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ABSTRACT The advancement of 5G technology has brought the prosperous development of Internet of

Vehicles (IoV). IoV services are not only computational intensive but also extremely sensitive to the delay. As

a promising computing paradigm, mobile edge computing (MEC) can be applied to IoV scenarios. However,

due to the limited resources of a single MEC server, it is difficult to cope with the suddenly increased

computation loads caused by emergencies, or the intensive resource requests from busy regions. Therefore,

we propose a novel regional intelligent management vehicular system with dual MEC planes, in which MEC

servers in the same region cooperate with each other to achieve resource sharing.We classify computing tasks

into different types according to their delay tolerances and focus on the optimization problem of resource

allocation for different type tasks. And then, we design a resource allocation algorithm based on deep

reinforcement learning, which can adapt to the changeable MEC environment to process high-dimensional

data. Simulation results confirm that our proposed scheme is feasible and effective.

INDEX TERMS Internet of vehicles, mobile edge computing, deep reinforcement learning, resource

allocation, delay tolerance.

I. INTRODUCTION

With the progress of 5G technology, theworld has accelerated

its pace into the 5G era. Benefit from the advantages of 5G

technology, such as low latency and high bandwidth, Internet

of Vehicles (IoV) has entered the rapid development stage.

Internet of vehicles is the evolution of conventional Vehic-

ular Ad Hoc Networks (VANETs), where the Vehicles-to-X

(V2X) communication technology is used to exchange infor-

mation between vehicles, infrastructures, pedestrians and net-

works. The most outstanding features of IoV services are

computation-intensive and latency-sensitive. The increasing

growth of vehicles, sensors and mobile devices has caused an

explosion in the number and variety of computing requests,

which undoubtedly increases the pressure on data processing.

Besides, many IoV services have extremely strict require-

ments on the delay, especially when it comes to driving

safety. Hence, to ensure efficient processing and low latency,
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it is crucial for vehicular systems to equip with sufficient

processing capacity.

Due to the limited computing capabilities in on-board

units (OBU) of vehicles, relevant scholars have proposed to

introduce cloud computing into vehicular systems. Because

of its inherent characteristics of centralized deployment and

long distance from terminals, making it unable to adapt to all

scenarios, especially some delay-sensitive services in internet

of vehicles. As a promising computing paradigm, mobile

edge computing (MEC) addresses such challenges. It deploys

some service nodes at the edge of networks to provide com-

puting resources, which reduces the computing delay greatly

and avoids the waste of bandwidth caused by offloading to

the cloud server [1].

However, vehicular systems with a single MEC server can

hardly handle the explosion of data processing caused by

emergencies, or the mass data from a busy region. Therefore,

it is imperative to deploy multiple MEC servers in the vehic-

ular system. For improving system efficiency, resource shar-

ing can be achieved by strengthening collaboration between
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multiple MEC servers. To construct such a vehicular system,

we mainly face the following challenges:

• Due to the high mobility, the position of the vehicle

changes rapidly. Whereas, the deployment location of

the service node is relatively fixed [2]. As a result, How

to leverage the fixed resources to provide computing

services for moving vehicles needs to be investigated.

• In the IoV system, different types of computing tasks

have different demands on latency and resources. There-

fore, how to allocate appropriate computing resources

for different tasks to satisfy their stringent delay con-

straints deserves to be well studied.

Traditional methods such as the game theory [3] and the

genetic annealing algorithm [4] are puzzled by the complex-

ity. Moreover, they also have some limitations in solving

resource optimization problems in the complex and change-

able MEC environment [5]. As an important branch of

machine learning, deep reinforcement learning (DRL) can not

only solve problems with a low complexity, but also acquire

knowledge from the environment, ameliorate policy to adjust

to the varying environment and make a series of resource

allocation decisions intelligently and adaptively.

