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Abstract. We describe a method for using spatially referenced regressions of
contaminant transport on watershed attributes (SPARROW) in regional water-quality
assessment. The method is designed to reduce the problems of data interpretation caused
by sparse sampling, network bias, and basin heterogeneity. The regression equation relates
measured transport rates in streams to spatially referenced descriptors of pollution sources
and land-surface and stream-channel characteristics. Regression models of total
phosphorus (TP) and total nitrogen (TN) transport are constructed for a region defined as
the nontidal conterminous United States. Observed TN and TP transport rates are derived
from water-quality records for 414 stations in the National Stream Quality Accounting
Network. Nutrient sources identified in the equations include point sources, applied
fertilizer, livestock waste, nonagricultural land, and atmospheric deposition (TN only).
Surface characteristics found to be significant predictors of land-water delivery include soil
permeability, stream density, and temperature (TN only). Estimated instream decay
coefficients for the two contaminants decrease monotonically with increasing stream size.
TP transport is found to be significantly reduced by reservoir retention. Spatial referencing
of basin attributes in relation to the stream channel network greatly increases their
statistical significance and model accuracy. The method is used to estimate the proportion
of watersheds in the conterminous United States (i.e., hydrologic cataloging units) with
outflow TP concentrations less than the criterion of 0.1 mg/L, and to classify cataloging
units according to local TN yield (kg/km2/yr).

1. Introduction

The objectives of regional water-quality assessments are to
describe spatial and temporal patterns in water quality and
identify the factors and processes that influence those condi-
tions [National Research Council, 1994; Mueller et al., 1997].
Some regional assessments have the specific purpose of relat-
ing water quality to legal standards. Since its enactment in
1972, the Federal Clean Water Act (Public Law 92-500) has
required state governments, river basin commissions, and the
federal government to estimate biennially the proportion of
surface waters that meet accepted quality standards. These
assessments, and numerous others called for in subsequent
amendments to the act [Knopman and Smith, 1993], influence
a myriad of regulatory decisions and the expenditure of billions
of dollars annually [U.S. Environmental Protection Agency,
1990b].

Historically, a broad combination of state and federal mon-
itoring networks and programs has served as the principal
source of data for assessments. Efforts to compile data from
multiple sampling stations for assessing water quality at the
state [Dole and Wesbrook, 1907; Van Winkle and Eaton, 1910],
river basin [Leighton and Holister, 1904; Barrows and Whipple,
1907], and national [Dole, 1909] levels can be traced to the
early 20th century. Since that time, network sampling programs
have increased in number, size, and complexity [National Re-

search Council, 1990] and now support regional water-quality
assessment activities at spatial scales ranging from local to
global [e.g., Hirsch et al., 1988; Meybeck, 1982].

Despite widespread and long-standing interest in the use of

data from monitoring networks, certain commonly encoun-
tered problems make it difficult to interpret point-level water-
quality data in areal terms and thus meet the objectives of
regional water-quality assessments. Even when their objectives
are clearly established and sampling programs are well
planned, regional water-quality assessments are often compli-
cated by (1) sparseness of sampling locations due to cost con-
straints, (2) spatial biases in the sampling network due to the
need to target sampling toward specific pollution sources, and
(3) drainage basin heterogeneity. These complications impede
data interpretation in distinct ways by limiting sample sizes,
reducing the regional representativeness of the sampling net-
work, and limiting the ability to relate in-stream conditions to
specific pollution sources.

In this paper, we describe a method for interpreting moni-
toring data that reduces the commonly encountered problems
of network sparseness, bias, and basin heterogeneity. The
method involves construction of a statistical model relating
water-quality observations to spatially referenced (and poten-
tially temporally referenced) data on basin attributes. The in-
troduction of an explanatory model and ancillary data on basin
attributes expands the information base for interpreting water-
quality measurements, enhancing the ability both to describe
regional conditions and identify causative factors.

Current methods for interpreting data from sampling net-
works are based on relatively simple models of limited useful-
ness in assessments because of the complications of network
sampling. For example, estimates of the proportion of a water
resource meeting specified quality standards are generally
based on frequency-related interpretations of monitoring data;
but such estimates are invalid when spatial or temporal sam-
pling biases are large. Accurate estimates of proportions are
currently achievable only through randomized sampling
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[Messer et al., 1991] or when an existing sampling network can
be shown through ex post analysis [Smith et al., 1993a] to
provide approximate estimates. In practice, however, strong
incentives exist for conducting nonrandomized (i.e., targeted)
sampling to determine the causes of poor water quality [Knop-

man and Smith, 1993] or to take advantage of established
monitoring systems such as streamflow measuring networks.
Thus, despite the important role that proportions play in le-
gally mandated water-quality assessments, rigorous estimates
of proportions are rarely made.

Spatial-analytic techniques such as kriging [e.g., Clark, 1979;
Hughes and Lettenmaier, 1981] are designed to interpret spatial
gradients and account for spatial dependencies in data from
sampling networks. In theory, these techniques would provide
a basis for drawing maps of water-quality conditions and mak-
ing unbiased estimates of proportions. However, these inter-
polation techniques are not well suited to the dendritic nature
of stream networks, and their usefulness for understanding the
causes of contaminated conditions is limited by the lack of true
explanatory variables.

A variety of statistical methods has been used to relate
network-derived water-quality data to explanatory factors. One
simple approach uses box plots to compare the distributions of
water-quality measurements for groups of sampling stations
differentiated by land use or other basin attributes [Mueller et

al., 1995; Smith et al., 1993a; see also Omernick, 1976]. Al-
though causal links have been identified, basin heterogeneity
usually limits the ability to clearly differentiate the effects of
specific attributes, and the predictive power of the technique is
low. Beginning with attempts to determine the factors influ-
encing suspended sediment yields [Branson and Owen, 1970;
Flaxman, 1972; Hindall, 1976], a variety of regression tech-
niques have been used to relate water quality to basin at-
tributes [Steele and Jennings, 1972; Lystrom et al., 1978; Steele,
1983; Peters, 1984; Osborne and Wiley, 1988; Driver and Tasker,
1990; Hainly and Kahn, 1996; Mueller et al., 1997]. However,
these models treat basin attributes as homogeneously distrib-
uted in the watershed, an assumption that fails to account for
important relationships among the attributes and between the
attributes and water-quality measurements on the dependent
side of the regression equation. A recent paper by Cressie and

Majure [1997] combines kriging techniques with a regression
model that recognizes a finite zone of influence within the
watershed, thus avoiding the strict homogeneous assumption.

The primary distinction between our method and previous
regression approaches is our explicit inclusion of the spatial
dimension in the underlying model. In the model developed
here, contaminant transport is described as a function of spa-
tially referenced land-surface and stream-channel characteris-
tics. An important, testable hypothesis of the present study is
that spatial referencing of basin attributes increases their cor-
relation with water-quality measurements. A second, though
less easily tested, hypothesis of this study is that spatial refer-
encing facilitates the interpretation of model coefficients in
terms of the sources and processes involved in contaminant
transport through watersheds. As discussed and illustrated in
section 4, this enhanced capability allows the model to be
applied to a variety of assessment-related problems not possi-
ble with earlier approaches. We refer to the method described
here as Spatially Referenced Regressions On Watershed at-
tributes (SPARROW).

The SPARROW method described here includes several
modifications and refinements of a prototype method for spa-

tially referenced regressions of water-quality measurements on
basin attributes previously described by Smith et al. [1993b].
The principal differences between the earlier study and this
one are the consideration of more varied sources of pollution,
additional processes affecting the delivery of these sources, a
better statistical treatment of the decay process, and the ap-
plication of the model to a larger region with a more diverse
range of basin sizes and characteristics. The present model is
based on data from approximately 400 monitoring stations in
the National Stream Quality Accounting Network [Alexander et

al., 1996; Ficke and Hawkinson, 1975] and is applied to nontidal
stream reaches in the conterminous United States.

