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Abstract Glaucoma is one of the leading causes of blind-

ness worldwide. There is no cure for glaucoma but detection

at its earliest stage and subsequent treatment can aid patients
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to prevent blindness. Currently, optic disc and retinal

imaging facilitates glaucoma detection but this method

requires manual post-imaging modifications that are time-

consuming and subjective to image assessment by human

observers. Therefore, it is necessary to automate this pro-

cess. In this work, we have first proposed a novel computer

aided approach for automatic glaucoma detection based on

Regional Image Features Model (RIFM) which can auto-

matically perform classification between normal and glau-

coma images on the basis of regional information. Different

from all the existing methods, our approach can extract

both geometric (e.g. morphometric properties) and non-

geometric based properties (e.g. pixel appearance/intensity

values, texture) from images and significantly increase the

classification performance. Our proposed approach con-

sists of three new major contributions including automatic

localisation of optic disc, automatic segmentation of disc,

and classification between normal and glaucoma based on

geometric and non-geometric properties of different regions

of an image. We have compared our method with existing

approaches and tested it on both fundus and Scanning laser

ophthalmoscopy (SLO) images. The experimental results

show that our proposed approach outperforms the state-of-

the-art approaches using either geometric or non-geometric

properties. The overall glaucoma classification accuracy

for fundus images is 94.4 % and accuracy of detection of

suspicion of glaucoma in SLO images is 93.9 %.

Keywords Image processing and analysis · Machine

learning · Computer-aided diagnosis · Glaucoma · Fundus

camera · Scanning laser ophthalmoscope

Background

Glaucoma is one of the leading causes of irreversible blind-

ness worldwide accounting for as much as 13 % of all
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cases of vision loss [1, 2]. It is estimated that more than

500,000 people suffer from glaucoma in England alone,

with more than 70 million people affected across the world

[3, 4]. The changes occur primarily in the optic disc [5],

which gradually can lead to blindness if left untreated. As

glaucoma-related vision loss is irreversible, early detection

and subsequent treatment are essential for affected patients

to preserve their vision. Conventionally, retinal and optic

nerve disease identification techniques are based in part, on

subjective visual assessment of structural features known

to correlate with the pathologic disease. When evaluating

retinal images, optometrists and ophthalmologists often rely

on manual image enhancements such as adjusting contrast

and brightness and increasing magnification to accurately

interpret these images and diagnose results based on their

own experience and domain knowledge. This process is

time consuming and its subjective nature makes it prone

to significant variability. With the advancement in digital

imaging techniques, digital retinal imaging has become a

promising approach that leverages technology to identify

patients with glaucoma [6]. Retinal imaging modalities such

as fundus cameras or Scanning Laser Ophthalmoscopes

(SLO) have been widely used by the eye clinicians. Retinal

imaging with automated or semi-automated image analy-

sis algorithms can potentially reduce the time needed by

clinicians to evaluate the image and allow more patients

to be evaluated in a more consistent and time efficient

manner [7, 8].

Glaucoma is associated with erosion of the neuroretinal

rim which often enhances the visibility of chorioretinal atro-

phy in the peripapillary tissue (the latter is referred to as

peripapillary atrophy (PPA)) [9, 10]. This can be quanti-

(a) Normal (b) glaucoma

Fig. 1 Comparison of the optic disc area of the a normal and b glau-

comatous image. The cup boundary is shown with the red outline in

both images and disc boundary is shown with blue outline in (b) only.

There is significantly larger cup in relation to the size of the optic disc

in the glaucoma image compared to the normal image. Inferior sector

Peripapillary Atrophy (PPA) in the glaucoma image (b) is also evident

possibly due to concomitant erosion of the inferior neuro-retinal rim

tissue

fied by geometrical measures (e.g. an increased cup-to-disc

ratio (CDR), a well-established glaucoma indicator in the

research community, particularly in the vertical meridian

(Fig. 1).

There are several efforts made for the classification

between normal and glaucomatous patients, which we can

broadly divide into two categories including: geometrical

based methods and non-geometrical based methods. The

geometrical based methods involve the automatic calcu-

lation of glaucoma associated geometrical features (e.g.

optic cup, disc shapes/diameters , or CDR). Their automatic

determination require automatic segmentation of anatomi-

cal structures such as optic disc and optic cup in a retinal

image. Nayak et al. [11] performed segmentation using mor-

phological operations [12] for calculation of the CDR and

performed classification using neural networks. The classi-

fication accuracy was 90 % on 15 images after training the

classifier on 46 normal and glaucoma images. Other efforts

stated the accuracy of the methods in terms of optic disc and

cup segmentation [13].

On the other hand, the non-geometrical based methods

extract image features such as pixel appearance, textural

properties, intensity values, colour, etc. of the optic disc

cropped image. Bock et al. [14] calculated image tex-

ture, Fast Fourier Transform (FFT) Coefficients, Histogram

Models, B-Spline coefficients on the illumination corrected

images. Based on these features they calculated a Glaucoma

Risk Index using a two-stage classification scheme. Dua et

al. [15] used Wavelet-Based Energy Features and compared

the performance of different classifiers such as Support Vec-

tor Machines (SVM), Naive Bayes [12], Random Forests

[16] and Sequential Minimal Optimization (SMO) [17].

Texture and Higher Order Spectra (HOS) based information

has also been used for the classification between normal and

glaucoma images [18, 19]. Here different classifiers were

investigated and it was found the maximum accuracy was

achieved using the SVM. All these methods focus on image

features of the retinal image obtained from 45◦ field of view

fundus camera except the Bock’ method which focus on

optic disc cropped image.

Hypothesis and contributions

Despite the existing methods mentioned above are encour-

aging, they only focus on either geometrical properties or

non-geometrical properties. In fact, in an optic disc cropped

image, there are certain indications in different regions of

optic disc cropped image apart from increased cup size

(such as PPA) which can be quantified for automatic glau-

coma classification. Our hypothesis is that the classification

between normal and glaucoma images can be improved
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through combining both geometrical and non-geometrical

features.

Therefore, different from all the existing approaches, we

propose a novel holistic approach: Regional Image Fea-

tures Model (RIFM) to extract both geometrical and non-

geometrical properties in different regions of optic disc and

its surroundings. The proposed approach can automatically,

accurately localise, segment the optic disc, divide optic

disc cropped images into different regions, and classify an

image into the right category (i.e. normal or glaucoma). Our

contributions include:

1) A new accurate algorithm of automatic optic disc local-

isation based on weighted feature maps to enhance

optic disc and vasculature converging at its centre.

2) A new accurate, automatic optic disc segmentation

method derived from our previous work [20] so as to

avoid misguidance due to vasculature or atrophy in case

of glaucoma.

3) A new regional image feature model (RIFM) which can

extract both geometrical and non-geometrical features

from different regions of optic disc and its surround-

ings.

The rationale behind the RIFM lies in automatic localisation

and segmentation of optic disc and then dividing its sur-

rounding into five regions: the optic disc area, inferior (I),

superior(S), nasal(N) and temporal(T). In clinical practice,

clinicians often visually inspect these regions and make a

diagnosis. There is currently no existing work on automa-

tion of this process. Based on different regions, the features

including textural, frequency, gradient, colour and illumi-

nation information are then extracted. The classifier is then

built for classification between glaucoma and non-glaucoma

images.