In this paper, we emphasize the collaboration between

multiple MEC servers, proposing a MEC based regional

intelligent management vehicular system. We classify IoV

computing tasks into different types according to their delay

tolerances. Then, we mainly focus on the optimization prob-

lem of resource allocation for tasks with deferent types in the

proposed system. In order to tackle the problem, we formulate

the optimization problem as a Markov decision process and

adopt the deep reinforcement learning technology to process

high dimensional data.

Our contributions are as summarized as follows:

• We propose a novel regional intelligent management

vehicular system with multi-tiers MEC servers, which

can provide computation-intensive, mobility-aware and

low-latency services.

• To minimize the delay, we consider the optimization

problem as a Markov decision process and design an

algorithm to allocate computational resources adap-

tively via deep reinforcement learning.

The remaining parts of this article are organized as fol-

lows. In Section II related works are discussed. Then we

give the system description and models in Section III.

In Section IV, we formulate the optimization problem of

computing resource allocation as a Markov decision process

and solve it with DRL. Simulation settings and performance

evaluations of our algorithm are shown in Section V. Finally,

Section VI concludes this paper.

II. RELATED WORK

In this section, we first review some related works about

mobile edge computing based vehicular systems. Then recent

researches of computational offloading and resource alloca-

tion schemes in MEC are presented.

A. MOBILE EDGE COMPUTING BASED

VEHICULAR SYSTEMS

In recent years, there is an increasing trend to utilize MEC in

vehicular systems.

Someworks designed systemswithout the resource sharing

mechanism, and only one MEC server was studied. Li et al.

in [6] proposed a multi-user MEC system, where multiple

user equipments realized the computational offloading via

wireless channels to a MEC server. An orthogonal frequency

division multiple access based cloud radio access network

with an integrated MEC server is studied in [7]. Zhou et al.

in [8] focused on the problem of reducing the completion

time of Virtual Reality applications for IoV, and allowed

vehicles to offload the VR tasks to the MEC server in the

edge vehicular network.

Other systems include the resource sharingmechanism, but

are limited to the sharing of the communication resources

and the computing resources are relatively independent.

A software-defined network inside the mobile edge com-

puting architecture was designed for offloading vehicular

communication traffic in [9]. Dab et al. in [10] envisioned

a multi-user WiFi-based MEC architecture. A control/user

plane split (CUPS)-based multiband cooperative scheme was

presented in [11]. Instead of offloading application services

to the MEC server, Zhou et al. in [12] modeled a vehicular

MEC architecture where vehicular communication packets

were routed through the MEC network.

In systems where there is only one MEC server or MEC

resources cannot be shared, computing tasks can easily

become congested. Hence, in order to improve system effi-

ciency, we try to propose a dual-MEC-layers IoV system,

in which management and computing functions are properly

configured and computing resources are shared between mul-

tiple MEC servers.

B. COMPUTATIONAL OFFLOADING AND RESOURCE

ALLOCATION SCHEMES IN MOBILE EDGE COMPUTING

Many scholars are devoted to researches of computa-

tional offloading strategies in different MEC based systems.

To avoid interruption in the offloading process, Wang et al.

in [13] provided a dynamic offloading scheduling scheme

for MEC-enabled vehicular networks. Zhang and Cao in [14]

provided a stochastic programming algorithm tominimize the

energy consumption caused by offloading.Wang et al. in [15]

proposed a distributed algorithm to obtain the optimal routing

to offload the task of V2V.

Meanwhile, some papers also put forward different

resource allocation algorithms in MEC. Wang et al. in [16]

defined a resource allocation and power control method to

optimize spectrum efficiency and system capacity in a D2D

enabled MEC system of IWCN. A MEC based mission-

critical wireless sensor network architecture and a kind of

centralized computing resource management strategy were

studied in [17]. Qiu et al. in [18] explained how to man-

age and orchestrate resources jointly in software-defined
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FIGURE 1. The framework of regional intelligent management IoV System.

satellite-terrestrial networks. Ye and Li in [19] developed a

decentralized resource allocation mechanism for V2V com-

munications based on deep reinforcement learning.