To demonstrate use of the model in the context of regional
water-quality assessment, we undertake two applications. Both
focus on important estimation problems that are difficult to
resolve with network-derived monitoring data alone. The first
is that of estimating the proportion of streams in regions of the
conterminous United States in which the concentration of a
contaminant exceeds an established criterion or threshold con-
centration. As discussed above, accurate estimates of such pro-
portions are an important goal of federally mandated assess-
ments under the Clean Water Act but are difficult to obtain
when spatial biases exist in the sampling network. We show
that the model developed here can be used to overcome the
effects of spatial sampling biases in estimating the proportion
of U.S. watersheds (i.e., hydrologic cataloging units [Seaber et

al., 1987]) having phosphorus concentrations at the watershed
outflow that exceed the commonly accepted criterion of 0.1
mg/L.

The second application illustrates a method for prioritizing
watersheds for nonpoint-source pollution controls. Currently,
there is considerable interest in increasing the efficiency of
pollution control programs, especially nonpoint-source control
programs, by focusing control efforts on watersheds where they
are most needed. Stream monitoring alone does not provide
sufficient information to compare watersheds because the ef-
fects of local pollution sources on in-stream water quality can-
not be separated from the effects of contaminants originating
in upstream watersheds. We show that the spatially referenced
model developed here can be used to compare the hydrologic
cataloging units on the basis of local nutrient yields. Through
the use of “bootstrap” methods [Efron, 1982], we obtain robust
estimates of the accuracy of these predictions.

The paper is organized into five sections. Following the
introduction, a methods section includes a mathematical de-
velopment of the underlying model and a description of the
data sets and statistical procedures used to build the model.
Section 3 presents the results of the regression and error anal-
yses and includes a description of the bootstrap procedures
used in error analysis. Section 4 presents the two model appli-
cations, and section 5 contains a summary discussion.

2. Methods

2.1. Overview of the Method

This section describes construction of a statistical model
relating in-stream water-quality measurements to spatially ref-
erenced watershed attributes. Spatial referencing of land-
based and water-based variables is accomplished via superpo-
sition of a set of contiguous land-surface polygons on a
digitized network of stream reaches that define surface-water
flow paths for the region of interest. Water-quality measure-
ments are available from monitoring stations located in a sub-
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set of the stream reaches. Water-quality predictors in the
model are developed as functions of both reach and land-
surface attributes and include quantities describing contami-
nant sources (point and nonpoint) as well as factors associated
with rates of material transport through the watershed (such as
soil permeability and stream velocity). Predictor formulae de-
scribe the transport of contaminant mass from specific sources
to the downstream end of a specific reach. Loss of contaminant
mass occurs during both overland and in-stream transport. In
calibrating the model, measured rates of contaminant trans-
port are regressed on predicted transport rates at the locations
of the monitoring stations, giving rise to a set of estimated
linear and nonlinear coefficients from the predictor formulae.
Once calibrated, the model is used to estimate contaminant
transport and concentration in all stream reaches. A variety of
regional characterizations of water-quality conditions are then
possible based on statistical summarization of reach-level es-
timates.

2.2. Model Development

The mathematical core of the SPARROW method is a re-
lation that expresses the in-stream load (i.e., transport rate) of
a contaminant at the downstream end of a given reach as the
sum of monitored and unmonitored contributions to the load
at that location from all upstream sources.

Let J(i) represent the set of reaches j that includes reach i

and all upstream reaches except those that either contain or
are located upstream of monitoring stations upstream of i

(Figure 1). We define

L i 5 O
n51

N

Sn,i (1)

where L i is contaminant transport in reach i , Sn ,i is the con-
taminant load from source n delivered to reach i from all
reaches in the subbasin delineated by J(i).

In general, the N sources referred to in (1) include all types

of point and nonpoint sources of the contaminant in the region
of interest. We assume that monitoring stations are located
near the downstream end of the reaches that contain them.
Thus in-stream contaminant loads at the location of monitor-
ing points upstream of i enter J(i) and are included as one of
the N sources. We refer to these entering in-stream loads as
“monitored sources” (see Figure 1).

The source terms Sn ,i includes the effects of a two-stage
delivery process operating on the contaminant mass as it
moves through the watershed. The first stage dictates the pro-
portion of contaminant mass that is delivered from the land
surface to the channel network at reach j . For nonpoint
sources the first-stage delivery process is mediated by a vector
of reach-specific land-surface characteristics Z j, which influ-
ence land-water delivery. Point sources and monitored sources
enter reach j directly and are not influenced by Z j. The second
stage of the delivery process, applicable to point sources, non-
point sources, and “monitored sources” (see above), deter-
mines the proportion of contaminant present in the channel in
reach j that is transported to reach i . This in-stream delivery
process is assumed to result from first-order decay of contam-
inant mass expressed as a function of a vector of channel
characteristics T i , j. These channel characteristics, evaluated
over the entire channel length from reach j to reach i , include
time-of-travel and channel size. Thus the source terms Sn ,i are
expressed as

Sn,i 5 O
j[J~i!

sn, jDn~Z j! K~T i, j! (2)

where sn , j is a measure of the contaminant mass from source
n that is present in the drainage to reach j , Dn(Z j) is the
proportion of sn , j that is delivered to reach j as a function of
land-surface characteristics Z j, and K(T i , j) is the proportion
of contaminant mass present in reach j that is transported to
reach i as a function of channel characteristics T i , j.

In distributing the land-surface contaminant source data to
stream reaches, the quantities sn , j are obtained as the reported

Figure 1. Schematic diagram of stream reaches in relation to monitoring stations (reaches extend from one
tributary junction to another). In calibrating the model, reach i refers to any reach containing a monitoring
station. In applying the model, reach i refers to any reach where a prediction is made. J(i) represents the set
of reaches that includes reach i and all upstream reaches except those that either contain or are located
upstream of monitoring stations upstream of i .
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quantity of contaminant from source n present in the land-
surface polygon containing reach j times the ratio of the length
of reach j to the total length of all reaches in the polygon. That
is, if P( j) is the set of all reaches in the polygon containing
reach j ,

sn, j 5 snS l jY O
j[P~ j!

l jD (3)

where sn is the reported quantity of contaminant from source
n present in the land-surface polygon containing reach j and l j

is the length of reach j .
Empirical implementation of the model given in (1) and (2)

requires an explicit functional form for the delivery factors
Dn(Z j) and K(T i , j). The land-water delivery factor is param-
eterized as

Dn~Z j! 5 bn exp ~2a9Z j!

Dn~Z j! 5 bn (4)

Dn~Z j! 5 1

for nonpoint sources, point sources, and upstream monitored
loads, respectively, where bn is a source-specific coefficient
and a is a vector of delivery coefficients associated with the
land-surface characteristics Z j.

Because reported contaminant-source data may include sur-
rogate measures or may understate or overstate the true avail-
ability of contaminant mass, the coefficients bn may deviate
from unity. Also, the land-surface characteristics Z j may be
either positively or negatively related to contaminant delivery.
If a land-surface characteristic is thought to be positively re-
lated to delivery (stream density, for example), its element of
Z j is taken to be the reciprocal of the characteristic, and if a
land-surface characteristic is thought to be negatively related
to delivery (soil permeability, for example), its element of Z j is
taken to be the characteristic itself. In either case, the land-
water delivery coefficients a are expected to be positive.

The polygon-based land-surface characteristics Z j are dis-
tributed to stream reaches by assuming the land-surface char-
acteristic for reach j to be equal to the sum of the length-
weighted land-surface characteristic of all polygons associated
with reach j . Thus, if P( x) is the set of all polygons containing
reach j ,

Z j 5 O
j[P~ x!

~ zx, j lx, j /l j! (5)

where zx , j is the land-surface characteristic of polygon x asso-
ciated with reach j , lx , j is the length of the portion of reach j

associated with polygon x , and l j is the total length of reach j .
The in-stream delivery terms K(T i , j) are parameterized as

K~T i, j! 5 exp ~2d9T i, j! (6)

where d is a vector of first-order decay coefficients associated
with the flow path characteristics T i , j. Details of the specific
form of the T i , j are discussed in section 2.5.

2.3. Estimation of the Model

An estimable version of the model given by (1), (2), (4), and
(6) is obtained by introducing a multiplicative error term e«,
where « i is assumed to be independent and identically distrib-
uted across nonoverlapping subbasins. Applying a logarithmic
transformation of (1), we obtain the estimable model

L i 5 ln S O
n51

N

Sn,iD 1 « i (19)

where L i is the natural logarithm of transport. The delivered
sources Sn ,i appearing in (19) continue to be given by (2), (4),
and (6). Coefficient estimation was performed using the model
procedure by SAS Institute [1993].