We have compared our method against the existing

approaches and evaluated our prototype on both fundus

and Scanning Laser Opthalmoscope (SLO) images obtained

from our collaborator, Optos [21]. To the best of our knowl-

edge, this is the first approach with a combination of

geometric and non-geometric properties, which can auto-

matically divide regions based on clinical knowledge and

perform classification between normal and glaucoma, appli-

cable to both fundus and SLO images.

The rest of this paper is organised as follows: “Datasets

used for experimentation” introduces datasets used in our

experiments. “Method” discusses our proposed method.

Section “Experimental evaluation and discussion” provides

the quantitative and visual results of our proposed method.

Section “Conclusion” summarizes and concludes the pro-

posed work.

Datasets used for experimentation

RIM-ONE

RIM-ONE (An Open Retinal Image Database for Optic

Nerve Evaluation) [22, 23] is a fundus image dataset com-

posed of 85 normal and 39 glaucoma images. All the images

have been annotated with boundaries of optic disc and optic

cup from which we calculated vertical CDR values. The reti-

nal images in the dataset were acquired from three different

hospitals located in different regions of Spain. They have

compiled the images from different medical sources which

guarantee the acquisition of a representative and heteroge-

neous image set. All the images are non mydriatic retinal

photographs captured with specific flash intensities, thus

avoiding saturation.

SLO images

All ultrawide field SLO images were obtained using

the Optos P200MA [21]. Unlike traditional flash-based

fundus cameras, this device is able to capture a sin-

gle wide retinal image without dilation. The image has

two channels: red and green. The green channel (wave-

length: 532nm) provides information about the sensory

retina to retinal pigment epithelium whereas the red chan-

nel (wavelengh: 633nm) shows deeper structures of the

retina towards the choroid. Each image has a dimension

of 3900 × 3072 and each pixel is represented by 8-bit

on both red and green channels. The SLO images have

been taken from 19 patients suspected with glaucoma

while 46 images are from non-glaucomatous patients. The

images have been annotated and graded by glaucoma spe-

cialists at Harvard Medical School, Boston, MA, USA.

The annotations are provided in terms of boundaries of optic

disc and optic cup as well as vertical CDR values.

Method

The block diagram of the RIFM is shown in Fig. 2. We

first localise and segment the optic disc from an image.

Then the image will be divided into different regions. The

main rationale of dividing the image into different regions

is that geometrical changes in glaucoma can have different

image features compared to normal images. For example,

the higher CDR will result in higher intensity values in

the optic disc in cases of glaucoma. Also the occurrence

of atrophy due to glaucoma will result in different texture

around optic disc surroundings. The deployment stage clas-

sifies the test image between normal and glaucoma. The



132 Page 4 of 19 J Med Syst (2016) 40: 132

Fig. 2 Block diagram of

regional image features model
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subtasks of the block diagram are discussed in the following

subsections.

Automatic localisation of optic disc

Although the optic disc is often the brightest region in the

retinal scan, its localisation can be misguided due to the

presence of disease lesions, instrument reflections and the

presence of PPA. Therefore, optic disc localisation can be

more accurate by determining retinal vasculature conver-

gence point which converges at the centre of the optic disc

[24]. However, vasculature area are not clearly visible in the

cases with high instrument reflection from PPA. In order

to make optic disc localisation more robust, we have devel-

oped a new localisation method as shown in Algorithm 1

which involves development of two weighted feature maps

for enhancing the optic disc (F1) and vasculature struc-

ture (F2). The equations of the feature maps we developed

are shown in Eq. 1. Although the summation of x and y

gradients can be helpful in determining bright regions like

optic disc on Y (intensity map in YUV colour space [25]),

the Fast Radial Symmetry Transform [26] with specified

radius r will enhance the optic disc further compared to

other bright regions. Similarly, matched filtering [27] will

enhance the vasculature structure further on the intensity

map. In matched filtering, the mean Gaussian response in

different directions (1) with difference of 30◦ among adja-

cent θ values is taken. σ is set to 4 for fundus images and 1.5

for SLO images as SLO images have low resolution optic

disc due to its wide FOV. The mean response of matched

filter is min-max normalized in order to make the response

consistent for every image. For optic disc localisation we

have performed the exhaustive search in F2 horizontally and

in F1 vertically. The Eq. 2 estimates the optic disc cen-

tre by exhaustive search. Due to resolution difference, the

maximum dimensions of optic disc are 400 and 150 in case

of fundus and SLO images whereas the maximum vessel

width is 50 and 12 respectively. The examples of optic disc

localization in fundus and SLO images are shown in Fig. 3.

Automatic segmentation of optic disc

The segmentation algorithm

After optic disc localisation, the next step is its segmenta-

tion. Building upon our proposed work, instead of determin-

ing optic disc contour on the gradient map [20], we have
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Fig. 3 Examples of optic disc localization on fundus image (first

row) and SLO image (second row). The SLO image optic disc has

been affected by atrophy area around but our proposed optic disc

localization was able to locate it accurately

developed the feature maps and then estimated the con-

tour by minimizing the distance between normal profiles of

feature maps from each contour point in a test image and

mean of the images in the training set. These feature maps

have been determined by image convolution with a Gaus-

sian filter bank [28]. Convolving the image with a Gaussian

filter bank can determine the image features at different

resolutions. The Gaussian filter can be given as:

N (σ, i, j) =
1

2πσ 2
e
−

i2+j2

2σ2 (3)

Convolving the retinal image with a Gaussian filter bank

at different scales σ determines the image details at dif-

ferent resolutions by adding the blur while increasing the

scale. The Gaussian filter bank includes Gaussian N (σ ),

its two first order derivatives Nx(σ ) and Ny(σ ) and three

second order derivatives Nxx(σ ), Nxy(σ ) and Nyy(σ ) in

horizontal(x) and vertical(y) directions. The retinal images

have been convolved at different scales σ=2,4,8,16 as PPA

has been diminished at higher scale whereas optic disc

edges are more visible at lower scales (Fig. 4). Morever,

the image convolution has been performed at both red and

green channels as the optic disc boundary has more mean-

ingful representation without PPA or vasculature occlusion

at σ = 8 but PPA is more visible at green channel at σ = 2

which can be helpful while training the features inside and

outside the optic disc boundary. Before calculation of fea-

tures maps, we have performed vasculature segmentation

[29] followed by morphological closing in 8 directions and

retaining maximum response for each vessel pixel. This is

to avoid misguidance due to vasculature occlusion.

We have then evaluated the profiles from the line normal

to each contour point from the feature maps and calculated

the mean Vtrain across the images in the training set. The

length of the normal lines can be set as discussed in [20].