Some work deals with the joint problem of computing

offload and resource allocation in MEC based vehicular

systems. In order to obtain the maximum system utility,

Zhao et al. in [20] designed the distributed computation

offloading and resource allocation (DCORA) algorithm. Tran

and Pompili in [21] jointly optimized the task offloading

decision, uplink transmission power and computing resource

allocation with a mixed integer nonlinear program (MINLP).

In our article, we mainly focus on the problem of resource

allocation for IoV computational tasks with deferent types in

the MEC based system.

III. SYSTEM DESCRIPTIONS AND MODELS
In this section, we first propose a regional intelligent man-

agement IoV system. After that, we give a brief description

of this system. Then, the network model, the communication

model and the computing model are introduced in detail.

A. THE REGIONAL INTELLIGENT MANAGEMENT

IOV SYSTEM

To cope with the resource limitation of a single MEC server,

we introduce the concept of multi-MEC servers collaboration

to achieve resource sharing. And then we expand from one-

MEC-layer to double-MEC-layers in the vehicular network,

proposing a regional intelligent management IoV system as

shown in Figure 1. In our system, the vehicular network is

separated into several regions, each region is organized by a

MEC region controller. Preventing a single MEC server from

overloading, tasks can be calculated at other MEC servers in

the same region. In the bottom-up view, our system contains

three planes: the data transport plane, the MEC plane and the

cloud plane.

1) DATA TRANSPORT PLANE

This plane is formed by Road Side Units (RSUs), vehicles

and pedestrians within the RSU communication range. Both

FIGURE 2. The detailed framework of MEC plane.

TABLE 1. The comparison of different computing-oriented IoV
architectures.

vehicles and pedestrians are not only the submitter of com-

puting tasks but also the receiver of the computation results.

RSUs are the network access points for data transmission and

location dynamic awareness.

2) MEC PLANE

This plane has two sub-planes: the MEC region control sub-

plane and the MEC serve sub-plane. In the lower sub-plane,

each base station is equipped with a MEC server which

provides pre-processing, management and computing ser-

vices for offloaded computing tasks. In the upper sub-plane,

the orchestrator of the MEC region controller is responsible

for making resource allocation decisions and coordinating

communications between MEC servers in the region.

3) CLOUD PLANE

In traditional cloud-computing-based systems, the cloud

plane plays the role of controlling and processing informa-

tion. However, the cloud servers are far from the end-users in

our system. In this paper, we treat cloud resources as backup

and de-emphasize the cloud functions.

Those functions are realized by the collaboration of dif-

ferent parts within the MEC plane. As we can see from

Figure 2, tasks are classified, marked and waiting in the pre-

process block. The manage block sends resource states and

executes commands from the MEC region controller. The

resource block pools and manages computing resources of

the MEC server, the smallest computational resource unit is

RB. In addition, there is a deep reinforcement learning unit

in the orchestrator, which determines allocation strategies

automatically and intelligently. That is the reason why our

system can realize intelligent self-management.

As shown in Table 1, the advantages of our regional intel-

ligent management IoV system (Region) compared with the
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TABLE 2. Task classification.

traditional cloud based IoV system (Cloud) and the single

MEC based IoV system (Single) are as follow:

• Our system combines the advantages of decentralized

and centralized systems, the data processing can beman-

aged independently in each region.

• Better than a singleMEC server, multi-MEC servers col-

laboration can reduce the possibility of task congestion

and provide more appropriate resources for tasks.

B. SYSTEM DESCRIPTION

In this article, we mainly focus on the issue of how to allocate

resources for IoV computing tasks to meet the high-level

requirement of delay. The maximum delay acceptable to the

task is the delay tolerance. We classify IoV computing tasks

into different types according to their delay tolerances [22],

[23], type = {1, 2, 3, 4}. The task type and the classification

criterion are shown in Table 2.

• Type 1 is the urgent task with an extremely high-level

requirement of the delay. Such as real-time traffic alerts,

automated driver assistance, remote driving, and forma-

tion driving.