The assumption that the error term « i is independent across
observations implies there is no correlation in the errors
among the monitored basins. This assumption is consistent
with the way the model treats nested basins. When one mon-
itored basin contains another monitored basin, the model uses
the monitored transport from the upstream basin (rather than
the model-estimated transport) to represent contaminant
sources entering the lower basin. Thus prediction errors that
occur at the upstream monitored site do not cascade down to
the lower monitored site and do not induce correlation across
the subbasin error terms.

The following sections describe the contaminant sources,
land-surface characteristics, and channel characteristics in the
model, and their anticipated statistical relationship to contam-
inant transport. The data sources used in model calibration are
also described.

2.4. River Reach Network

A 1:500,000-scale digital stream network for the contermi-
nous United States (River Reach File 1-RF1 [DeWald et al.,
1985] defines surface water flow paths during model calibra-
tion and prediction. The network consists of approximately
60,000 reaches representing approximately 1 million km of
total channel length (mean reach length is 17 km). Reach
attributes include estimates of mean streamflow and water
velocity [DeWald et al., 1985]. Average stream velocity was
estimated for each reach using regression equations relating
velocity to long-term mean streamflow and stream order. The
regressions were calibrated using U.S. Geological Survey time-
of-travel studies. The reaches associated with 2100 large res-
ervoirs (normal capacity greater than 5000 ac ft (1 ac ft 5 1233
m3) [see Ruddy and Hitt, 1990]) were also designated in the
reach attribute file. Finally, the stream network contains nu-
merous instances of diversions and stream braiding. These
features were incorporated into the model with the assumption
that contaminant concentration is uniformly distributed in the
channel cross section. Thus, if a diversion diverts 20% of
streamflow, it is also assumed to divert 20% of the load pre-
dicted at the point of the diversion.

2.5. Channel Transport Characteristics

In-stream losses of contaminant mass occur as a function of
three variables: the travel time, streamflow (serving as a sur-
rogate for channel depth), and whether or not the reach is part
of a reservoir. Travel time is computed as the ratio of reach
length over stream velocity. Because the major processes in-
volved in in-stream loss of total phosphorus (TP) and total
nitrogen (TN) (sedimentation and denitrification) operate at
the channel bottom, deeper streams are expected to have lower
rates of decay [Howarth et al., 1997]. To incorporate this effect,
we divide streams into three flow classes: ,28.3 m3/s (1000
ft3/s), 28.3–283 m3/s and .283 m3/s (10,000 ft3/s). We then
separate the time of travel between reach i and reach j into the
total time of travel over each of the three classes of streams.
Thus the flow path characteristics vector T ij consists of three
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variables representing the travel times associated with trans-
port in the three stream classes. A network climbing algorithm
[White et al., 1992] performs the required accumulation. In
estimating the decay coefficients (d in (6)), we expect mono-
tonically decreasing values with increasing streamflow (i.e.,
increasing channel depth).

TP retention in reservoirs may be expected to differ from TP
decay in streams because of differences in settling rates of
sediment-bound phosphorus in the two environments. To es-
timate this effect, we define a fourth stream class in the TP
model consisting of reaches that are classified as reservoirs.
Accordingly, a fourth element is included in the flow path
characteristics vector T ij, consisting of the time of travel in
reservoir reaches between reach i and reach j . Reservoir
reaches are excluded when computing time of travel for the
three flow class variables. Exploratory regressions showed res-
ervoir retention is not a significant factor in channel decay of
TN.

2.6. Dependent Variable Data

Data from the U.S. Geological Survey’s (USGS) National
Stream Quality Accounting Network (NASQAN) were used to
develop observational data for model calibration. Commenc-
ing during the period 1973–1978, NASQAN records consist of
quarterly to monthly water column measurements from ap-
proximately 400 stations located near the outlets of selected
U.S. hydrologic cataloging units [Alexander et al., 1996; Seaber

et al., 1987]. Stations with indeterminant drainage area and
stations with significant Mexican or Canadian drainage were
not used in the analysis. We estimated long-term mean annual
transport for TP and TN (sum of dissolved nitrate 1 nitrite and
total Kjeldahl nitrogen measurements) at NASQAN stations
using bias-corrected, log-linear regression-based load-
estimation techniques [Cohn et al., 1989, 1992; Gilroy et al.,
1990]. We modeled the total nutrients TN and TP rather than
their component species because source data are generally
unavailable for the latter.

Periodic instantaneous measurements of nutrient transport
for the period 1974–1989 (or period of record for stations with
shorter records; the number of observations ranged from 60 to
120) were regressed on a set of up to five explanatory variables.
The full model is of the form

ln ~L! 5 l0 1 l1t 1 l2 sin ~2pt! 1 l3 cos ~2pt! 1 l4 ln ~q!

1 l5 @ln ~q!#2 1 e (7)

where L is the instantaneous nutrient transport, t is decimal
time, q is instantaneous discharge, e is the sampling and model
error assumed to be independent and identically distributed, ln
is the natural logarithm, sin (2pt) and cos (2pt) are trigono-
metric functions that jointly approximate seasonal variations in
transport, and the l are regression coefficients. The model
with the minimum prediction error sum of squares (PRESS
[Montgomery and Peck, 1982]) was selected as the “best” fit
from among the 15 possible models (seasonal terms enter and
exit as a pair).

Using the regression parameters from (7), we estimated the
annual transport that would have occurred at each station in
1987 if streamflow had corresponded to average conditions
over the period 1970–1988. These estimates of mean annual
transport for the base year 1987 (L) become the dependent
variable in the SPARROW calibrations described below, and
are obtained as

L 5
1

365 O
d51

365

exp @l0 1 l1t9d 1 l2 sin ~2pt9d! 1 l3 cos ~2pt9d!

1 l4 ln qd 1 l5~ln qd!
2# gm,d (8)

where qd is the mean of daily streamflow values for the dth day
of the year over the 1970–1988 period, t9d is decimal time for
the dth day in 1987, and gm ,d is the minimum variance bias-
correction factor of Bradu and Mundlak [1970; see Cohn et al.,
1989; Gilroy et al., 1990], where m is the degrees of freedom of
the best fit regression based on (7).

To reduce the effects of measurement error in the
SPARROW calibrations, we excluded stations where the stan-
dard error of transport estimation was larger than 20% of the
mean estimated transport. TN calibrations were based on a
total of 414 stations, and TP calibrations were based on 381
stations.

2.7. Contaminant Source Data

Five specific contaminant sources are included in the TN
and TP models calibrated in this study: point sources, applied
fertilizers, livestock wastes, runoff from nonagricultural land,
and atmospherically deposited nitrogen. (The atmosphere is
assumed to be a negligible source of total phosphorus.) As
described above, measurements of TN and TP transport at
upstream monitoring sites are included in the model as in-
stream sources of contaminant for downstream sites. This sec-
tion describes the sources in greater detail and explains how
they appear in the model.

Contaminant-source data were obtained for years corre-
sponding as close as possible to 1987, the year specified in (8)
as the base year for transport estimation at monitoring sta-
tions. Data for land-distributed sources were obtained as po-
lygonal files representing either counties, cataloging units,
physiographic regions, or contoured surfaces derived through
spatial interpolation of point data.

County-based estimates of the nitrogen and phosphorus
content of applied fertilizers [W. Battaglin and D. Goolsby,
U.S. Geological Survey, written communication, 1996; U.S.

Environmental Protection Agency, 1990a] and livestock wastes
were obtained for 1987. The nitrogen and phosphorus content
of livestock wastes was estimated using 1987 Census of Agri-
culture farm-animal population counts [U.S. Bureau of Census,
1989] and estimates of per-animal nutrient production rates
[U.S. Soil Conservation Service, 1992].

Estimates of atmospheric wet deposition of nitrate were
determined through a linear spatial interpolation of 1987 mean
deposition at 188 wet-fall monitoring stations in the National
Atmospheric Deposition Program [National Atmospheric Dep-

osition Program, 1988, written communication, 1995]. Because
wet nitrate deposition represents only a fraction of total nitro-
gen deposition (recent data suggest that total deposition may
be 3–4 times wet nitrate deposition [Stensland et al., 1986]), the
source coefficient for atmospheric deposition is expected to
exceed unity.