We then estimate new contour Ŷ. For test profile V , each of

the contour point n can be achieved by Eq. 5 in Algorithm 2

where M is the number of feature maps. Among P test pro-

files, the optimum profile can be estimated with minimum

mahalanobis distance [30] with Vtrain. Then we applied the

statistical shape modeling so as to adjust the estimated con-

tour Y with the mean of shapes in the training set. This has

significantly increased the segmentation performance. The

optic disc boundary can now be represented as X. After

determining optic disc boundary model, we have readjusted

the optic disc centre as:

xc =

∑N
i=1Xx(i)

N
yc =

∑N
i=1Xy(i)

N
(4)

where Xx and Xy are positions of X in x-axis and y-axis

respectively.
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(a) (b)

(c) (d)

Fig. 4 Elaboration of optic disc image after image convolution with

a Gaussian filter with a original image, b red channel convolution

at σ=2, c green channel convolution at σ = 2 and d red channel

convolution at σ = 8

Regional image features model

After optic disc segmentation, we need to determine

Regional Image Feature Model (RIFM). Here we have

performed the following steps:

Determination of regions in the optic disc cropped image

i. Optic disc cropping which should be twice the maxi-

mum diameter of optic disc in the dataset as shown in

Fig. 5a. This has been done in order to fully include

atrophy area around optic disc and other features if

present.

ii. Connecting the optic disc centre (xc, yc) to each corner

of the cropped image. This divides the image into 4

different quadrants shown in Fig. 5b.

iii. Naming the regions as inferior(I), superior(S), nasal

(N) and temporal(T) regions. I and S regions are fixed

for each image. However, N and T regions can be

named after determining if the image is from left eye or

right eye. The algorithm calculates the vasculature area

(segmented during optic disc segmentation) within the

optic disc in both halves of the image. In this case, the

vasculature area is higher on the right so this image

is considered as right eye image (Fig. 5c). Therefore,

N and T regions will be on right side and left side

respectively (Fig. 5d).

iv. Generating the image regions mask representing optic

disc and different regions in its surroundings (Fig. 5d).

Determination of regional image features

After the generation of different regions in the optic disc

cropped image, the next step is to determine the image-

based features for each region. Apart from geometrical fea-

tures (e.g. optic disc size, CDR), there are certain represen-

tations of an image which can distinguish two images taken

from different states. These representation can be quanti-

fied by calculating features representing the image. In our

case, these different states are normal and glaucoma. After

optic disc segmentation and dividing the image into dif-

ferent regions, we can then analyze each region separately

which can lead to unique contributions from each region

in determining glaucoma classification. The features calcu-

lated for each region will represent a different column in a

feature vector. Consider the examples from each of normal

and glaucoma in Fig. 6. Both examples have been taken after

optic disc segmentation and division of image into different

regions. The boundary of the optic cup is not clearly evident

in either image, which can lead to misidentification of CDR.

Also the presence of PPA in the I and T regions in the glau-

coma image is not sufficient to make a diagnosis of glau-

coma [10]. Therefore, we need to evaluate the difference

between normal and glaucoma by calculating the features

which can represent texture, spatial and frequency based

information.

(a) (b)

(c) (d)

Fig. 5 Different regions of the optic disc centred image with a image

of a right eye b image divided into different quadrants with the optic

disc boundary represented with green and centroid with blue colour, c

vasculature area within the optic disc with higher area on the right side

d optic disc centred image divided into different regions
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(a) (b)

Fig. 6 Comparison of a normal and b glaucoma images after division

of optic disc cropped image into different regions

For each region, we have generated the feature matrix on

the basis of different features as follows:

FM =
[

FM
dg

RG FM
texoff

RG FM texscale
RG FM

g

RGFM
gab

RG FMwav
RG

]

(6)

where RG represents red and green channel respectively,

texoff represents textural features with variable offset val-

ues, texscale represent textural features with variable scale,

dg, g, wav and gab represent dyadic Gaussian, gradient fea-

tures, wavelet features and gabor filter features. The details

of each feature type are described below:

Gaussian features The mean value of each region after

convolving the image with each Gaussian filter and its first

and second order derivatives determined for optic disc seg-

mentation has been calculated to generate FM
g

RG. We have

6 gaussian filters convolved at scales σ=2,4,8,16 for red

and green channels and region which makes the length of

FM
g

RG equal to 240.

Textural features Textural features can be determined by

evaluating Grey Level Co-occurrence Matrix (GLCM) [31,

32]. GLCM determines how often a pixel of a grey scale

value i occurs adjacent to a pixel of the value j . The pixel

adjacency can be observed in four different angles i.e. θ =

0◦, 45◦, 90◦, 135◦. For the region of size p x q, we perform

second order textural analysis by constructing the GLCM

(Cd(i, j)) and probability of pixel adjacency (Pd(i, j)) as:

Cd(i, j) =

{

(p, q), (p + �x, q + �y) :

I (p, q) = i, I (p + �x, q + �y) = j

Pd(i, j) =
Cd (i,j)

∑

i

∑

j Cd (i,j)

(7)

where �x and �y are offset values. The dimensions p

and q represent the bounding box of the particular region

among I,S,N,T and OD. We have evaluated 20 features rep-

resenting textural information which are enlisted in Table

10 [33]. Since we have significantly large size of regions,

the pixel adjacency can be evaluated at different offset

values �x and �y. We have varied these values ranging

from 1 to 10 for both �x and �y to generate FM
texoff

RG . We

have evaluated 20 textural features for each red and green

channel (blue channel is set to zero in SLO so we did not

calculated for fundus images as well).

Apart from varying the offset values, we have also calcu-

lated these features by convolving the image with Gaussian

filter at different scales σ=2,4,8,16 after fixing offset values

at 1 for generating FM texscale
RG .

Dyadic gaussian features The Dyadic Gaussian features

involve the downsampling of the optic disc cropped image

at multiple spatial scales [34, 35]. The calculation of abso-

lute difference at different spatial scales can lead to the

development of low-level visual ‘feature channels’ which

can discriminate between normal and glaucoma images.

We can generate certain features from red channel, green

channel and combinations of both channels. The blue chan-

nel is set to zero for SLO therefore we do not take this

into account for fundus images as well. Apart from Red(R)

and Green(G) channels, we have determined the feature

channels as follows:

Imn = (R+G)
2

Yrg = R + G − 2|R − G|
(8)

where Imn is the mean response of the both channels and

the Yrg shows their mixed response i.e. yellow channel.

The absolute difference of the particular feature channels

at different spatial scales lead to determination of excita-

tion and inhibition response. For determination of excitation

and inhibition response, we have centre levels c and sur-

round levels s of the spatial scales respectively. This can be

calculated as:

Imn(c, s) = |Imn(c) − Interps−cImn(s)|

RG(c, s) = |(R(c) − G(c)) − Interps−c(R(s) − G(s))|

Yrg(c, s) = |(Yrg(c)) − Interps−c(Yrg(s))|

(9)

where Interps−c represent interpolation to s −c level. Note

that s=c+d. If we calculate mean response of each region

i.e. FM
dg

RG=[I(c,s),RG(c,s),BY(c,s)]:

I reg(c, s) =
N
∑

i

I (c,s,n)
N

RGreg(c, s) =
N
∑

i

RG(c,s,n)
N

BY reg(c, s) =
N
∑

i

BY (c,s,n)
N

(10)

where N is number of pixels in the region. The dyadic Gaus-

sian features can excite the optic disc region while inhibiting

the regions in its surroundings. For the case of glaucoma,

the excited optic disc region can have higher intensity val-

ues due large optic cup size while inhibition of atrophy
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(a) (b)

Fig. 7 Comparison of a normal and b glaucoma images of Fig. 6 at

Yrg(2, 5)

area in its I and T regions can also contribute towards glau-

coma classification as shown in Fig. 7. We have calculated

dyadic Gaussian features at c and d=[2,3,4] which make c, s

pairs as [2-4,2-5,2-6,3-5,3-6,3-7,4-6,4-7,4-8]. In this way

we have 135 features generated from dyadic Gaussian as

shown in Table 1.

