h2REG = 0.154, and for DBH,
h2REG = 0.106) (Table 3). A heat map of the genome-wide distri-
bution of RHM QTLs, with corresponding heritabilities
explained, summarizes the results (Fig. 2). In addition to the
regional QTLs that surpassed the significance threshold, indi-
cated with arrows, the heat map also displays suggestive addi-
tional associations across the genome, such as those on
chromosomes 2 and 7 for DBH, for example.

Comparative analysis of GWAS and RHM results

Total genomic heritability (h2SNP) captured between 64 and 89%
of the heritability estimated from pedigree data (h2PED ) (Table 4).
Larger fractions of trait heritabilities were captured by the SNP
data for wood properties when compared with growth traits.
When comparing the aggregate fractions of the genomic heri-
tability explained by the two mapping methods, clearly, RHM
was superior to GWAS for all traits, capturing, in general, twice
or three times the amount of genomic heritability, as in the case
of BWD (69% vs 33%), HEI (78% vs 26%), EA (51% vs 14%)
and PPR (63% vs 19%) (Table 4). Of the 13 associations
detected by GWAS, nine were also detected by RHM overlap-
ping in the same intervals. A visual summary of the comparative
results and genomic positions of the QTLs found by GWAS and
RHM is provided in a Manhattan plot (Fig. 3). Overall, the two
approaches tend to pinpoint the same genomic regions, although
the RHM approach more frequently reaches the threshold. Inter-
estingly, the Manhattan plot also shows a contrast of the global
profile of P-values between the growth traits (DBH, HEI and
BWD) when compared with the wood chemical traits and PPR.
A much larger number of SNPs or regions show a signal for

Table 2 Detected single nucleotide polymorphism (SNP)–trait associations by genome-wide association (GWAS) for the seven traits in the Eucalyptus
grandis9 Eucalyptus urophylla hybrid breeding population

Trait SNP
Significance
threshold1 Chr. Position (Mb) h2GWAS �log10 2p(1 – p)2

DBH EuBR05s21063566 4.05 5 21.06 0.044 4.11 0.47
DBH EuBR07s52103787 4.05 7 52.10 0.050 4.39 0.18
HEI EuBR02s21671254 4.83 2 21.67 0.066 5.29 0.42
BWD EuBR01s30635188 4.04 1 30.64 0.052 4.21 0.42
BWD EuBR01s30899860 4.04 1 30.90 0.050 4.09 0.41
BWD EuBR02s14161950 4.04 2 14.16 0.060 5.22 0.44
BWD EuBR08s64106447 4.04 8 64.11 0.057 4.78 0.48
EA EuBR03s65446288 5.02 3 65.45 0.037 5.09 0.41
SPY EuBR02s42876352 4.61 2 42.88 0.043 5.56 0.42
KN EuBR02s42875938 4.10 2 42.88 0.038 4.18 0.42
KN EuBR02s42888917 4.10 2 42.89 0.038 4.19 0.42
KN EuBR02s42997872 4.10 2 43.00 0.038 4.20 0.42
PPR EuBR03s56400715 4.13 3 56.40 0.041 5.56 0.07

Also listed is the heritability explained by each association (h2GWAS), the P-value expressed as �log10 and the expected heterozygosity of the associated SNP
(2p(1 – p)). 1Permutation threshold is the �log10 scaled P value. 2p is the minor allele frequency of the associated SNP. DBH, diameter at breast height; HEI,
height growth; BWD, basic wood density; EA, effective alkali; SPY, screened pulp yield; KN, pulp bleaching kappa number; PPR, Puccinia psidii rust disease
resistance.
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growth traits, despite not reaching significance, suggesting a more
complex genetic architecture, as opposed to a less complex one
for the wood chemical and disease resistance traits studied.

Threshold heritabilities for GWAS and RHM

As expected from theory, threshold values for GWAS were con-
siderably higher than those for RHM (Table S3). The lowest her-
itability estimates obtained for the GWAS hits and for the
regional QTLs, respectively, were at least the same (for EA in
GWAS) or higher than the theoretically expected thresholds at a
power of 90%. Therefore, all the declared associations and QTLs
were associated at a power level of at least 90%, strengthening the
reliability of the GWAS and RHM results. This analysis also
shows that the RHM approach requires smaller expected thresh-
old values to reach the same power of the GWAS approach. This
is most likely a result of the fact that SNPs are treated as random
effects in RHM modeling, whereas they are fitted as fixed effects
in GWAS.