In addition to those identified above, we include an addi-
tional nonpoint source representing contaminants contained in
the runoff from all types of nonagricultural land. The magni-
tude of this source is assumed to be proportional to the total
area of urban, forest, and range land in the basin as given by
the National Resources Inventory county estimates of land
cover for 1987 [U.S. Soil Conservation Service, 1989]. Because

2785SMITH ET AL.: REGIONAL INTERPRETATION OF WATER-QUALITY DATA



the data used to represent this source are not expressed in
mass units, the source coefficient is not expected to approxi-
mate unity.

County-based estimates of point-source discharges of total
phosphorus and Kjeldahl nitrogen [Gianessi and Peskin, 1984]
were obtained from an inventory of 32,000 point-source facil-
ities, including industries, municipal wastewater treatment
plants, and small sanitary waste discharges for the years 1977–
1981. This inventory represents the most recent nationally
comprehensive compilation of point-source discharges of ni-
trogen and phosphorus. Reach-level point-source discharge
estimates were obtained by disaggregating county-level esti-
mates to reaches in proportion to the population density in the
vicinity of the reaches. Reach-level estimates of 1980 popula-
tion density [U.S. Bureau of Census, 1983] were determined by
assigning the census-unit population to the nearest reach
within 10 km and located in the same cataloging unit. Contam-
inant loads from point sources are delivered directly to
streams, and the land-water delivery factor, e(2aZ j), is not
applied. If the point-source data used in the regressions were
perfectly accurate, we would expect the source-specific coeffi-
cient bn to equal unity. However, available national-level data
on point-source discharges of total nitrogen and total phos-
phorus [Gianessi and Peskin, 1984] refer to 1977–1981 condi-
tions and, in many cases, are estimated from information on
type of facility. Thus we do not restrict the source-specific
coefficient for point sources.

Because the “monitored sources” (see above) emanating
from upstream basins are, effectively, in-stream sources, their
land-water delivery factor is constrained to unity. However,
these loads are “decayed” according to the same in-stream
processes assumed for all other sources. The fact that moni-
tored transport rates appear on the predictive (as well as the
response) variable side of the regression equation makes it
important that transport be measured accurately. The accuracy
filter applied to the transport estimates (see above) assures
that this is so.

2.8. Land Surface Characteristics

Eight land surface characteristics are included as potential
land-water delivery factors (Z j in (4)) in SPARROW calibra-
tions: soil permeability, slope, stream density, fraction of total
area classified as wetlands, long-term average ambient air tem-
perature, long-term mean precipitation, fraction of cropland
that is irrigated, and inches of applied irrigation.

Areas with highly permeable soils are expected to “absorb”
contaminants readily and divert them to the subsurface. Thus
high rates of soil permeability are expected to decrease the
delivery of contaminants to streams. Cataloging unit-based
estimates of permeability were determined from digital data in
the State Soil Geographic (STATSGO) database [U.S. Soil

Conservation Service, 1994; Schwarz and Alexander, 1995]. Av-
erage depth-weighted permeability was computed for approx-
imately 78,000 STATSGO soil geographic units and was sum-
marized by cataloging unit.

Land surface slope is included in calibrations in the recip-
rocal form, implying an expected positive effect on contami-
nant delivery. This assumption is consistent with the view that
higher velocities associated with steeper slopes decrease the
effects of time-dependent decay processes. We note, however,
that steeper slopes may also produce more subsurface flow
[Dunne and Leopold, 1978], thereby reducing the delivery of
contaminants. The source and methods of compilation of land-

surface slope data are the same as for soil permeability
[Schwarz and Alexander, 1995].

Stream density, defined as the ratio of channel length to
drainage area, is included in the reciprocal form, indicating a
positive effect on land-water delivery. A greater stream density
implies land-surface contaminants travel shorter distances on
average to reach streams. Estimates of stream density are com-
puted directly from the length and area attributes of the stream
network coverage.

Wetlands are widely recognized as effective filters for re-
moving nutrients and are especially effective in removing ni-
trogen [Howarth et al., 1996; Seitzinger, 1988]. To account for
this potential effect, we include the fraction of the land surface
classified as wetlands as an element of the delivery vector Z j.
County-level estimates of wetland area are taken from the
1987 National Resources Inventory [U.S. Soil Conservation Ser-

vice, 1989].
Higher temperatures increase rates of denitrification [Seitz-

inger, 1988] and are expected therefore to decrease the delivery
of TN to streams. Higher temperatures would also be expected
to increase rates of nitrogen fixation, but because natural fix-
ation is a relatively minor source of new nitrogen in most
watersheds compared to cultural sources, and because denitri-
fication is by far the most important sink for TN, we expect an
overall negative effect of temperature on TN delivery. Because
the most important processes affecting the transport of TP are
physical rather than biochemical, we expect temperature to
have an insignificant effect on TP delivery. Nevertheless, tem-
perature is included as a potential delivery factor in the ex-
ploratory regressions for both TN and TP. Average ambient air
temperature was obtained for 350 climate divisions in the con-
terminous United States for the period 1951–1980 [U.S. Geo-

logical Survey, 1986].
High rates of precipitation were expected to speed the de-

livery of contaminants to the stream network, resulting in
higher transport rates. In this case, precipitation would be
positively associated with delivery and should be included in
the delivery vector Z j in reciprocal form. However, preliminary
analyses showed complications in using simple precipitation as
an explanatory variable. Arid areas of the country with high
rates of irrigation and low levels of precipitation, in some
cases, have relatively high contaminant loads due, perhaps, to
the efficiency with which irrigation runoff is returned to the
stream. In any case, precipitation appeared to be inversely
related to transport, and irrigation rate was poorly correlated
with transport.

In an attempt to better isolate the separate effects of irriga-
tion and precipitation, we formed two interaction variables.
The first variable consisted of the reciprocal of applied irriga-
tion (in inches per year) times the share of cropland that is
irrigated. The second variable was the reciprocal of precipita-
tion times the share of cropland that is not irrigated. Simulta-
neous inclusion of both variables might be expected to capture
the separate effects of irrigation and precipitation on delivery.
However, in many areas, irrigation is used as a supplement for
precipitation. In such areas, the amount of runoff from fields is
relatively constant, regardless of the level of irrigation. To
allow for this effect, we included as a third variable the share
of cropland that is irrigated.

The source for mean annual precipitation data is the same as
that for temperature data [U.S. Geological Survey, 1986].
County estimates of annual irrigation water use were obtained
for 1985 from U.S. Geological Survey data files [Smith et al.,
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Figure 2. Predicted versus observed transport of total nitrogen.

Table 1. Results of Parametric and Bootstrap Regressions of Total Nitrogen at 414 NASQAN Stations on Basin Attributes

Model Parameters
Coefficient

Unitsa

Exploratory Model Final Model

Parametric
Coefficient p

Parametric
Coefficient

Parametric
p

Bootstrap
Coefficient

Lower
90% CIb

Upper
90% CIb

Bootstrap
p

Nitrogen source b
Point sources dimensionless 0.4112 0.0004 0.3464 0.0049 0.4401 0.0864 0.8173 ,0.005
Fertilizer application dimensionless 2.798 0.0154 1.278 0.0022 1.433 0.6149 2.373 ,0.005
Livestock waste production dimensionless 1.340 0.1553 0.9723 0.0629 1.058 0.0859 1.919 0.005
Atmospheric deposition dimensionless 3.334 0.2513 6.465 0.0033 6.555 3.270 9.323 ,0.005
Nonagricultural land kg/ha/yr 38.49 0.0154 14.67 0.0005 16.65 7.130 29.89 ,0.005

Land to water delivery a
Temperature 8F21 0.0228 0.0001 0.0196 0.0001 0.0198 0.0117 0.0259 ,0.005
Slopec % 0.2034 0.2187
Soil permeability h/cm 0.0295 0.0022 0.0442 0.0001 0.0447 0.0334 0.0572 ,0.005
Stream densityc km21 0.0205 0.0124 0.0215 0.0095 0.0243 20.0003 0.0450 0.025
Wetlandd dimensionless 0.7177 0.2962
Irrigated lande dimensionless 1.101 0.0001
Precipitationf cm 38.52 0.0057
Irrigated water useg cm 0.0772 0.3117

In-stream decayh d
d1 (Q , 28.3 m3/s) d21 0.2917 0.0001 0.3758 0.0001 0.3842 0.2981 0.4768 ,0.005
d2 (28.3 m3/s , Q , 283 m3/s) d21 0.1099 0.0001 0.1233 0.0001 0.1227 0.0621 0.1710 ,0.005
d3 (Q . 283 m3/s) d21 0.0352 0.1794 0.0406 0.1321 0.0408 0.0176 0.0685 0.015

R2 0.8822 0.8743
Mean square error 0.4310 0.4543
Number of observations 414 414

aDependent variable (nitrogen transport) in kilograms per year.
bMinimum bootstrap confidence intervals (CI).
cVariable enters the model in reciprocal form.
dRatio of wetland area to total land area.
eRatio of irrigated land area to total cropland area.
fProduct of reciprocal precipitation and one minus the ratio of irrigated land area to total cropland area.
gRatio of irrigated land area to irrigated water use.
hDecay coefficients fit separately for stream reaches with mean streamflow (Q) corresponding to indicated intervals. The streamflow interval

breakpoints of 28.3 and 283 m3/s correspond to 1000 and 10,000 ft3/s, respectively.
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Figure 3. Predicted versus observed transport of total phosphorus.