• Type 2 is the real-time task which mainly includes

queries under human intervention, high definition real-

time maps and adaptive cruising of vehicles.

• Type 3 is the general task with a wide-range delay

tolerance, generated by entertainment, communication,

and health IoV services.

• Type 4 is the best-effort task with a low-level require-

ment of the delay. Such as environmental monitoring,

vehicle maintenance, and automotive software updates.

The details of task processing refer to Figure 3. We stip-

ulate that when a task is generated, it is first offloaded to

the nearest RSU and then to the MEC server which the RSU

belongs to. And tasks are classified, marked and waiting in

the MEC server deployed in the base station. Meanwhile,

theMEC server uploads resource requests to theMECRegion

controller. After accepting the request, the MEC region con-

troller obtains the environment state from MEC servers and

makes the resource allocation decision as soon as possible.

The decision involves choosing the most appropriate MEC

server and selecting some RBs in it. The specific decision-

making mechanism is described in Section IV. Finally,

the selected MEC server provides computing resources for

calculating the task and passes the results back to the corre-

sponding vehicle.

FIGURE 3. The details of task processing.

C. NETWORK MODEL

We divide the entire vehicular network into R regions,

and each region is organized by a MEC region controller.

The set of MEC region controllers is denoted by C =
{1, . . . , c, . . . ,C}. Each one MEC server is placed in one

base station to provide computing services to the vehicles,

and we set M = {1, . . . ,m, . . . ,M} to represent the number

of base stations and MEC servers. We assume that a MEC

server contains n computational resource units (RBs), N =
{n1, n2, . . . , nM } is the set of the number of RBs in eachMEC

server in one region. The difference in the number of RBs

reflects the difference in the computing ability of the MEC

server.

D. COMMUNICATION MODEL

In our system, each vehicle is equipped with an on-board

unit (OBU) containing signal sending and receiving devices.

Besides, the RSU supports simultaneous communicationwith

multiple vehicles. And the base station supports simultaneous

communication with multiple RSUs. C-V2X (Cellular net-

work based Vehicle to Everything) is a kind of cellular-based
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wireless communication technology, which is adopted by the

RSU and the OBU for communications. The RSU obtains

computing resources of MEC servers through wired connec-

tions. In addition, communications betweenMEC servers and

communications between MEC servers and the MEC region

controller are also wired.

We consider the large-scale fading, such as Rayleigh fad-

ing, as well as the small-scale fading, such as the shadow

fading and the path loss [24].We assume that there are enough

orthogonal wireless channels than the number of vehicles,

so we ignore the interference between vehicles here. More-

over, we model the mobility problem of vehicles as the effect

of position on the transmission rate shown in Figure 3(b). The

Signal to Noise Ratio (SNR) and the transmission rate of the

vehicle Vj are represented as:

SNRj =
∣

∣ηj
∣

∣

2
ρj

δ2
, (1)

uj = Blog2(1+ SNRj), (2)

where, ρ is the transmitting power. ηj =
√
sj · ηj′ is the

composite channel between Vj and the RSU. ηj
′ is the channel

coefficient following the Rayleigh distribution with a mean

of 0 and a variance of 1. sj = (d/r)−ξ10(θ/10) is equivalent to

a small scale fading from Vj to the RSU, including the path

loss and the shadow fading. d is the distance between Vj and

the RSU. r is the reference distance. ξ is the path loss factor.

θ is a normally distributed random variable with an average

value of δ2. The shadow fading conforms to the independent

lognormal random distribution with the standard deviation δ.

uj is the transmission rate of the vehicle Vj, which is related

to the channel bandwidth B and the SNR of the channel.

E. COMPUTING MODEL

It is the fact that the flow of tasks arriving at the MEC server

and the requests arriving at the MEC region controller follow

the Poisson distribution [25]. Due to the transmission delays

of wire transmissions are negligible, the delay D(i) of task i

with type t is divided into four parts:

1). Delay of offloading to the RSU, Dupload (i);

2). Delay of waiting, Dqueue(i);

3). Delay of calculating, Dcompu(i)

4). Delay of passing back to the vehicle, Dreturn(i).