Discussion

This study represents a further step towards the identification of
the genomic regions underlying complex growth, wood

properties and Puccinia rust resistance traits in Eucalyptus.
Although both GWAS and RHM successfully identified associa-
tions, RHM confirmed its expected superior performance when
compared with GWAS. By combining the power of linkage map-
ping with the ability of association analysis to capture variance
across the whole population, RHM accounted for larger fractions
of the additive genetic variance, probably as a result of the many
segregating alleles at the tagged locus and the combined effect of
several closely linked loci in the mapped region. To the best of
our knowledge, this is the first study to apply RHM in plants.

Association studies in forest trees have mostly targeted candi-
date genes and, only recently, the first genome-wide analyses have
been reported in Populus (Porth et al., 2013; Evans et al., 2014;
McKown et al., 2014) and Eucalyptus (Cappa et al., 2013). These
experiments were carried out using collections of trees derived
from natural populations with no selection. The objective of
these studies was to maximize the probability of detecting associa-
tions at the level of genes that would potentially support tree
breeding efforts based on tracking their desirable allelic variants.
However, despite the well-intentioned rhetoric, it remains to be
seen how such SNP–trait associations found in GWAS in undo-
mesticated natural populations, far removed from selected breed-
ing material, will be translated into useful information to
breeding. In our study, we had a different perspective. We were

Table 3 Results of quantitative trait loci (QTL) detection via regional heritability mapping (RHM) using 2-Mb genomic segments with 1-Mb sliding window
for the seven traits in the Eucalyptus grandis9 Eucalyptus urophylla hybrid breeding population

Trait Chr.
Number of SNPs
in the region

Region start
position (Mb)

SNP at starting
position

Region end
position (Mb)

SNP at ending
position h2RHM �log10 Threshold1

DBH 5 45 19.53 EuBR05s19534354 21.28 EuBR05s21282371 0.08 3.45 3.13
DBH 5 53 34.50 EuBR05s34502605 36.43 EuBR05s36434115 0.106 4.03 3.13
HEI 2 105 23.50 EuBR02s23504270 25.50 EuBR02s25496072 0.039 3.24 3.1
HEI 2 101 31.54 EuBR02s31535213 33.46 EuBR02s33462558 0.046 3.90 3.1
HEI 2 65 36.51 EuBR02s36508813 38.43 EuBR02s38425707 0.042 3.62 3.1
HEI 2 43 37.55 EuBR02s37551409 39.49 EuBR02s39485452 0.042 3.54 3.1
HEI 2 121 46.58 EuBR02s46578051 48.49 EuBR02s43498180 0.044 3.18 3.1
BWD 1 121 30.51 EuBR01s30510351 32.47 EuBR01s32472039 0.099 2.86 2.55
BWD 5 150 2.50 EuBR05s19534354 4.49 EuBR05s4493894 0.154 3.95 2.55
BWD 5 130 3.54 EuBR05s3537597 5.50 EuBR05s5496276 0.124 3.63 2.55
BWD 7 114 49.52 EuBR07s49523369 51.49 EuBR07s51489213 0.087 2.71 2.55
EA 1 51 4.88 EuBR01s4878866 6.49 EuBR01s6490451 0.041 2.88 2.65
EA 3 65 64.10 EuBR03s64100540 65.45 EuBR03s65446465 0.052 2.66 2.65
EA 3 64 64.52 EuBR03s64517190 66.38 EuBR03s65446465 0.052 2.68 2.65
EA 8 41 22.66 EuBR08s22660709 24.41 EuBR08s24409285 0.072 3.44 2.65
SPY 2 58 20.52 EuBR02s20516940 22.50 EuBR02s22497719 0.045 2.91 2.99
SPY 2 101 31.54 EuBR02s31535213 33.46 EuBR02s33462558 0.041 3.00 2.99
SPY 2 65 36.51 EuBR02s36508813 38.43 EuBR02s38425707 0.041 3.13 2.99
SPY 2 104 41.56 EuBR02s41557558 43.50 EuBR02s43498180 0.039 3.42 2.99
SPY 2 136 42.51 EuBR02s42511757 44.49 EuBR02s44494452 0.055 4.03 2.99
KN 2 104 41.56 EuBR02s41557558 43.50 EuBR02s43498180 0.04 3.22 2.94
KN 2 136 42.51 EuBR02s42511757 44.49 EuBR02s44494452 0.059 4.03 2.94
PPR 3 52 54.52 EuBR03s54520115 56.46 EuBR03s56463896 0.050 3.48 2.71
PPR 3 44 56.32 EuBR03s56321245 57.50 EuBR03s57499880 0.058 4.03 2.71
PPR 3 65 58.51 EuBR03s58507251 60.49 EuBR03s60492240 0.045 2.89 2.71
PPR 3 57 59.69 EuBR03s59692264 61.44 EuBR03s61444996 0.049 3.10 2.71