Table 2. Results of Parametric and Bootstrap Regressions of Total Phosphorus Transport at 381 NASQAN Stations on
Basin Attributes

Model Parameters
Coefficient

Unitsa

Exploratory Model Final Model

Parametric
Coefficient p

Parametric
Coefficient

Parametric
p

Bootstrap
Coefficient

Lower
90% CIb

Upper
90% CIb

Bootstrap
p

Phosphorus source b
Point sources dimensionless 0.2507 0.0010 0.2972 0.0003 0.3033 0.0914 0.4651 ,0.005
Fertilizer application dimensionless 0.1242 0.0847 0.1267 0.0035 0.1332 0.0398 0.2042 ,0.005
Livestock waste production dimensionless 0.1640 0.0976 0.1973 0.0003 0.1884 0.1019 0.2821 ,0.005
Nonagricultural land kg/hectare/yr 0.3505 0.0461 0.4092 0.0001 0.4236 0.2769 0.5937 ,0.005

Land to water delivery a
Temperature degrees 8F.21 20.0058 0.4471
Slopec percent 20.0243 0.8338
Soil permeability hour/cm 0.0348 0.0068 0.0441 0.0001 0.0501 0.0262 0.0736 ,0.005
Stream densityc km21 0.0467 0.0050 0.0401 0.0119 0.0290 20.0196 0.0630 0.185
Wetlandd dimensionless 0.9229 0.3222
Irrigated lande dimensionless 0.0704 0.8034
Precipitationf cm 17.63 0.3481
Irrigated water useg cm 0.0716 0.4347

In-stream decayf d
d1 (Q , 28.3 m3/s) day21 0.2391 0.0001 0.2584 0.0001 0.2680 0.1885 0.3497 ,0.005
d2 (28.3 m3/s , Q , 283 m3/s) day21 0.0905 0.0342 0.0947 0.0271 0.0956 0.0156 0.1834 0.010
d3 (Q . 283 m3/s) day21 20.0276 0.5819
d4 (reservoir retention)i day21 0.3378 0.0001 0.3377 0.0001 0.3586 0.2263 0.4697 ,0.005

R2 0.8179 0.8143
Mean square error 0.7070 0.7074
Number of observations 381 381

aDependent variable (phosphorus transport) in kilograms per year.
bMinimum bootstrap confidence intervals (CI).
cVariable enters the model in reciprocal form.
dRatio of wetland area to total land area.
eRatio of irrigated land area to total cropland area.
fProduct of reciprocal precipitation and one minus the ratio of irrigated land area to total cropland area.
gRatio of irrigated land area to irrigated water use.
hDecay coefficients fit separately for stream reaches with mean streamflow (Q) corresponding to indicated intervals. The streamflow interval

breakpoints of 28.3 and 283 m3/s correspond to 1000 and 10,000 ft3/s, respectively. Channel time-of-travel excludes that for reaches associated
with reservoirs.

iDecay coefficient based on channel time-of-travel for reaches associated with reservoirs. In nested F tests the coefficient is statistically
separable ( p values less than 0.01) from the reach decay coefficients.
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1993a]. County-level estimates of the share of irrigated crop-
land are from the 1987 National Resources Inventory [U.S. Soil

Conservation Service, 1989].

3. Results

The results of nonlinear least squares estimation of the pa-
rameters of the TN and TP models are presented in Tables 1
and 2, respectively. Coefficient estimates are presented in
three groups: source-specific coefficients (bn in (4)), land-
water delivery coefficients (a in (4)), and in-stream decay co-
efficients (d in (6)). Results for two alternative model specifi-
cations are included in the tables under the column headings
Exploratory Model and Final Model. The exploratory models
for both TN and TP contain the full set of estimated coeffi-
cients described in the Methods section. Note that a reservoir
retention coefficient is not included in the TN model, and an
atmospheric deposition coefficient is not included in the TP
model. Preliminary regression of the TN model showed that
there was no significant difference in nitrogen transport be-
tween reservoirs and streams. The final models were developed
through elimination of coefficients from the exploratory mod-
els, primarily on the basis of statistical significance. The final
models for both TN and TP perform nearly as well as the more
highly parameterized alternatives in terms of prediction error
and are used in the model applications described in the next
section.

To assess the robustness of the parameter estimates, the
final models undergo a bootstrap analysis [Efron, 1982]. The
bootstrap procedure involves randomly selecting with replace-
ment M monitored loads and their associated predictor vari-

ables from among the M observations in the original calibra-
tion data set (M is the number of monitored reaches in the
reach network). In cases where a sampled observation has an
upstream monitored load as one of its predictors, the moni-
tored value is used, regardless of whether the upstream station
appears in the bootstrap sample. A set of coefficient values is
then estimated from the bootstrap sample. The bootstrap pro-
cess is repeated 200 times, resulting in 200 estimates of the
coefficients. From these estimates it is possible to determine
the mean coefficient value (called the bootstrap estimate), a
minimum confidence interval (evaluated as the minimum
range of the bootstrap coefficient estimates such that the pro-
portion of estimates lying inside the range equals the confi-
dence level), and the probability that the estimated coefficient
has the wrong sign (the p value or proportion of bootstrap
coefficient estimates with the wrong sign).

The final models are analyzed graphically in this section as
follows: plots of predicted versus observed transport are shown
in Figures 2 and 3; the geographic distributions of regression
residuals are mapped in Figures 4 and 5.

3.1. Total Nitrogen Model

Values of R2 for the exploratory and final TN models are
0.88 and 0.87, and values for mean square error are 0.431 and
0.454, respectively. The two models differ only in the specifi-
cation of the land-to-water delivery term. Coefficient estimates
in the exploratory model for land slope, percent wetland, and
irrigation water use are statistically weak and are eliminated
from the delivery term with little effect on model performance.
Elimination of precipitation and irrigation ratio from the ex-
ploratory model is based on three considerations. (1) Prelim-

Figure 4. Total nitrogen residuals (predicted minus observed values) for 414 NASQAN stream monitoring
locations in the conterminous United States.
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inary regressions indicated that neither precipitation nor irri-
gation ratio, alone, is a significant predictor of TN transport.
(2) Preliminary regressions also indicated that inclusion of
precipitation, with or without irrigation ratio, interferes with
successful estimation of the source coefficient for atmospheric
deposition. We believe that precipitation may act as a surro-
gate for deposition because precipitation data are spatially and
temporally more extensive than the deposition data and are
correlated with deposition. (3) The results of TP model cali-
bration (see below) show no significant predictive effect of
either precipitation or irrigation ratio (the joint significance of
these variables, as measured by a likelihood ratio test, is 0.24).
The effect of these deletions is to greatly increase the signifi-
cance levels of all four nonpoint-source coefficients with little
loss of prediction accuracy. Of the five source coefficients in
the model (that is, four nonpoint-source coefficients plus one
point-source coefficient), four are highly significant ( p ,

0.005), and the fifth, livestock waste production, is moderately
so ( p 5 0.063). The contributions of the five TN sources to
predicted transport rate vary with location and are addressed
in the model application section that follows.