Gabor features Gabor filters can be convolved with the

image at different frequencies and orientations which can

generate different feature channels for image classifica-

tion [36]. For determining FM
gab

RG , we have taken mean

response of the gabor filter in the region. The gabor filter is

represented as:

Gb(x, y, θ, f, σ, γ ) = exp(−
1

2
(
x̂2

σ 2
+

ŷ2γ 2

σ 2
)∗ exp(i2πf x)

(11)

x̂ = xcosθ + ysinθ ŷ = ycosθ − xsinθ (12)

x and y are image pixel coordinates. Here we have var-

ied σ=[2,4,8,16], γ =[ 1
3
, 1

2
,1,2,3], f =[ 1

4
, 1

3
, 1

2
,1,2,3,4], θ =

[0◦, 45◦, 90◦, 135◦]. The γ value is varied so as to deter-

mine the responses when scale of x and y axis are equal

and unequal at different scales. On the similar grounds,

frequency is varied in such a way so as to determine the

response when wavelength is higher than frequency and vice

versa. In this way a total number of 5600 features have been

determined with different combination of gabor parameters.

Wavelet features We have calculated Discrete Wavelet

Transform (DWT) features FMwav
RG denoted by ψ [37]. The

DWT features captures both spatial and frequency informa-

tion of the image. DWT analyses the image by decomposing

it into a coarse approximation via low-pass filtering and

into detail information via high-pass filtering. Such decom-

position is performed recursively on low-pass approxima-

tion coefficients obtained at each level [38]. The image is

divided into four bands i.e. A(Top left (LL)), H (Top Right

(LH)), V(Bottom Left (HL)) and D(Bottom Right (HH)).

As an example, LH indicates that rows and columns are fil-

tered with low pass and high pass filters, respectively. DWT

decomposition is calculated on five different wavelet fami-

lies i.e. haar, db3, rbio3.3, rbio3.5, rbio3.7. For a particular

region in the optic disc cropped image, we can calculate

two types of features using these bands i.e. average value

of the coefficients (ψAvg) and energy of the coefficients

(ψEnergy). As an example, the average value and average

energy of D band are derived from the wavelet coefficients,

as shown below;

ψD
Avg = 1

p q

∑

i=p

∑

j=q

|Dband(i, j)|

ψD
Energy = 1

p2 q2

∑

i=p

∑

j=q(Dband(i, j))2 (13)

where p and q represents width and height in pixels of the

region respectively. We have performed the DWT decom-

position to only one level as features calculated for higher

levels were not significant (pvalue ≥0.05) thus they were

not included in the feature set.

Z-score normalization

After determination of feature matrix, the feature matrix

is normalized using z-score normalization [39]. It can be

represented as:

FMZS =
FM − μf

σf

(14)

where μf is the mean of the features and σf is the standard

deviation across the examples in the training set.

Table 1 Number of features from each feature type

Feature types Number of regional features generated Number of global features

FM
g

RG 6 filters * 4 scales * 2 channels * 5 regions = 240 48

FM
texoff

RG 20 * 10 offset values * 2 channels * 5 regions = 2000 400

FM texscale
RG 20 * 4 scales * 2 channels * 5 regions = 800 160

FM
dg

RG 9 pairs * 3 channels * 5 regions = 135 27

FM
gab

RG 4 scales * 5 gamma * 7 frequencies * 4 orientations * 2 channels * 5 regions = 5600 1120

FMwav
RG 5 families * 4 bands * 2 channels * 2 types * 5 regions = 400 80

Total 9175 1835
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Fig. 8 Percentage of significant

features selected from each

category
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Feature selection

Due to division of optic disc cropped images into five

regions, the number of features generated is five times larger

than the situations where features are generated for a whole

image. Since the determination of classifier constructed

on such a high dimension of features is not computation-

ally efficient and also some of these features may lead to

depreciation of classifier performance, we have selected

the features based on pvalue which are statistically sig-

nificant (pvalue ≤0.05) towards glaucoma classification.

Table 1 shows the number of features generated by each

feature type whereas the percentage of features selected

from each feature type has been shown in Fig. 8. For fun-

dus images, 2201 regional features out of 9175 features

have been significant towards glaucoma classification and

2836 regional features have been significant towards clas-

sification in SLO images. The bar plot shows that the

textural and gabor features can be more clinically signif-

icant compared to other types of features. Figure 8 and

Table 1 also provides information regarding the total fea-

tures generated and number of significant features selected

for global features (whole image features) for comparison

purpose.

After selection of relevant features, the feature dimen-

sion is still high for classifier construction. In order to

select features most relevant towards classification, we have

performed feature selection on significant feature set. In

our case, we have adopted wrapper feature selection [40].

The wrapper feature selection is an iterative procedure of

maximizing classification performance. In the feature selec-

tion procedure, initially the data is divided into k folds

(in our case k=5). Then the first feature is selected which

has maximum mean classification performance across the

folds. During the next iterations, the features together with

previously selected features result in highest mean classi-

fication performance are selected. This process continues

until there is little or no maximization towards classifica-

tion performance. This process is in contrast to the filter

selection approach [41] in which the feature ranking is

performed according to individual evaluation performance

of each feature. The individual evaluation performance is

quantified according to their classification power and the

features beyond certain threshold value are selected for

classifier construction. However, our recent study [33] has

shown that features selected by wrapper feature selection

procedure outperforms filter feature selection despite the

fact that filter selection approach selects the best fea-

tures from the pool whereas wrapper feature selection

does not necessarily follow the similar approach. Never-

theless, the wrapper feature selection approach has been

performed on the features which have been filtered out with

pvalue ≤0.05.

For quantification of classification performance of the

wrapper feature selection, we have certain performance

measures such as Area Under the Curve (AUC), linear

classification accuracy and quadratic classification accu-

racy. The AUC can be quantified by determining the area

under Receiving Operating Characteristics (ROC). ROC is

a graphical plot that illustrates the performance of a binary

classifier system by area under it as it is created by plotting

the true positive rate against the false positive rate at vari-

ous threshold settings [39]. The ROC curve of the selected

regional image features has been shown in Fig. 12 with a red

plot. The wrapper feature selection by maximizing AUC is

termed as ‘wrapper-AUC’. On the other hand, linear classi-

fication accuracy is based on Linear Discriminant Analysis

(LDA) by maximizing the distance between classes while

minimizing the variance within each class. Quadratic Dis-

criminant Analysis (QDA) works on similar principle as
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Table 2 Comparison of number of features selected by each feature selection methods from different regions and total number of features selected

RIMONE SLO images

Regions Wrapper-AUC Wrapper-LDA Wrapper-QDA Wrapper-AUC Wrapper-LDA Wrapper-QDA

I 4 1 3 4 3 3

S 1 4 3 1 3 2

N 0 0 1 2 5 3

T 2 0 1 2 0 2

OD 4 2 1 2 0 0

Total 11 7 9 11 11 10

its linear counterpart except the classification boundary

between classes is not linear and covariance matrix may

not be identically equal for each class. The wrapper fea-

ture selection by maximizing LDA and QDA are termed as

‘wrapper-LDA’ and ‘wrapper-QDA’ respectively.