Also listed is the heritability explained by each regional QTL (h2RHM) and the P-value of the detected QTL expressed as �log10.
1Threshold used to declare

significance calculated by permutation (also in the �log10 scaled P-value). SNP, single nucleotide polymorphism; DBH, diameter at breast height; HEI,
height growth; BWD, basic wood density; EA, effective alkali; SPY, screened pulp yield; KN, pulp bleaching kappa number; PPR, Puccinia psidii rust disease
resistance.
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interested in evaluating the performance of alternative genome-
wide mapping approaches in an operational breeding population
that had undergone selection to pinpoint regions that would cap-
ture larger fractions of the additive genetic variance. Although less
genetic variation is available in a closed elite breeding population,

associations found in such selected material should be consider-
ably more useful to inform practical breeding decisions, includ-
ing whole-genome prediction, a concept successfully explored in
a recent rice GWAS (Begum et al., 2015). Low-frequency alleles
in natural populations become considerably more common when

1
2
3
4
5
6
7
8
9

10
11

D
B

H

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.02

0.04

0.06

0.08

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

B
W

D

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.03

0.06

0.09

0.12

0.15

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

H
E

I

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.01

0.02

0.03

0.04

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

E
A

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

S
P

Y

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.01

0.02

0.03

0.04

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

K
N

10 20 30 40 50 60

C
h

ro
m

o
s
o

m
e

0.00

0.01

0.02

0.03

0.04

0.05

h
2

REG

1
2
3
4
5
6
7
8
9

10
11

P
P

R

10 20 30 40 50 60

Position (Mb)

C
h

ro
m

o
s
o

m
e

0.00

0.01

0.02

0.03

0.04

0.05

h
2

REG

Fig. 2 Genome-wide distribution of regional
heritability quantitative trait loci (QTLs)
mapped by regional heritability mapping
(RHM) along the 11 Eucalyptus

chromosomes (y-axis), subdivided into 1-Mb
windows, for the seven traits (right). The
heat map bar legend on the right
corresponds to the regional heritability
estimate. The genomic segments indicated
with red arrows were declared as significant
RHMQTLs. DBH, diameter at breast height;
HEI, height growth; BWD, basic wood
density; EA, effective alkali demand; SPY,
screened pulp yield; KN, kappa number pulp
bleaching content; PPR, Puccinia psidii rust
disease severity.
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sampled in closed breeding populations and, once revealed by
genome-wide mapping approaches, can be easily tracked in gen-
erations of breeding. Moreover, as single SNP associations have
been consistently shown to explain small proportions of the heri-
tability, and given the extensive LD in our population, we aimed
not to discover genes, but rather to estimate the proportion of
heritability explained by the different ways in which GWAS and
RHM exploit the SNP data.