The delivery variables that remain in the final TN model
include temperature, soil permeability, and stream density.
The temperature and soil permeability coefficients are highly
significant ( p , 0.0001). Although the t statistic for stream
density is highly significant ( p 5 0.009), the bootstrap results
show the coefficient is imprecisely estimated and only moder-
ately significant.

In-stream decay rate coefficients in Table 1 are estimated for
three stream size classes defined as a discrete function of
streamflow: ,28.3 m3/s (1000 ft3/s), 28.3–283 m3/s, and .283

m3/s (10,000 ft3/s). Exploratory regressions indicated that esti-
mated decay rate decreases monotonically with increasing
stream size. The above classification is a somewhat arbitrary
representation of this relationship. Two of the three decay rate
coefficients are highly significant ( p , 0.0001), whereas the
coefficient for large streams is only weakly so (although it is
highly significant in the bootstrap analysis). The insignificance
of this coefficient stems from the relatively small value for
decay in high flow reaches.

The plot of predicted versus observed transport for the TN
Model (Figure 2) shows a tendency toward overprediction for
sites with transport rates less than about 1000 kg/d. The basins
in question tend to be relatively small and rural and receive a
large portion of their predicted TN transport from nonagricul-
tural land. Thus the bias appears to stem, in part, from the fact
that no distinction is made in the model between various types
of nonagricultural nonpoint sources. This might well be a
shortcoming because forests tend to retain nitrogen to varying
degrees [Johnson, 1992], whereas rangeland fixes nitrogen to
varying degrees [Rychert et al., 1978], and urban runoff is fre-
quently rich in nitrogen. Nevertheless, efforts to estimate spe-
cific source coefficients for forest and urban land were not
successful in preliminary regressions.

The TN residuals map (Figure 4) shows little evidence of
major regional biases in TN prediction. There is an apparent
tendency for both positive and negative residuals to be larger
west of the Mississippi River, in part, because transport mea-
surement errors (dependent variable) are larger in western
basins. At more local scales there are several examples of small
regional clusters of predominantly positive or negative residu-
als, including a region of frequent positive residuals (that is,

Figure 5. Total phosphorus residuals (predicted minus observed values) for 381 NASQAN stream moni-
toring locations in the conterminous United States.
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overprediction) along the Mid-Atlantic Coastal Plain and a
region of underprediction in the far northwest. Interpretation
of the underlying causes of such patterns raises the possibility
of future improvements in model performance.

3.2. Total Phosphorus Model

Values of R2 for the exploratory and final TP models are
0.82 and 0.81, and values for mean square error are 0.7070 and
0.7074, respectively. The parameters eliminated from the ex-
ploratory model include six from the land-to-water delivery
term (temperature, land slope, percent wetland, precipitation,
irrigation ratio, and irrigation water use) and the in-stream
decay coefficient for streams .283 m3/s. All eliminated param-
eters are statistically weak, and their loss has little effect on
model performance. The final TP model has a similar structure
to the final TN model with three exceptions. First, temperature
is not correlated with land-to-water loss of phosphorus, pre-
sumably because microbiological processes do not remove
phosphorus during this stage of total phosphorus transport.
Second, reservoir retention is shown to be an important aspect
of in-stream phosphorus transport. Finally, as previously
noted, atmospheric deposition is assumed to be a negligible
source of phosphorus and is not included in either the explor-
atory or final model. The four remaining source coefficients
(point sources, fertilizer application, livestock waste produc-
tion, and nonagricultural land) are all highly significant in the
final TP model. As in the TN model, the soil permeability
coefficient is highly significant, implying a strong negative cor-
relation with phosphorus delivery, and stream density is posi-
tively linked to phosphorus delivery. Although the t statistic for
stream density is moderately significant ( p 5 0.0119), the
bootstrap results show the coefficient is imprecisely estimated
and of questionable significance.

The plot of predicted versus observed transport for the TP
model (Figure 3) shows a tendency toward overprediction for
sites with transport rates less than about 100 kg/d. The pattern
is similar to the pattern of prediction biases observed for the
TN model (Figure 2) and involves many of the same sites.
There is also evidence in Figure 3 of a tendency toward un-
derprediction for TP transport rates greater than about 1000
kg/d.

The TP residuals map (Figure 5) shows little evidence of
major regional patterns in either the sign or magnitude of TP
prediction errors. As with TN errors (see Figure 4), however,
there are regional clusters of predominantly positive or nega-
tive residuals, including several that appear to correspond ap-
proximately in location and sign to clusters of TN residuals.
Nationwide, the Spearman rank correlation coefficient be-
tween TN and TP residuals is 0.61 (N 5 368), suggesting
significant commonality in the sources of prediction error.

3.3. Effects of Spatial Referencing

An important hypothesis of the present study is that spatial
referencing of basin attributes increases the accuracy of regres-
sion-based predictions of water quality over that of nonspa-
tially referenced models. We can test this hypothesis with re-
spect to the SPARROW model by constructing nonspatially
referenced models from the TN and TP data sets used here
and comparing their error characteristics to those reported
above. Spatial referencing exists in the SPARROW model
through the integration of two spatial structures: (1) the set of
land-surface polygons on which are mapped the nonpoint con-
taminant sources and the land-water delivery variables; and (2)

the network of stream reaches on which are mapped the point
sources, the channel transport characteristics, and the mea-
sured transport rates.

The major effect of spatial referencing in SPARROW can
be examined by eliminating the channel decay coefficients (in-
cluding the reservoir-TP retention coefficient) from the model
and estimating a new model containing only the contaminant
sources and land-water delivery variables contained in the orig-
inal model. As summarized in Table 3, loss of the spatial
structure provided by the reach network increases the mean
square error of the TN and TP models by 113 and 58%,
respectively; R2 values decrease by 14 and 11 points, respec-
tively. A secondary effect of the loss of the reach network is an
increase in the percent standard error of a majority of the
source and delivery coefficient estimates (not shown in Table
3). This effect is especially pronounced in the nonspatially
referenced TN model, where the coefficients for livestock
wastes, nonagricultural land, and soil permeability are not sta-
tistically significant. The implication of these results is clear:
knowledge of the location of contaminant sources and other
basin attributes in terms of the approximate travel time and
size of channel connecting them to specific stream locations
contributes significantly to the accuracy of transport predic-
tions and to the ability to determine the influence of specific
sources and processes on transport.

4. Model Applications

One of the challenges of water-quality assessment programs
is to describe regional water quality in useful and valid ways on
the basis of data from sampling networks. Because of the
problems of station sparseness, spatial bias, and basin hetero-
geneity (see above), network-derived water-quality data fre-
quently are inadequate for regional characterization when they
are interpreted simply as a sample of regional conditions. In
the method presented here, network-derived data are inter-
preted in the context of a model linking in-stream water quality
to spatially referenced information on contaminant sources
and other watershed attributes relevant to contaminant trans-
port. Once calibrated, the model serves two functions in re-
gional assessment. First, the model is used to predict contam-
inant concentrations and transport rates at an appropriate set
of stream locations for characterizing regional water quality.
Second, the model is used to gain insight into the factors that
influence water quality at those locations and, by inference, in
the region in general.

Table 3. Effect of Spatial Referencing on Measures of
Regression Model Performance

Model Components

Mean Square
Error R2

TN TP TN TP

Includes full spatial referencing
(SPARROW)a

0.4544 0.7074 0.8743 0.8143

Excludes in-stream decay and
reservoir retention

0.9659b 1.1185b 0.7307 0.7041

TN, total nitrogen; TP, total phosphorus.
aIncludes final model terms as specified in Tables 1 and 2.
bIn a likelihood ratio test, the sum of squares of error of the spatially

restricted model is significantly ( p ,, 0.001) larger than that of the
fully spatially referenced model (SPARROW).
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In this section we present example applications of the TN
and TP models developed above. In both applications, the
region of interest is defined as nontidal watersheds in the
conterminous United States. In characterizing water quality in
this region, we have chosen to focus on the set of 2057 stream
locations corresponding to the outflows of the eight-digit hy-
drologic “cataloging” units located in the 18 water resource
regions of the conterminous United States [Seaber et al., 1987]
(see Figure 6). These locations are a logical choice for nation-
al-level water-quality characterization in several respects: (1)
the cataloging units represent a systematically developed and
widely recognized delineation of U.S. watersheds; (2) the cri-
teria for establishing unit boundaries [Seaber et al., 1987] were
based on drainage area and other hydrologic considerations
rather than cultural factors and provide a spatially represen-
tative view of water-quality conditions; (3) the accuracy of
streamflow estimates for these locations is relatively high be-
cause gauging stations are located at or near the outflow of
many of the units. Streamflow estimates are an important com-
ponent of model predictions of contaminant concentrations
and play an important role in the example application of the
total phosphorus model presented below.