We have run the wrapper feature selection with the per-

formance measures mentioned previously on the significant

features. The number of features selected based on differ-

ent feature selection methods (wrapper-AUC, wrapper-LDA

and wrapper-QDA) is shown in Table 2. For example, for

RIMONE dataset, when using wrapper-AUC, the total num-

ber of regional features selected is 11. The total number of

feature selected for wrapper-LDA and wrapper-QDA is 7

and 9 respectively. The results of feature selection proce-

dure have been shown in Fig. 9. The results shows that if

the features are selected by AUC as performance measure

of wrapper feature selection, we can achieve significantly

higher classification accuracy compared to other perfor-

mance measures. Also the classification power of regional

features have been significantly better compared to global

features both in case of fundus and SLO images. Moreover,

the results in Table 2 shows that apart from the optic disc

region, the other regions (such as I) can also play signif-

icant role in glaucoma classification. The list of features

selected after wrapper feature selection for both fundus and

SLO images have been shown in Table 3. The list has mostly

been dominated by either textural or Gabor features. As a

reference, HOD
diff G(2) is the ‘Difference Entropy’ from Table

10 where OD in superscript represent the optic disc region,

G in subscript represent the green channel where as 2 in

subscript represent the offset value. If the number is not in

subscript (as in case of corrOD
G (2)), then it represent the

scale (σ ) value.

Classifier setting

On selected regional image features, we have constructed

the binary classifier for glaucoma classification using

Support Vector Machines (SVM) [42]. In recent studies

[43], non-parallel SVM has performed better compared

to traditional SVM methods. In traditional SVM, two

parallel planes are generated such that each plane is as far

apart as possible however in non-parallel SVM, the condi-

tion of parallelism is dropped. Among non-parallel SVM,
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Fig. 9 Feature selection procedure for both regional and whole image

features in different classification performance
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Table 3 Symbols of features selected by sequential maximization approach. These features also represent the x-axis of Fig. 9

Criteria Fundus image SLO images

Regional Features

AUC HOD
diff G(2)

, Y I
rg(2, 6), GbT

G(45◦, 0.5, 4, 0.5),corrOD
G (2), I I

mn(2, 5), Y I
rg(2, 5), PrN

Rmax(1)
, GbOD

G (135◦, 4, 2, 0.5),

IMI
1R(2) GbOD

G (45◦, 0.5, 4, 0.5), GbI
G(0◦, 0.5, 8, 0.33), GbOD

R (0◦, 1, 2, 3), H S
sumR(7), GbT

R(45◦, 4, 16, 2),

H S
diff R(6), GbI

R(90◦, 4, 16, 1), IMT
1R(2), GbOD

G (90◦, 2, 16, 3), GbI
R(135◦, 3, 4, 0.5), H I

sumR(10),

GbOD
R (0◦, 0.33, 4, 1) GbT

R(0◦, 0.5, 2, 2)

LDA CS
shadeG(2), IMI

1R(2), IMS
2R(2), CS

shadeG(10)
, IS

mn(3, 7), RGI (2, 5), ES
R(3)

,GbN
G (0◦, 3, 2, 1), μN

sumG(1)
,

IMOD
1G (16), IMOD

1G(4), GbOD
R (135◦, 1, 8, 3) ES

R(1), IMI
2R(4), HN

diff R(10), μN
sumG(2), CN

promG(1),

H I
diff G(2)

QDA ES
R(7), GbI

G(45◦, 1, 4, 1), corrI
R(4), BYOD(4, 8), IS

mn(3, 7), RGI (2, 6), GbT
R(0◦, 0.5, 4, 0.33), H S

diff G(8),

H S
sumR(6), GbN

R (0◦, 1, 4, 0.5), GbS
G(135◦, 2, 2, 1), GbT

R(45◦, 4, 2, 1), GbN
R (45◦, 4, 2, 1), corrT

R(1), EI
G(8),

CT
shadeG(9), GbI

G(0◦, 3, 16, 1) con
N(9)
G , NN

xxG(8)

Whole Image Features

AUC IM1G(2), IM1R(8), CpromG(10), GbR(135◦, 0.33, 8, 0.5), IM1G(8), ψH
RAvg(db3), ψH

RAvg(rbio3.7), IM1G(1),

CpromR(6), CpromG(6) conG(8), HG(4), Hdiff G(4), GbG(135◦, 0.5, 16, 0.33),

IM1R(16), GbG(90◦, 2, 8, 0.33)

LDA IM1G(8), GbR(45◦, 4, 2, 1), GbG(135◦, 2, 16, 1), ER(9), IM1G(8), RG(4, 8), IM1G(8), acorrG(1), ψD
GAvg(db3),

homomR(8) RG(3, 7), σsosG(4), GbG(90◦, 4, 4, 0.5), GbG(45◦, 2, 4, 0.5),

RG(3, 7), σsosG(3), ER(8)

QDA IM1G(8), IDNG(16), GbR(135◦, 0.33, 8, 0.5), dissG(4), IM1G(8), Hdiff G(2), homomG(3), conG(9)

ψD
REnergy(haar)

Twin SVM has performed better compared to its other coun-

terparts [44]. Mathematically, the Twin SVM is constructed

by solving two quadratic programming problems

minws1,bs1,qs
1
2
(Xs1ws1+ǫ1bs1)

T (Xs1ws1+ǫ2bs1) + C1ǫ1q

s.t. − (Xs2ws1 + ǫ2bs1) + q ≥ ǫ2, q ≥ 0

(15)

minws2,bs2,qs
1
2
(Xs2ws2+ǫ1bs2)

T (Xs2ws2+ǫ2bs2)+C2ǫ1q

s.t. − (Xs1ws2 + ǫ1bs2) + q ≥ ǫ1, q ≥ 0

(16)

The performance of Twin SVM has been compared with

traditional SVM. The traditional SVM classifier can be

expressed as:

maxα≥0

∑

i

αi − 1
2

∑

j,k

αjαkyjykk(xj , xk)

subject to0 ≤ αi ≤ C and
∑

i

αiyi = 0
(17)

where C is the penalty term. k(xi, x) represents the ker-

nel function. In linear SVM case, k(xj , xk) = xj .xk . The

kernel function in Eq. 17 can be replaced for developing

non-linear SVM classifier such as Radial Based Function,

polynomial and sigmoid SVM. The k(xj , xk) in Eq. 17 is

replaced with gaussian kernel mentioned as: k(xi, x) =

Table 4 Input parameters for the classifiers

Classifier type Parameter values

Twin SVM C1=6, C2 = 6.14, ǫ1=0.2, ǫ2=0.1

Linear SVM C = 4

Polyniomial SVM Ŵ = 0.9, d = 1, C = 1

RBF SVM Ŵ = 0.05, C = 4

Sigmoid SVM Ŵ = 0.05, coeff 0 = 1, C = 1
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(a) (b)

(c) (d)

Fig. 10 Examples of optic disc segmentation using proposed

approach a,b are examples from RIM-ONE and c,d are examples from

SLO images. The red outline shows the original annotation around

optic disc whereas the green outline shows the automatic annotations

from proposed approach

exp(−Ŵ||xi − x||2). In polynomial function the k(xj , xk) =

(Ŵxj .xk)
d and in sigmoid SVM k(xj , xk) = tanh(Ŵxj .xk +

coeff 0), where coeff 0 is sigmoid coefficient. We have

tested different paremeters on libsvm [42] on C-SVC for

each kernel function parameters and cost value. We have

tested different parameter values for these classifiers and the

values for which the respective SVM classifier performed

the best in both fundus and SLO images have been shown

in Table 4.