We assume that the amounts of data and CPU cycles are

similar for the same type of tasks. Sut and S
d
t are the amounts

of data in offloading and downloading phases respectively. uui
and udi are the transmission rates for offloading and down-

loading for task i. Dt indicates the number of CPU cycles

needed to calculate the type t tasks. FRB shows the computing

ability that a RB can provide. n is the number of RBs allocated

for task i by the deep-reinforcement-learning based resource

allocation algorithm. Ki indicates the load state of the MEC

server for calculating task i.

Both the waiting time of tasks in the MEC server

and the sojourn time of resource requests in the MEC

region controller can be obtained using the queuing theory

M/M/1 model. Compared to the queuing time, the deci-

sion time of the controller is negligible. λm and λr are the

arrival rates of data arriving at the MEC server and the

MEC region controller, which indicate the arriving number

of tasks or requests per second. βm and βr are the processing

rates of the MEC server and the MEC region controller

respectively.

All parts of delay can be calculated as follows (3) to (7):

Dupload (i) =
Sut

uui
, (3)

Dqueue(i) =
λm

βm(βm − λm)
+

λr

βr (βr − λr )
, (4)

Dcompu(i) =
Dt

n · FRB
· Ki, (5)

Dreturn(i) =
Sdt

udi
, (6)

D(i) = Dupload (i)+ Dqueue(i)+ Dcompu(i)+ Dreturn(i).
(7)

The computing resources in our MEC based vehicular

network are complex and variational. In addition, the distribu-

tions of vehicles and resource requests have certain regulari-

ties. It may be viable to take advantage of machine learning to

learn the regularities of vehicles and requests. Consequently,

we consider solving the resource allocation problem with

deep reinforcement learning.

IV. PROBLEM FORMULATION AND SOLUTION

In this section, based on the above models, we first formulate

the resource allocation problem as aMarkov decision process

by defining the state space, the action space, and the reward

function. After that, we solve this problem with an intelli-

gent resource allocation algorithm via deep reinforcement

learning.

In our system, the resource allocation strategy is decided

in the MEC region controller of each region. We discuss

resource allocation problem in region G which contains m

MEC servers.

A. STATE SPACE

Since the resource environment is changing, it is necessary to

update the available resources in time. Our design of the state

space at time instant t is as follows:

S(t) = {wi ∈ W ,L(t),B(t)}, (8)

where

W = {1, 2, 3, 4}, (9)

L(t) = [l1, l2, l3, . . . , lm], (10)

B(t) = [b1, b2, b3, . . . , bm], (11)

where, wi is the type of task i that needs computing resources

at time instant t . L(t) records the load states ofmMEC servers

in region G. And B(t) records the available numbers of RBs

in each MEC server.
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B. ACTION SPACE

The intelligent agent must select one of the MEC servers

and some of RBs in that MEC server. We stipulate that RBs

allocated for task i must be concentrated in the same MEC

server. Furthermore, different types of tasks have different

demands for delay. In case delay-insensitive tasks consume

too much computing resources, we give the upper bound of

the allocated RB numbers for each type, upper = (4, 3, 2, 1).

Thus, the action space can be represented as:

A(t) = {meci ∈ Ŵ, rb_sel(t)}, (12)

where

Ŵ = {1, 2, 3, . . . ,m}, (13)

rb_sel(t) = [rb1, rb2, rb3, . . . , rbz]. (14)

The action space includes two parts: meci and rb_sel(t).

The former is the choice of MEC server for calculating

task i. The latter is the choice of RBs in meci, and there are

z RBs in meci. rbk ∈ {0, 1}, when rbk = 1 means k th RB has

already been selected at time instant t . Otherwise, rbk = 0.

The number of selected RBs must be less than or equal to the

number of available RBs.