Genome coverage and LD

This is the first experimental study to use dense whole-genome
SNP data to investigate phenotype–genotype associations in
species of Eucalyptus. It constitutes the first truly GWAS in the
genus by interrogating the genome at several thousand SNP loci.
These results provide a valuable demonstration of the usefulness
of the EuCHIP60k for future GWAS or RHM efforts in euca-
lypts. Of the 56 932 successfully genotyped SNPs, c. 44%
(24 806) were polymorphic in this particular population, despite
its small effective population size. A larger number of informative
SNPs would be observed in populations closer to the wild
(Silva-Junior et al., 2015), although the multi-species nature of
the chip was deliberately planned to accommodate several
Eucalyptus taxa, such that not all 60 000 SNPs on the chip are
expected to be informative in any single species. The silver lining
of this chip format, however, is that ascertainment bias towards
more common SNPs was minimized (Silva-Junior et al., 2015),
such that SNPs were probably sampled across most of the fre-
quency range, a particularly useful advantage for RHM, which
aims to capture the joint variation contributed by all SNPs with
variable frequency in the mapped interval. Consistent with the
reduced effective population size, a considerably slower LD decay
at c. 1 Mb was seen in this breeding population when compared
with the decay at 4–6 kb reported in natural populations of
E. grandis (Silva-Junior & Grattapaglia, 2015). The regional
mapping window of 2Mb, sliding by 1Mb, was calibrated to the
extent of usable LD, such that the resolution of the RHM was
consistent with the proposed approach. However, the long-range
LD, although appropriate for the detection of associations, was
certainly not ideal to provide the resolution to pinpoint genes, an
objective we evidently precluded at the start of this study.

Accounting for population structure in the breeding
population

As expected from the germplasm origin of the breeding popula-
tion (see the Materials and Methods section), both population
and family structure were present. STRUCTURE analysis
showed the presence of k = 2 populations (Fig. S1) corresponding
to the two species involved, such that the F2 individuals contain
variable proportions of either the E. grandis or E. urophylla
genomes. The inclusion of the GRM in the GWAS and RHM
models was therefore essential to provide unbiased results. The
approach used to estimate genomic heritability did not explicitly
specify the existing family and population structures, following
an earlier approach (Zaitlen et al., 2013). In addition, this model
using the genomic relationship simultaneously accounts for the
fact that many SNPs are in LD. Such a model fits all the SNPs
jointly in a random effect model, so that each SNP effect is fitted
conditioned on the joint effects of all the other SNPs, therefore
accounting for the LD between the SNPs.

Genomic heritabilities capturing trait heritability

Heritabilities estimated for growth traits (Table S1) were in the
same range as reported previously for equivalent Eucalyptus
hybrids (Bouvet & Vigneron, 1995). Estimated genomic heri-
tabilities accounted for relatively large proportions (64–89%) of
trait heritabilities (Table 4). Our results are comparable with
those in white spruce (Picea glauca), in which a 6385 SNP model
captured 64% and 62% of the additive genetic variance for
growth and wood density, respectively (Beaulieu et al., 2014).
Similar results have been reported for interior spruce, in which
heritabilities from genomic best linear unbiased prediction
(GBLUP) were generally 30–60% of the heritability from pedi-
gree (El-Dien et al., 2015). Replacing the average relationship
matrix derived from pedigree with the realized relationship
matrix has been shown to increase the accuracy of breeding values
(Hayes et al., 2009), although this will depend on the number of
effective loci involved. In forest tree breeding, in which half-sib
families are used or full-sib pedigrees may contain errors,
GBLUP estimates of heritability have been considered to be
advantageous as they allow a more accurate ascertainment of the

Table 4 Trait heritability (pedigree data) (h2PED), genomic heritability (single nucleotide polymorphism (SNP) data) (h2SNP) and fraction of genomic heritability
captured by the associations (nGWAS) detected by genome-wide association (GWAS) (h2GWAS) and by the (nRHM) quantitative trait loci (QTLs) mapped by
regional heritability mapping (RHM) (h2RHM) in the Eucalyptus grandis9 Eucalyptus urophylla hybrid breeding population

Trait N nRHM nGWAS h2PED h2SNP h2GWAS h2RHM

DBH 768 2 2 0.53 0.35 (66%)1 0.09 (26%)2 0.19 (54%)3

HEI 768 5 1 0.42 0.27 (64%) 0.07 (26%) 0.21 (78%)
BWD 764 4 4 0.69 0.67 (97%) 0.22 (33%) 0.46 (69%)
EA 761 4 1 0.49 0.36 (73%) 0.05 (14%) 0.22 (61%)
SPY 761 5 1 0.47 0.42 (89%) 0.05 (12%) 0.22 (52%)
KN 761 2 3 0.34 0.22 (65%) 0.11 (50%) 0.10 (45%)
PPR 559 4 1 0.36 0.32 (89%) 0.06 (19%) 0.20 (63%)