Apart from SVM classifiers, we have also compared the

peformance with LDA and QDA as they have also been

involved in the feature selection process

Experimental evaluation and discussion

Evaluation metrics

For optic disc segmentation performance, we have Dice

Coefficient [45] as an evaluation measurement, which is the

degree of overlap of two regions. It is defined as:

D(A, B) =
2|A ∩ B|

|A ∪ B|
, (18)

where A and B are the segmented regions surrounded by

model boundary and annotations from the ophthalmologists

respectively, ∩ denotes the intersection and ∪ denotes the

union. Its value varies between 0 and 1 where a higher value,

indicates an increased degree of overlap. Apart from that

we have adopted standard evaluation metrics using accuracy

(Acc), sensitivity (Sn or true positive rate) and specificity

(Sp or false positive rate) described as follows:

Acc = T N+T P
T N+T P+FN+FP

Sn = T P
T P+FN

Sp = T N
T N+FP

(19)

where T P, T N, FP and FN are true positives, true neg-

atives, false positives and false negatives respectively. The

significance of the improvement of the classification accu-

racy has been evaluated by McNemar’s test [46]. The

McNemar’s test can be used to compare classification

results across different methods and can generate Chi-

squared value as:

χ2 =
(|c1err − c2err | − 1)2

c1err + c2err

(20)

where c1err and c2err are the number of images misclassi-

fied by different methods. We have compared the classifica-

tion performance of RIFM model to the geometric methods

as well as non-geometric methods. The Chi-squared value

generated is then converted to pvalue for testing statistical

(a) (b)

(c)

Fig. 11 Comparison of optic disc segmentation of proposed approach

with previous methods a Active Shape Model [48], b Chan-Vese [49]

and c the proposed approach
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Table 5 Accuracy comparison of the proposed optic disc segmentation approach with our previous approach

RIM-ONE SLO images

Normal Glaucoma Both Normal Glaucoma Both

The Proposed Approach 0.95 ± 0.03 0.92 ± 0.07 0.94 ± 0.05 0.91 ± 0.07 0.89 ± 0.07 0.90 ± 0.07

Active Shape Model 0.91 ± 0.06 0.87 ± 0.09 0.89 ± 0.06 0.82 ± 0.10 0.80 ± 0.08 0.81 ± 0.09

Chan-Vese Model 0.92 ± 0.06 0.84 ± 0.12 0.89 ± 0.07 0.85 ± 0.10 0.82 ± 0.12 0.84 ± 0.10

significance of the improvement. The test is considered sta-

tistically significant if the pvalue is below certain value. Typ-

ical standard values are 0.1, 0.05 and 0.01 (χ2 = 2.706,3.841

and 6.635 respectively).

Accuracy comparison with the state-of-the-art

approaches

We have conducted experimental evaluation on both fundus

and SLO image datasets from three aspects:

1) Optic disc segmentation accuracy performance.

2) Accuracy performance based on different classification

algorithms and feature selection methods.

3) Accuracy performance comparison with either geomet-

ric or non-geometric methods.

The image datasets used for the evaluation are described

in “Datasets used for experimentation”, consisting of a rep-

resentative and heterogeneous image dataset including both

fundus and SLO images totalling 189 images; 124 from fun-

dus dataset and 65 from SLO dataset. Each of the fundus and

SLO dataset has been split into cross-validation sets and the

test sets. In the cross-validation sets, N-fold cross validation

[12] has been performed for classification model validation.

The essence of n-fold cross validation is to randomly divide

a dataset into n equal sized subsets and of the n subsets, a

single subset is retained as the validation data for testing the

model, and the remaining n-1 subsets are used as training

data. The cross-validation process is then repeated n times

(the folds), with each of the n subsamples used exactly once

as the validation data. The cross-validation accuracy has

been determined after training the classifier on n-1 subsets

and testing on the nth subset. This has been performed for

each subset in the cross-validation set. The cross-validation

sets for classifier training are different from that of feature

selection process. The accuracy on the test sets for each

dataset are then calculated after training the classifier on

the images of cross-validation sets of the respective dataset.

Additionally, to address dataset imbalance, the Ensemble

Random Under Sampling (ERUS) is used, in which useful

samples can be selected for learning classifiers [47].

Optic disc segmentation accuracy performance

We have compared our segmentation methods with clini-

cal annotations and existing models such as Active Shape

Model [48], Chan-Vese [49]. The experimental results are

shown in Figs. 10 and 11 and our method outperforms

the existing methods. The mean and standard deviation

Table 6 Comparison of classification accuracies across different feature selection methods in cross-validation set

RIMONE SLO images

Classifier wrap-AUC wrap-LDA wrap-QDA wrap-AUC wrap-LDA wrap-QDA

Twin SVM 96.3 % 90.0 % 78.8 % 94.1 % 84.3 % 78.4 %

Linear SVM 95.0 % 90.0 % 81.3 % 94.1 % 84.3 % 78.4 %

Polynomial SVM 95.0 % 90.0 % 81.3 % 94.1 % 84.3 % 78.4 %

RBF SVM 90.0 % 87.5 % 82.5 % 82.3 % 78.4 % 82.3 %

Sigmoid SVM 78.8 % 92.5 % 77.5 % 78.4 % 74.5 % 78.4 %

LDA 95.0 % 88.8 % 80.0 % 90.5 % 82.4 % 78.4 %

QDA 85.0 % 81.3 % 86.3 % 78.4 % 68.6 % 82.4 %
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Table 7 Comparison of classification accuracies across different feature selection methods in test set

RIMONE SLO images

Classifier wrap-AUC wrap-LDA wrap-QDA wrap-AUC wrap-LDA wrap-QDA

Twin SVM 90.9 % 86.4 % 81.8 % 85.7 % 78.6 % 64.3 %

Linear SVM 90.9 % 88.6 % 81.8 % 78.6 % 71.4 % 64.3 %

Polynomial SVM 90.9 % 88.6 % 81.8 % 78.6 % 71.4 % 64.3 %

RBF SVM 88.6 % 86.4 % 97.7 % 78.6 % 57.1 % 78.6 %

Sigmoid SVM 84.1 % 86.4 % 86.4 % 64.3 % 28.6 % 28.6 %

LDA 88.6 % 88.6 % 79.5 % 71.4 % 71.4 % 64.3 %

QDA 86.4 % 88.6 % 90.9 % 64.3 % 35.7 % 74.1 %

of Dice Coefficients of our previous approach [20] and

proposed approach has been evaluated on both RIM-ONE

and SLO datasets with respect to both healthy and glau-

comatous images as shown in Table 5. Also some of the

examples of optic disc segmentation compared to clinical

annotations has been shown in Fig. 10. The visual results

show that segmentation accuracy is quite comparable to

clinical annotation; especially in the right column which

represent the examples of glaucomatous optic disc with

PPA.