4.1. Total Phosphorus Model Application

One of the common objectives of water-quality assessment
programs is to determine the proportion of water resources
that meet specified quality criteria. Despite long-standing legal
requirements (Section 305b of the Clean Water Act, Public
Law 92-500) that states, river basin commissions, and the fed-
eral government regularly conduct such assessments, no na-
tionally consistent method has emerged for determining crite-
ria-based proportions. The problem stems, in part, from a
frequently encountered dilemma in assessment strategy: there
are strong incentives for targeting sampling to specific loca-
tions in order to determine the causes of poor water quality;
but such nonrandomized sampling increases the difficulty of

statistically characterizing regionwide water quality. The result

has been a practice of dividing the state or region of interest

into “assessed” and “unassessed” areas [U.S. Environmental

Protection Agency, 1994] and a general inability to assign con-

fidence intervals to estimated proportions.

As an illustration of the use of the method described here

for interpreting data from nonrandomized sampling networks,

we use the TP model to estimate regional proportions of the

nation’s cataloging units with TP concentrations meeting the

widely accepted criterion of 0.1 mg/L [U.S. Environmental Pro-

tection Agency, 1976].

To fully incorporate model prediction error, the results pre-

sented below rely on bootstrap simulations. Simpler paramet-

ric approximations of the method are possible. In a two-step

procedure, we make 200 stochastic predictions of TP transport

for each cataloging unit outflow (if a cataloging unit has mul-

tiple outflows, the outflow with the largest streamflow is cho-

sen). First, each iteration b of the procedure predicts transport

at every cataloging unit outflow using a unique set of model

coefficients drawn sequentially from the B 5 200 sets devel-

oped during the previously described bootstrap coefficient es-

timation process (see Results section). The resulting point

predictions reflect all of the covariances inherent in the coef-

ficient estimates, as well as the covariances that arise from

basing predictions at multiple cataloging units on a common

set of coefficients. The second step of the procedure incorpo-

rates the effect of model error (the « term in (19)) by making

use of the set of M residuals estimated from the M observa-

tions that went into the calibration of the bth set of coeffi-

cients. The M estimated residuals are first transformed by the

exponential function. We then multiply each cataloging unit

point prediction by one of the M randomly selected exponen-

tial errors to obtain a stochastic realization of transport. Use of

this second step rests on the assumption that the model error

is homoscedastic and independent across cataloging units.

Figure 6. Water resource regions in the conterminous United States.

SMITH ET AL.: REGIONAL INTERPRETATION OF WATER-QUALITY DATA2792



The proportion of cataloging units with TP concentrations
meeting the 0.1 mg/L criterion is estimated as follows. The 200
transport predictions made for the outflow of each cataloging
unit are divided by estimated mean streamflow to obtain 200
estimates of flow-weighted mean concentration. Note that con-
centration estimates do not account for error in estimated
streamflow at the cataloging unit outlets. For each bootstrap
iteration b , we determine the proportion Pb of cataloging units
that have estimated concentrations meeting the 0.1 mg/L cri-
terion. Finally, we average Pb over all bootstrap iterations to
determine the bootstrap estimated proportion of cataloging
units meeting the criterion. A confidence interval for this pro-
portion is computed by finding the minimum range over the
200 proportion estimates such that the fraction of estimates
lying inside the range equals the confidence level.

The results of the TP model application are presented in
Tables 4 and 5 and Figure 7. Table 4 shows the estimated

proportions of cataloging units with “low” TP concentrations
(that is, meeting the 0.1 mg/L TP criterion) for the 18 water
resource regions of the conterminous United States. The val-
ues vary widely from region to region, ranging from 0.84 in
New England to 0.11 in the Lower Colorado. The proportion
of watersheds that meet the criterion is consistently less than
0.25 throughout the midcontinent region (Upper Mississippi,
Missouri, and Arkansas regions) where agricultural sources of
phosphorus are high. Nationally, the proportion of cataloging
units meeting the criterion is estimated as 0.39. Figure 7 shows
the locations of cataloging units classified according to their
likelihood of meeting the TP criterion. It is clear from model
input that the occurrence of predicted high TP concentrations
throughout the arid West is more a reflection of low average
streamflow than of high TP sources.

The most comparable previous characterization of TP con-
centrations in U.S. streams during the mid-1980s (Smith et al.
[1993a]; see especially Figure 42a) is based on data from 410
monitoring stations and shows a similar geographic pattern of
concentrations exceeding 0.1 mg/L with high frequency in the
agricultural areas of the Midwest, northern and southern
plains, and arid West. Nationally, the proportion of stations
meeting the TP criterion in that study is 0.52. Because the
sampling locations in the study do not represent a statistical
sample of a precisely defined population, no confidence esti-
mates accompany the estimate.

The sizes of the confidence intervals surrounding the esti-
mated proportions in Table 4 vary geographically and are gen-
erally smaller for regions with larger numbers of cataloging
units. The 90% confidence interval for the smallest region, the
Tennessee (32 units), is 0.56–0.78, whereas that for the largest,
the Missouri (302 units), is 0.15–0.22. Nationally, the 90%
confidence interval surrounding the nonexceedance propor-
tion for the total 2048 cataloging units is 0.37–0.41.

One of the advantages of combining model building with
data collection in water-quality assessment programs is that
models provide a potential link between the descriptive and
explanatory aspects of assessment. Table 5 presents model
estimates of several variables pertaining to TP sources and
transport in watersheds classified according to their probability
of exceeding the criterion. The first three columns in the table
describe the shares (in percent) of total phosphorus transport
contributed by the four major TP sources for the watersheds in
the two probability classes. The percentages refer to the sizes

Table 4. Proportion of Hydrologic Cataloging Units With
Predicted Total Phosphorus (TP) Concentrations Not
Exceeding the TP Criterion of 0.1 mg/L

Regiona

Number of
Cataloging

Units Proportion
Lower

90% CIb
Upper

90% CIb

United States
(conterminous)

2048 0.394 0.373 0.416

New England 52 0.838 0.750 0.904
Mid-Atlantic 88 0.598 0.534 0.671
South Atlantic Gulf 191 0.580 0.524 0.623
Great Lakes 106 0.562 0.500 0.604
Ohio 120 0.511 0.450 0.575
Tennessee 32 0.709 0.563 0.781
Upper Mississippi 131 0.185 0.153 0.229
Lower Mississippi 82 0.471 0.390 0.549
Souris-Red-Rainy 42 0.217 0.143 0.286
Missouri 302 0.180 0.146 0.219
Arkansas-White-Red 171 0.189 0.140 0.240
Texas-Gulf 117 0.212 0.154 0.256
Rio Grande 67 0.344 0.254 0.418
Upper Colorado 62 0.339 0.258 0.419
Lower Colorado 75 0.108 0.067 0.160
Great Basin 61 0.241 0.115 0.361
Pacific Northwest 217 0.673 0.627 0.705
California 132 0.453 0.409 0.523

aWater resource regions of the United States shown in Figure 6.
bMinimum confidence intervals (CI).