C. REWARDS AND PUNISHMENTS

The optimization goal is to minimize the delay D(i) while

satisfying the delay tolerances of all types of tasks. The D(i)

can refer to formula (3) to (7). The reward function r(t) can

be summarized as follows:

r(t) =

{

1/D(i), D(i) ≤ Dtole(wi)
Dtole(wi)− D(i), D(i) > Dtole(wi).

(15)

Due to large reward values are preferred, we set the reward

value to calculate the inverse of the delay. For tasks that

exceed the delay tolerance Dtole, we set the reward value to

negative as the punishment.

D. Q-LEARNING TO DEEP Q-LEARNING

Q-learning is a typical reinforcement learning algorithm,

which learns regularities and makes decisions through the

interaction between a agent and the environment.

In a decision cycle, the agent senses environment state st .

According to the action selection strategy π , the agent selects

action at which transfers the current environment to a new

state st+1. At the same time, the environment gives a feedback

reward value rt to the learning subject agent. Then at the next

decision cycle, the agent and the environment interact in the

same way.

Q-learning selects action-state Q(st , at ) as the value func-

tion, and evaluates the value function with the temporal dif-

ference method:

Q(st , at )← Q(st , at )+ α(rt + γ max
at+1

Q(st+1, at+1)

−Q(st , at )), (16)

FIGURE 4. The detailed interaction of deep Q network.

where α is the learning efficiency, used to control conver-

gence. γ is the discount factor which trades off the imme-

diate reward and the long-term reward. In Q-learning, each

Q(st , at ) is put into a corresponding position of the Q-table.

It is possible for the agent to select the action at with the

maximum Q-value, at = argmax
at

Q(st , at ).

However, the MEC environment in our proposed system is

complex and dynamically changing. It is not only impractical

to store all values in one Q-table but also time-consuming to

query a specific value in a large table frequently. Moreover,

neural networks can be used to compensate for the Q-learning

limitations in terms of generalization and function approxi-

mation capability [26]. Therefore, deep Q-Learning, which is

the combination of reinforcement learning and deep learning,

can be adopted into our multi-tires MEC based IoV system

to deal with the optimization problem of resource allocation

while maintaining QoS.

E. DQL BASED RESOURCE ALLOCATION ALGORITHM

Since deep Q-learning (DQL) introduces the neural network

with parameters θ on the basis of Q-learning (QL), the action-

state value has been changed from Q(st , at ) to Q(st , at ; θ ). In
each DQL learning iteration, neural networks are trained to

minimize the loss function, that is, minimize the deviation

between the target Q-value and the evaluation Q-value. The

loss function can be defined as:

L(θ ) = E[(rt + γ max
at+1

Q(st+1, at+1; θ ′)− Q(st , at ; θ ))2].

(17)

The detailed interaction of deep Q network (DQN) as

shown in Figure 4.

Compared with traditional QL, DQL has the following

outstanding innovative features:

• The experience replay. The deep Q network stores expe-

riences in the experience replay, and randomly selects

batches of (st , at , rt , st+1) to train neural networks.
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Algorithm 1 The DQL Based Resource Allocation Algo-

rithm
Input: discount rate γ , exploration rate ε, experience replay

capacity P

1: Initialize the experience replay to capacity P.

2: Initialize the evaluation network with parameters θ .

3: Initialize the target network with parameters θ ′.
4: for episode k = 1 : K do

5: Select a initial state st randomly.

6: while st ! = sgoal do

7: Select action at based on ε-greedy policy and type

constraints.

8: Obtain the immediate reward value rt and the next

state st+1.
9: Store experience (st , at , rt , st+1) in the experi-

ence replay.

10: Randomly selects batches of experiences from

the experience replay.

11: Calculate the target Q-value Qtarget (t):

12: if st+1! = sgoal
13: Qtarget (t) = rt ,

14: else

15: Qtarget (t) = rt + γ max
at+1

Q(st+1, at+1; θ ′).
16: Train the evaluation network to minimize loss

function L(θ ).