1h2SNP/h
2; 2h2GWAS/h

2
SNP;

3h2REG/h
2
SNP (%). DBH, diameter at breast height; HEI, height growth; BWD, basic wood density; EA, effective alkali; SPY, screened

pulp yield; KN, pulp bleaching kappa number; PPR, Puccinia psidii rust disease resistance.
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genealogical relationships among individuals, and consequently
provide more realistic gain estimates, as a result of the adjustment
for the Mendelian sampling term (El-Dien et al., 2015).
Genomic heritability and trait heritability parameters have been
shown to be equal only when all causal variants are typed (de los
Campos et al., 2015). Furthermore, genomic heritability esti-
mates were also shown to be unbiased when close relatives sharing
long chromosome segments are analyzed, such that the patterns
of allele sharing at markers and at QTLs will also be similar.
Given the log range LD in our small effective size breeding popu-
lation and the genome-wide SNP coverage adopted, our esti-
mates of genomic heritability should therefore be largely
unbiased. Genomic heritability is seen as the amount of variation
that would be explained by GWAS when the sample size is so
large that all associated variants would be statistically significant
(Vinkhuyzen et al., 2013). As proposed in human studies (Yang
et al., 2010), our results therefore indicate that the still missing
heritability is most probably a result of rare variants having very
low MAF. The alternative possibility of imperfect LD with the
set of SNPs genotyped is less likely in our high-LD breeding pop-
ulation. Evoking more complex arguments, such as epistasis, for
the still unexplained heritable variation does not seem to be war-
ranted (Robinson et al., 2014), as experimental evidence in model
systems (Mackay, 2014) and a recent study in hybrid Eucalyptus
(Bouvet et al., 2016) converge on the fact that most genetic varia-
tion for quantitative traits is additive.

Associations for growth and wood property traits

The proportion of genomic heritability explained by RHM for
DBH, HEI and BWD was considerably higher than that by
GWAS (Table 4). These results support the expectation that
RHM can detect trait-associated regions for complex traits which
GWAS does not identify as significant, in line with results
described for different traits in humans (Nagamine et al., 2012;
Uemoto et al., 2013; Shirali et al., 2016) and domestic animals
(Riggio et al., 2013; Matika et al., 2016). BWD showed the high-
est trait heritability h2 = 0.69 and the highest proportion of trait
heritability explained by genomic heritability (97%). Both RHM
and GWAS detected four associations, but RHM captured twice
as much heritability than GWAS (Table 4). It was for BWD that
two of the four non-overlapping associations between GWAS
and RHM were observed, specifically the GWAS hits on chromo-
somes 2 and 8. One would expect that not all loci detected by
RHM would have been detected by GWAS, but the opposite
seems counterintuitive, unless they correspond to GWAS false
positives. This apparent discrepancy can be explained by the fact
that the combined effect of a set of SNPs in RHM changes the
likelihood of detection comparatively to detecting the effect of a
single marker in GWAS. Joint fitting of genomic regions and the
GRM in a model and comparison with single marker fitting and
GRM in GWAS can therefore lead to changes in the inference.
In other words, the contribution of many small effect markers
can reach significance in an RHM segment, whereas a large single
marker effect can be non-significant in GWAS. However, the
opposite is also possible when a region with a relatively large

single marker effect detected by GWAS does not reach signifi-
cance by RHM because of additional small SNP effects fitted in
the RHM model that contribute to the variance in opposite
directions, canceling the overall effect of the segment and thus
precluding detection or avoiding a false positive. Such observa-
tions have been reported in comparative studies between GWAS
and RHM for nematode resistance and body weight in sheep
(Riggio et al., 2013), and blood lipid traits in humans (Shirali
et al., 2016), where additional evidence from meta-analyses indi-
cated that RHM avoided false positives identified by GWAS.