Accuracy comparison based on different classification

algorithms and feature selection methods

The performance of regional features selected under the

proposed approach compared with other regional feature

selection methods across different classifiers have been

presented in Table 6 for cross-validation sets and in

Table 7 for the test-sets. According to the results, the

feature sets selected by AUC maximization have higher

accuracy on both cross-validation sets and the test sets com-

pared to the ones selected by maximization of linear and

quadratic classification accuracy. The results also show

that dropping the parallelization condition from the SVM

can have marginal improvement in terms of classification

accuracy; like in case of Twin SVM. Moreover, classi-

fier with linear specifications i.e. Linear SVM and LDA

have performed significantly better compared to other non-

linear counterparts. The performance of Polynomial SVM

is comparable to Linear SVM however, it has achieved this

accuracy at degree d = 1 which is the special case of

linear classification. The performance of the classifiers on

cross-validation sets and the test sets have been combined

and detailed in Table 8. In Table 8, we have compared the

classifier performance with respect to sensitivity and speci-

ficity along with classification accuracy. We have identified

the best results of each classifier across different feature

sets mentioned in Table 6. For example, Twin SVM has

the best results on wrapper-AUC or RBF-SVM has the

best results on wrapper-QDA so they are the best feature

set for the respective classifiers. The results show that the

non-linear classifiers such as RBF-SVM and QDA have

high false negatives compared to their linear counterparts

which have resulted the depreciation in their performance.

Table 8 Comparison of sensitivity, specificity and accuracy across different classifiers

RIMONE SLO images

Classifier TP FN TN FP Sn Sp Acc TP FN TN FP Sn Sp Acc

Twin SVM 36 3 81 4 92.3 % 95.3 % 94.4 % 17 2 43 4 89.5 % 93.5 % 93.9 %

Linear SVM 36 3 80 5 92.3 % 94.1 % 93.5 % 17 2 42 4 89.5 % 91.3 % 90.8 %

Polynomial SVM 36 3 80 5 92.3 % 94.1 % 93.5 % 18 1 41 5 94.7 % 89.1 % 90.8 %

RBF-SVM 31 8 80 5 79.5 % 94.1 % 89.5 % 14 5 39 7 73.7 % 86.7 % 81.5 %

Sigmoid SVM 32 7 80 5 82.1 % 94.1 % 90.3 % 15 4 34 12 78.9 % 73.9 % 75.4 %

LDA 36 3 79 6 92.3 % 92.9 % 92.7 % 14 5 38 8 73.7 % 82.6 % 80.0 %

QDA 30 9 78 7 76.9 % 91.8 % 87.1 % 10 9 42 4 52.6 % 91.3 % 80.0 %



J Med Syst (2016) 40: 132 Page 15 of 19 132

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1−Specificity)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
S

e
n
s
it
iv

it
y
)

Regional Features AUC:0.96371

Global Features AUC:0.93929

Vertical CDR AUC:0.88471

Horizontal CDR AUCC:0.86256

Vasculature Shift AUC:0.83506

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1−Specificity)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
S

e
n

s
it
iv

it
y
)

Regional Features AUC:0.97204

Global Features AUC:0.91612

Vertical CDR AUC:0.95559

Horizontal CDR AUCC:0.85362

Vasculature Shift AUC:0.65296

(b)

Fig. 12 Comparison of Receiver Operating Characteristics of differ-

ent feature sets mentioned in Table 9

The Twin SVM classifier has achieved the accuracy of

94.4 % on fundus images and 93.9 % on SLO image

dataset.

Accuracy comparison with either geometric

or non-geometric based methods

To validate our proposed method, we have compared

the performance of RIFM with 1) geometrical based

clinical indicators on glaucoma such as vertical and hori-

zontal CDRs, vasculature shift, and 2) the existing methods

using non-geometrical global features [15, 18, 19]. In case

of geometrical indicators, both vertical as well as hori-

zontal CDR has been clinically annotated for both fundus

and SLO images whereas vasculature shift has been deter-

mined automatically using the method mentioned in [50].

The cutoff value for both CDRs is set to 0.55. In case of

non-geometrical features, we have calculated global image

features under the same procedure as in case of regional

features except that they are calculated for whole optic

disc cropped image. Like regional features, we have con-

structed a global image feature model under Twin SVM on

the features selected by wrapper-AUC approach under the

classifier parameters where global features performed the

best. The performance comparison is shown with respect

to ROC curves in Fig. 12 and has been quantified in

Table 9. Moreover the significance of classification

improvement of RIFM model has also been compared

with other geometric and non-geometric based methods by

McNemar’s test (4). The results show that in case of both

fundus and SLO dataset, the RIFM model shows signifi-

cant improvement in glaucoma classification in most of the

geometric and non-geometric based methods (pvalue ≤0.05,

0.10). In case of clinically annotated vertical CDR and non-

geometric textural features, the results can show improve-

ment at significance level pvalue ≤0.10.

Discussion

Based on our experimental evaluation, the proposed method

after automatically locating and segmenting the optic disc

as well as dividing the optic disc cropped image into dif-

ferent regions extract the regional features reflecting pixel

appearance such as textural properties, frequency based

information, gradient features etc. In this way the geomet-

rical properties due to large cup size in glaucoma can be

quantified and accommodated with textural changes within

optic disc boundary. Moreover, the model can also accom-

modate the non-geometric based features from different

regions around optic disc boundary. The feature selection

and classification results suggests that different types of

features for different regions of optic disc and its sur-

roundings can result in better classification performance.

The significance results shows that our proposed RIFM

model has performed significantly better compared to the

geometrical methods based on segmentation of glaucoma

associated anatomical structures for determination of clin-

ical indicators of either CDR or vasculature shift as well

as non-geometrical methods based on global image fea-

ture model. This further validates our idea that if both
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Table 9 Accuracy comparison of the proposed RIFM model with either geometric or non-geometric-based methods

RIMONE SLO Images

Features (i.e. geometric or TP FN TN FP Sn Sp Acc pvalue TP FN TN FP Sn Sp Acc pvalue

non-geometric)

RIFM 36 3 81 4 92.3 % 95.3 % 94.4 % – 17 2 31 1 89.5 % 96.9 % 94.1 % –

Geometric based Methods

Geo-metric (Vertical CDR) 29 10 80 5 74.4 % 94.1 % 87.9 % <0.10 16 3 29 3 84.2 % 90.6 % 88.2 % =0.28

Geo-metric (Horizontal CDR) 26 13 76 9 66.7 % 89.4 % 82.3 % <0.01 14 5 28 4 73.7 % 87.5 % 82.4 % <0.10

Geo-metric (Vasculature Shift) 26 13 75 10 66.7 % 88.2 % 81.5 % <0.01 14 5 20 12 73.7 % 62.5 % 66.7 % <0.001