17: Each C steps update the parameters of the fixed

target network, θ ′ = θ .

18: st ← st+1.

19: end while

20: end for

Algorithm 2 Decision Procedure

Input: The trained evaluation network with parameters θ .

1: Initialize the environment state st .

2: for each decision cycle t do

3: Decide action at = argmax
at

Q(st , at ; θ ).

4: Execute action at .

5: Obtain reward rt and st+1.
6: st ← st+1.

7: end for

This mechanism disrupts temporal correlation by using

historical experience for training.

• There are two identical neural networks in DQN, evalu-

ation network and fixed target network. The evaluation

network updates parameters θ in each training step to

decrease the loss function. The parameters θ ′ of the fixed
target network is updated by copying parameters from

the evaluation network every stationary C steps.

Our DQL based resource allocation algorithm runs at the

DQN unit of theMEC region controller. The algorithm can be

divided into two stages, training and allocating. Each step of

this algorithm is shown in Algorithm 1 and Algorithm 2. The

TABLE 3. Parameter settings in the simulation.

former trains the neural networks, and the latter utilizes the

trained neural network to make resource allocation decisions.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we utilize computer simulation to evaluate

the performance of proposed DQL-based resource alloca-

tion scheme in the MEC based vehicular network. We first

describe the simulation settings and then present the simula-

tion results.

A. SIMULATION SETTINGS

The experiments are conducted in the Windows operating

system (CPU Intel core i7-7800x, 16GB of memory; GPU

RTX 2080Ti, including 4352 CUDA and 11GB graphics

memory; Python 3.7.5).

(1). Network framework: We use the MEC based regional

intelligent management framework which we mentioned in

Section III, including one MEC region controller, three base

stations containing three MEC severs, and two RSUs under

each base station.

(2). Parameter settings: The incoming resource requests at

MEC region controller and computing tasks at MEC Servers

obey Poisson distribution with same arrival rate. We assume

that all RSUs have same transmission power 26dBm, and

all vehicles have same transmission power 23dBm. Summar-

ily, other values of parameters in the simulation are listed

in Table 3.
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FIGURE 5. The training curves of different learning rates.

B. SIMULATION RESULTS

Figure 5 shows the convergence performance of the proposed

DQL-based resource allocation algorithm when the learn-

ing rates are 0.01, 0.005, and 0.002. The training curves

present a similar trend. In the beginning, the two neural

networks have the same parameters, the loss value is very

small. Then, as the evaluation network continues to learn and

update parameters, the loss value starts to increase. Finally,

due to the training takes effect, the loss value drops down.

The reasons for the jitter of the curve can be summarized

as the following two points. In the action selection, there

is 1 − ε probability that the action is selected at random.

In addition, the experience data used for training the network

is generated by many single tasks, rather than many batch

tasks.

With the growth of training iterations, the loss value

decreases gradually and tends to be stable, which proves that

our algorithm has a certain convergence. Moreover, we found

that the learning rate affects learning efficiency, it is very

important to set an appropriate learning rate in the training

process. A larger learning rate means a larger learning step,

which may lead to miss the optimal solution. Conversely,

a smaller learning rate slows down the speed of the con-

vergence. As can be seen from Figure 5, the learning effect

is the best when the learning rate is 0.01, and it converges

around 3000 iterations. After training the neural networks in

the DQN unit, we use them in the following simulation.

In order to demonstrate the delay performance of the

proposed algorithm, we compared three resource allocation

algorithms, as shown in Figure 6.

• RR: Round robin algorithm is a classic resource alloca-

tion algorithm, which is widely used in many scenarios.

• QL: A QoS enabled resource allocation algorithm based

on Q-learning (reinforcement learning).

• DQL: The proposed DQL-based resource allocation

algorithm, which is designed for processing IoV com-

puting tasks with different delay sensitivities.

FIGURE 6. The comparison of different resource allocation algorithms.