BWD has been consistently reported as a high heritability
trait in Eucalyptus (Rezende et al., 2014), suggesting that it
might involve some loci of large effect. High heritability, how-
ever, does not, by itself, imply that there is a relationship
between heritability and the number or effect size of detected
genomic regions, nor that any such regions will explain a large
proportion of the genetic variance (Visscher et al., 2008). This
seems to be the case for BWD. Despite its high trait and
genomic heritabilities, the detection of a small number of QTLs
suggests that BWD is, in fact, polygenic and that the inability to
detect further associations is most probably a result of the exis-
tence of many small effects underlying this trait. The same two
chromosomes, 2 and 5, in which most GWAS and RHM associ-
ations for DBH, HEI and BWD were detected, have been con-
sistently shown to contain QTLs for these same traits in bi-
parental mapping, across different Eucalyptus species, since the
early studies (Grattapaglia et al., 1996; Verhaegen et al., 1997),
up to the more recent ones (Thumma et al., 2010a; Gion et al.,
2011; Freeman et al., 2013). As expected, correlations amongst
wood chemical traits were either positive (EA vs KN) or negative
(EA vs SPY and SPY vs KN) (Table S2). All these traits are
actual downstream industrial level traits which are strongly
impacted by lignin content and, especially, by the relative pro-
portion of syringyl to guayacil lignin (S : G ratio). A higher S : G
ratio reduces the demand for alkali (EA) during wood digestion,
increases SPY and lowers KN necessary for wood deconstruction
without excessive alkali charge (Gomes et al., 2015). Genome-
wide association studies and RHM QTLs for wood chemical
traits were mapped mainly on chromosomes 2 and 3, for which
bi-parental QTL mapping studies have also identified loci for
the same or correlated traits (Thumma et al., 2010b; Gion et al.,
2011; Freeman et al., 2013). Evidently, comparisons of the asso-
ciations reported here with linkage mapped QTLs in previous
studies should be seen as tentative at best, given the large and
coarse intervals to which bi-parental QTLs are mapped, their
generally overestimated effect and the lack of their exact physical
position. As an indirect validation, however, the concentration
of growth QTLs on specific chromosomes, especially for growth
and BWD on chromosomes 2 and 5, provides additional credi-
bility to the associations reported in our work.

Eucalyptus chromosome 3 and fungal resistance loci

All GWAS and RHM associations for PPR were detected on
chromosome 3, essentially in the same position between c. 54
and 61Mb (Tables 2, 3). The first major effect QTL identified
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for Puccinia rust resistance, Ppr1 (Junghans et al., 2003), was
later validated in unrelated pedigrees and positioned on chromo-
some 3 (Mamani et al., 2010). Ppr1 on chromosome 3 was again
validated in further pedigrees and additional epistatic QTLs
were described (Alves et al., 2011). The genomic heritability
captured 89% of the trait heritability, and the RHM associations
63% of the genomic heritability (Table 4). By accounting for
relatively large proportions of the additive genetic variance, these
results corroborate our early view that, although PPR involves
one or more major effect QTLs, it is largely complex and multi-
factorial in nature (Junghans et al., 2003). In a recent bi-parental
mapping study, this same view was corroborated and four addi-
tional major effect QTLs were mapped, one again on chromo-
some 3 at position 57Mb (Butler et al., 2016). Major effect
QTLs for resistance to other fungal disease in Eucalyptus have
also been reported on chromosome 3 for Mycosphaerella cryptica
leaf disease (Freeman et al., 2008) and Ceratocystis fimbriata wilt
(Rosado et al., 2016). The fact that QTLs for fungal disease
resistance have been repeatedly reported on chromosome 3 in
independent studies clearly points to a major involvement of this
chromosome in the pathogen resistance response. Interestingly,
at the gene level, 104 syntenic blocks of genes are shared
between Eucalyptus chromosome 3 and Populus chromosome
XVIII, containing 778 genes in 522 gene families, with the most
common family in this conserved gene space represented by 33
disease resistance genes (Myburg et al., 2014). Recently, the
highest densities of clusters and superclusters of NBS-LRR
(nucleotide binding site–leucine-rich repeat) resistance genes
were reported on Eucalyptus chromosomes 3, 5, 6, 8 and 10,
and a clear overlap of Ppr1 with a supercluster on chromosome
3 at position c. 54 Mb was observed in Eucalyptus (Christie
et al., 2016), overlapping the same genomic interval in which we
mapped our GWAS and RHM hits for PPR. Furthermore, the
Manhattan plot for PPR reveals some SNPs almost reaching sig-
nificance on chromosomes 5, 8 and 10 (Fig. 3), suggesting the
presence of several gene effects clustered on these chromosomes,
although not reaching significance in our experiment.