Non-geometric based Methods

Global Features (Mix) 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 13 6 28 4 68.4 % 87.5 % 80.4 % <0.10

Textural Features (Variable Offset) [18, 19] 30 9 71 14 76.9 % 83.5 % 81.5 % <0.01 11 8 18 12 57.9 % 56.2 % 56.9 % <0.001

Textural Features (Variable Scale) [18, 19] 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 12 7 21 11 63.2 % 65.6 % 64.7 % <0.005

Textural Features (Scale + Offset) [18, 19] 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 13 6 28 4 68.4 % 87.5 % 80.4 % <0.10

Higher Order Spectra Features [19] 34 5 74 11 87.2 % 87.1 % 87.1 % <0.05 12 7 24 8 63.2 % 75.0 % 70.6 % <0.01

Gabor Features [51] 34 5 75 10 87.2 % 88.2 % 87.9 % <0.10 11 8 24 8 57.9 % 75.0 % 68.6 % <0.01

Wavelet Features [15] 31 8 65 20 79.5 % 76.5 % 77.4 % <0.001 11 8 24 8 57.9 % 75.0 % 68.6 % <0.01

Gaussian Features 32 7 67 18 82.1 % 78.8 % 79.8 % <0.01 10 9 26 6 52.6 % 81.3 % 70.6 % <0.05

Dyadic Gaussian Features 28 11 75 10 71.8 % 88.2 % 83.1 % <0.05 10 9 26 6 52.6 % 81.3 % 70.6 % <0.05

geometrical and non-geometrical indications are combined

together, this can significantly increase the glaucoma clas-

sification performance.

Conclusion

In this paper, we have proposed the novel computer-aided

approach: Regional Image Features Model (RIFM) which

can extract both geometric and non-geometric properties

from an image and automatically perform classification

between normal and glaucoma images on the basis of

regional image information. The proposed method automat-

ically localises and segments the optic disc, divides the optic

disc surroundings into different regions and performs glau-

coma classification on the basis of image-based information

of different regions. The novelties of the work include 1) a

new accurate method of automatic optic disc localisation; 2)

a new accurate method of optic disc segmentation; 3) a new

RIFM on extraction of both geometric and non-geometric

properties from different regions of optic disc and its sur-

roundings for classification between normal and glaucoma

images.

The performance of our proposed RIFM model has been

compared across different feature sets, classifiers and pre-

vious approaches and has been evaluated on on both fundus

and SLO image datasets. The experimental evaluation result

shows our approach outperforms existing approaches using

either geometric or non-geometric approaches. The clas-

sification accuracy on fundus and SLO images is 94.4 %

and 93.9 % respectively. The results validate our hypoth-

esis of combining both geometrical and non-geometrical

indications since they are significantly better compared to

methods which are based on either geometrical or non-

geometrical indications.

Further research is needed to test the model on datasets

composed of healthy as well as various stages of glaucoma.

Additionally, because the most common clinical indicator

for glaucoma detection is to measure CDR value (based on

manual approaches), we will further develop the proposed

RIFM approach for automated CDR measurement.

Acknowledgments This work is fully supported by EPSRC-DHPA

funded project Automatic Detection of Features in Retinal Imaging

to Improve Diagnosis of Eye Diseases and Optos plc. (Grant Ref:

EP/J50063X/1). Harvard Medical school provided SLO image data

and made contributions to data annotation and domain knowledge.

Dr. Pasquale is supported by Harvard Medical School Distinguished

Scholar Award. Dr. Song is supported by a departmental K12 grant

from the NIH through the Harvard Vision Clinical Scientist Develop-

ment Program with grant number 5K12EY016335.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J Med Syst (2016) 40: 132 Page 17 of 19 132

Appendix A

Table 10 Textural features extracted using GLCM

Feature name Equation Definition

Autocorrelation acorr =
∑

i

∑

j

ijp(i, j) Linear dependence in GLCM between same index

Cluster Shade Cshade =
∑

i

∑

j

(i + j − μx − μy)3p(i, j) Measure of skewness or non-symmetry

Cluster Prominence Cprom =
∑

i

∑

j

(i + j − μx − μy)4p(i, j) Show peak in GLCM around the mean for non-symmetry

Contrast con =
Ng
∑

i=1

Ng
∑

j=1

|i − j |2p(i, j) Local variations to show the texture fineness.

Correlation corr =

∑

i

∑

j

(ij)p(i,j)−μxμy

σxσy
Linear dependence in GLCM between different index

Difference Entropy Hdiff = −
Ng−1
∑

i=0

px−y log(px−y(i)) Higher weight on higher difference of index entropy value

Dissimilarity diss =
∑

i

∑

j

|i − j |p(i, j) Higher weights of GLCM probabilities away from the diagonal

Energy E =
∑

i

∑

j

p(i, j)2 Returns the sum of squared elements in the GLCM

Entropy H = −
∑

i

∑

j

p(i, j)log(p(i, j)) Texture randomness producing a low value for an irregular GLCM

Homogeneity homom =
∑

i

∑

j

1
1+(i−j)2 p(i, j) Closeness of the element distribution in GLCM to its diagonal

Information Measures 1 IM1 = (1 − exp[−2.0(Hxy − H)])0.5 Entropy measures

Information Measures 2 IM2 =
Entropy−Hxy2

MAX(Hx ,Hy )
Entropy measures

Inverse Difference IDN =
∑

i

∑

j

p(i,j)

1+
|i−j |
Ng

Inverse Contrast Normalized

Normalized

Inverse Difference Moment IDMN =
∑

i

∑

j

p(i,j)

1+
(i−j)2

Ng

Homogeneity Normalized

Normalized

Maximum Probability Prmax = MAX
(x,y)

p(i, j) Maximum value of GLCM

Sum average μsum =
2Ng
∑

i=2

ipx+y(i) Higher weights to higher index of marginal GLCM

Sum Entropy Hsum = −
2Ng
∑

i=2

px+y log(px+y(i)) Higher weight on higher sum of index entropy value

Sum of Squares: Variance σsos =
∑

i

∑

j

(i − μ)2p(i, j) Higher weights that differ from average value of GLCM

Sum of Variance σsum =
2Ng
∑

i=2

(i − Hsum)px+y(i) Higher weights that differ from entropy value of marginal GLCM

(i, j) represent rows and columns respectively, Ng is number of distinct grey levels in the quantised image, p(i, j) is the element from

normalized GLCM matrix px(i) and py(j) are marginal probabilities of matrix obtained by summing rows and columns of GLCM respec-

tively i.e. px(i) =
Ng
∑

j=1

p(i, j), py(j) =
Ng
∑

i=1

p(i, j), px+y(k) =
Ng
∑

i=1

Ng
∑

j=1

p(i, j), k = i + j − 1 = 1, 2, 3, ...., 2Ng and px−y(k) =

Ng
∑

i=1

Ng
∑

j=1

p(i, j), k = |i − j | + 1 = 1, ...., Ng , Hx and Hy and entropies of px and py respectively, Hxy = −
∑

i

∑

j

px(i)py(j)log(px(i)py(j)),

Hxy2 = −
∑

i

∑

j

p(i, j)log(px(i)py(j))
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