Figure 6(a) shows the average delays for completing differ-

ent types of tasks. As can be seen from Figure 6(a), for both

urgent tasks (type 1) and real-time tasks (type 2), the DQL

algorithm successfully reduces the average delay signifi-

cantly. Whereas, the average delays of the DQL algorithm

for both general tasks (type 3) and best-effort tasks (type 4)

are slightly higher than that of the QL algorithm. The reasons

can be summarized as follows:

• Firstly, our optimization goal is not to blindly pursue

the shortest average delay but to pursue the minimum

delay under the premise of not exceeding the delay toler-

ances of four types. Hence, rather than causing important

delay-sensitive tasks to time-out, it would be smarter to

allow tasks with looser delay limitations to finish more

slowly within the delay tolerance.

• Secondly, since the number of computing resources in

our system is fixed, when multiple resource requests

arrive at the controller at the same time, the agent

inevitably trades off between the four types. Compared

with QL, the DQL algorithm can more accurately and

globally learn the differences of types. The above effect

in Figure 6(a) proves that our DQL algorithm can
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FIGURE 7. The effect of arrival rates λ on server load.

allocate limited resources more reasonably and intelli-

gently, which is one of our contributions.

Figure 6(b) shows the outage probabilities for different

types of tasks. When the delay tolerance is exceeded, the sta-

tus of the task turns into the outage. Compared with other

algorithms, the DQL algorithm reduces the outage proba-

bilities of other types to a very low level at the cost of

the best-effort tasks. The RR algorithm lacks intelligence in

resource allocation due to its inability to perceive dynami-

cally changing resource environments and different require-

ments of tasks. Therefore, the RR algorithm has the worst

performance in terms of average delay and outage probability.

In our resource allocation mechanism, it involves the task

migration between multiple MEC servers in a region. We use

variances of MEC servers load to represent load differences

as shown in Figure 7.With the increase of arriving rates, more

tasks accumulate in servers, leading to the load variances

grow. Random algorithm and RR algorithm fail to consider

the load balancing, resulting in some servers are overloaded

while other servers are idle, the variances are large. As we

can see, the load on MEC servers under the DQL mecha-

nism is more balanced. This is mainly because our method

DQL(Optimal) choosing the optimal server by comprehen-

sively taking the MEC environment and the delay require-

ments into consideration, instead of DQL(Fixed) blindly

choosing the MEC server which the task belongs to or ran-

domly (Random) or inflexible (RR) in selecting servers.

Moreover, we compare the proposed sharing mechanism

with the non-sharing mechanism (servers without sharing)

in Figure 8. For fairness, the numbers of servers and resources

are exactly the same. Referring to the 8(a) and 8(b), the aver-

age delay and outage probability under both mechanisms

increase with the increase of the arrival rate λ. In the non-

sharing mechanism, a single server has limited resources,

resulting in task congestions and long waiting delays. On the

contrary, the sharing mechanism can make more flexible and

reasonable use of all resources in the region, getting better

FIGURE 8. The comparison of different sharing mechanisms.

performance in average delay and outage probability. This

proves the feasibility of our DQL resource sharing mecha-

nism in the proposed vehicular system with multiple MEC

servers.

VI. CONCLUSION

In this article, we propose a novel MEC based regional

intelligent management vehicular system, which can provide

closer and more sufficient computing resources to reduce

the delay. To solve the optimization problem of resource

allocation for different types of IoV tasks, we model the

Markov decision process by defining state space, action space

and reward function. In addition, we design an intelligent and

flexible resource allocation algorithm via deep Q-learning.

Simulation results illustrate that the proposed algorithm could

achieve better performance in terms of time efficiency, outage

probability and load balance, which indicate the feasible and

effective of the proposed system. Although deep reinforce-

ment learning has certain advantages in solving above prob-

lems, it is highly dependent on the training data. Once the data

changes, the state transition rule also changes, the network

needs to be retrained. Future works are going to consider how

to address this challenge.
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