Concluding remarks

We showed that RHM successfully captured larger fractions of
trait heritability when compared with GWAS. Clearly, however,
our experimental population, despite its considerably larger size
and extensive LD, only provided power to detect a small frac-
tion of the loci controlling trait heritability. The proportion of
the heritability explained by the GWAS hits varied according to
the trait, and was probably inflated because of the selective
reporting of the significant associations, therefore potentially
subject to the ‘winner’s curse’ effect (Garner, 2007). By preclud-
ing the exclusive dependence on single SNP associations, how-
ever, the RHM approach enabled us to incorporate effects over
multiple causative variants, thus providing a joint estimate of
the combined effects of common and rare variants in the
genomic regions detected (Nagamine et al., 2012). One would
therefore expect that regions known to contain effects large
enough to be detected by GWAS would always be captured by

RHM, whereas the opposite would not necessarily be true
because of the additional small effect variants accounted for by
RHM. Our results, however, showed that this was not always
the case, and coincidence in genomic position between GWAS
and RHM QTLs varied depending on the trait, with wood
chemical traits and PPR showing better coincidence than
growth traits, highlighting the higher complexity of the latter.

Despite the availability of a reference genome for Eucalyptus,
an attempt to relate or co-locate our findings with previous QTL
mapping or gene models is very speculative. We have, however,
pointed out a few plausible, although coarse, genomic regions that
would merit further examination towards specific gene discovery
if that becomes an objective. These include the regions high-
lighted on chromosomes 2 and 5 for growth traits, and chromo-
some 3 for fungal disease resistance. Nevertheless, these discrete
associations represent only a fraction of those that control the
traits investigated, and even if genes were found and validated, a
considerable proportion of the heritability would still be left miss-
ing. This is in line with results from whole-genome prediction for
growth and wood traits in Eucalyptus (Resende et al., 2012),
showing that large proportions of trait heritability were captured
only when all genome-wide markers were considered simultane-
ously without the application of any rigorous statistical test.

This study also substantiated the fact that genome-wide SNP
data were able to account for large proportions (53–92%) of trait
heritability for all traits. It showed, however, that the total
genomic heritability was larger than the fraction explained by the
statistically significant associations detected. Notwithstanding the
difference between the structure of our breeding population and
the natural populations used in previous reports (Cappa et al.,
2013; Porth et al., 2013; Evans et al., 2014; McKown et al.,
2014), all of these GWAS results converge to an increasingly
undisputable view that traits of ecological and economic interest
in forest trees are controlled by many sequence variants across the
frequency spectrum, each with only a small average contribution
to the phenotypic variance. Moreover, these common undetected
variants probably account for the large difference between the
heritability obtained by GWAS or RHM hits and the genomic
heritability estimated from the use of all SNPs, such that, rather
than ‘missing’, we should refer to it as ‘hidden’ heritability
(Vinkhuyzen et al., 2013). The challenge to detect more of such
variants will require considerably larger sample sizes, possibly sev-
eral tens of thousands trees, better phenotyping and the integra-
tion of multiple sources of phenotypic and genetic information
(Robinson et al., 2014).

In the meantime, whole-genome regression methods, although
unable and agnostic to the identification of genes, but proven to
provide a powerful approach to the incorporation of genomic
data into selection decisions (Meuwissen et al., 2001), are deliver-
ing the long expected impact of genomics into tree breeding that
association genetics alone has not yet been able (Grattapaglia &
Resende, 2011; Resende et al., 2012; Grattapaglia, 2014). Never-
theless, robust local mapping data from RHM QTLs, bearing a
combination of common and rare variants contributing large
fractions of the heritability, will be useful to enhance the predic-
tive ability of whole-genome regression. RHM provides
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information on the genetic architectures of traits which can be
used by assigning locus- or trait-specific priors to genomic predic-
tion models (Daetwyler et al., 2010). By assigning different
marker weights in building a trait-specific numerator relationship
matrix, improvements in prediction accuracies have been
achieved in recent experimental studies (Zhang et al., 2014; Gao
et al., 2015). The incorporation of the RHM data reported in this
work into whole-genome prediction models should prove a
promising avenue for upcoming research.
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