Table 5. Sources and Transport Factors Related to Predicted Total Phosphorus (TP) in Hydrologic Cataloging Units of the
United States

Source

Share of TP Transport, % Land-Water Delivery Factora Channel Transport Factor

10th Mean 90th 10th Mean 90th 10th Mean 90th

Hydrologic Units With Concentrations Not Exceeding TP Criterion (n 5 797)
Point sources 0.0 9.1 28.0 0.297 0.297 0.297 0.503 0.731 0.924
Fertilizer application 1.5 15.7 34.9 0.038 0.067 0.088 0.513 0.703 0.878
Livestock waste production 6.0 26.0 48.0 0.059 0.104 0.136 0.507 0.697 0.874
Nonagricultural land 17.0 49.3 85.1 z z z z z z z z z 0.525 0.694 0.875

Hydrologic Units With Concentrations Exceeding TP Criterion (n 5 1251)
Point sources 0.0 7.9 22.4 0.297 0.297 0.297 0.120 0.491 0.831
Fertilizer application 0.9 21.0 46.0 0.048 0.072 0.090 0.169 0.462 0.751
Livestock waste production 10.2 37.7 63.8 0.075 0.111 0.140 0.166 0.452 0.743
Nonagricultural land 3.3 33.4 78.6 z z z z z z z z z 0.159 0.452 0.748

aLand-water delivery cannot be estimated for nonagricultural land because the source is not expressed in mass units.
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of the shares at the outflows of the cataloging units after
accounting for losses associated with land-water delivery and
channel deposition. Variation among watersheds is summa-
rized in terms of the mean, 10th percentile, and 90th percentile
values for the source shares. All results are averages of 200
bootstrap estimates (although bootstrap errors are not report-
ed). Note, however, that whereas the estimates incorporate the
effects of coefficient error, they do not include effects from
model error.

The second and third groups of columns in Table 5 give the
fraction of the contaminant mass from each source that is
transported during land-water delivery and channel transport,
respectively. The product of the mean values in each row gives
the fraction of the source that is transported over the total path
from its origin to the outflow of the cataloging unit. For ex-
ample, an estimated 6.7% of the phosphorus applied as fertil-
izer in an average low-TP cataloging unit is delivered to stream
channels, and an estimated 70.3% of that is ultimately trans-
ported to the unit outflow. Point sources in the model are not
under the influence of any of the specified land-water delivery
variables (such as soil permeability); the fact that the regres-
sion estimate of the point-source coefficient (0.297) deviates
from unity is likely the result, in part, of error in the point-
source inputs. One documented source of such error is a re-
duction in the magnitude of point-source discharges between
the late 1970s when the data were compiled and 1987, the base
year of the simulation (total phosphorus concentrations in
primary and secondary effluent fell by as much as 50% from
the 1970s to the late 1980s [Gianessi and Peskin, 1984; National

Research Council, 1993]).
One clear pattern in Table 5 is that agricultural sources

(applied fertilizer plus livestock waste) contribute a larger
share of TP in watersheds with a high probability of exceeding
the 0.1 mg/L criterion than in those with a low exceedance
probability (59% versus 42% on average). The reverse pattern

applies to the shares from nonagricultural nonpoint sources
(34% in high probability units versus 49% in low probability
units), whereas point sources contribute approximately the
same share (8% versus 9%) to TP transport in both categories
of watersheds. The association between exceedance probability
and dominance of agricultural sources is not surprising, given
the geographic distribution of high-TP watersheds (Figure 7).
Nevertheless, the indication in Table 5 that livestock waste
contributes more than applied fertilizer to TP transport in
general is an interesting result in the context of water-quality
assessment. The land-water delivery factors in Table 5 are
nearly identical for the high-TP and low-TP cataloging units,
whereas channel transport factors are larger among the low-TP
units. The latter pattern appears to result from the fact that
reservoir retention of phosphorus is especially important in the
midcontinent region where TP is high in spite of their effect.
Thus it seems that differences in transport processes among
cataloging units do not, in general, explain differences in the
probability of exceeding the TP criterion.

4.2. Total Nitrogen Model Application

Currently, there is considerable interest in increasing the
efficiency of pollution control programs, especially nonpoint-
source control programs, by focusing control efforts on water-
sheds where they will have the most effect. Stream monitoring
alone does not provide sufficient information to prioritize wa-
tersheds because the effects of local pollution sources on in-
stream water quality cannot be separated from the effects of
contaminants originating in upstream watersheds. Similarly,
information on the size of pollution sources in watersheds is
not sufficient for directing controls because transport pro-
cesses heavily influence in-stream quality.

In this application, we use the TN model to classify catalog-
ing units on the basis of their nitrogen yield (transport per unit
area) from local sources alone, independent of upstream units.

Figure 7. Classification of predicted total phosphorus concentrations in hydrologic cataloging units of the
conterminous United States.
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Such a classification is useful for comparing watersheds in
terms of their contribution to the quantity of contaminant
present in a region in general. Again, our procedure uses
bootstrap methods to account for prediction error. Because we
are interested in local yields, however, we do not allow pre-
dicted loads to move beyond cataloging unit boundaries and do
not use monitored loads to make load predictions. If a cata-
loging unit has multiple outflows, the predicted loads from all
its outflows are summed.

The results of the TN model application are presented in
Tables 6 and 7 and Figure 8. One of the striking features of the
geographic pattern of TN yields in Table 6 and Figure 8 is that
it differs markedly from the regional pattern of TP concentra-
tions (compare with Table 4 and Figure 7). TN yields, like TP
concentrations, are high in the agricultural Midwest but are
low in the Plains and Southwest and high in the North Atlantic
drainage, the inverse of the TP concentration pattern. There
are two reasons for the differences. First, the variable of in-

terest in the TN application, yield, is not increased by the lower

streamflow conditions of the western drainages, as concentra-

tion is in the TP application. Second, TN yields are increased

significantly in the North Atlantic drainage by atmospheric

sources of nitrogen, which do not apply to TP. According to

Table 7, atmospheric deposition contributes up to 33% (90th

percentile) or more of the nitrogen leaving the high-yield cat-

aloging units.

Table 7 provides information on several factors that appear

to distinguish high-yield from low-yield watersheds. The im-

portance of applied fertilizer is most obvious, averaging 48% of

TN yield in high-yield units and exceeding a 72% share in 10%

of those units. Point sources also contribute a significantly

higher share of yield in high-yield units than in low-yield units

(mean of 10.6% versus 2.4%). Livestock wastes contribute only

slightly more to yield in high-yield than low-yield units (mean

of 15.4% versus 12.8%) and contribute significantly less to

Table 6. Proportion of Hydrologic Cataloging Units With Predicted Total Nitrogen Yield ,500 and ,1000 kg/km2/yr

Regiona

Number of
Cataloging

Units

Yield ,500 kg/km2/yr Yield ,1000 kg/km2/yr

Proportion
Lower

90% CIb
Upper

90% CIb Proportion
Lower

90% CIb
Upper

90% CIb

United States (conterminous) 2057 0.603 0.568 0.634 0.819 0.781 0.843
New England 52 0.430 0.308 0.539 0.787 0.712 0.904
Mid-Atlantic 88 0.290 0.205 0.352 0.647 0.568 0.727
South Atlantic Gulf 191 0.565 0.492 0.634 0.871 0.822 0.911
Great Lakes 106 0.374 0.311 0.434 0.625 0.547 0.689
Ohio 120 0.206 0.142 0.267 0.563 0.467 0.633
Tennessee 32 0.292 0.156 0.406 0.724 0.594 0.844
Upper Mississippi 131 0.235 0.176 0.290 0.513 0.420 0.595
Lower Mississippi 82 0.392 0.305 0.476 0.713 0.610 0.793
Souris-Red-Rainy 42 0.704 0.571 0.810 0.893 0.810 0.952
Missouri 302 0.773 0.738 0.801 0.905 0.874 0.934
Arkansas-White-Red 171 0.694 0.620 0.749 0.903 0.860 0.947
Texas-Gulf 117 0.724 0.658 0.786 0.912 0.863 0.949
Rio Grande 67 0.917 0.866 0.955 0.968 0.940 0.985
Upper Colorado 62 0.925 0.871 0.968 0.982 0.951 1.000
Lower Colorado 83 0.975 0.952 1.000 0.993 0.976 1.000
Great Basin 62 0.925 0.887 0.968 0.978 0.952 1.000
Pacific Northwest 217 0.690 0.590 0.783 0.895 0.848 0.945
California 132 0.559 0.470 0.621 0.775 0.689 0.833

aWater resources regions of the United States shown in Figure 6.
bMinimum confidence intervals (CI).

Table 7. Sources and Transport Factors Related to Predicted Total Nitrogen (TN) in Hydrologic Cataloging Units of the
United States

Source

Share of TN Transport, % Land-Water Delivery Factora Channel-Transport Factor

10th Mean 90th 10th Mean 90th 10th Mean 90th

Hydrologic Units With Yield ,500 kg/km2/yr (n 5 1253)
Point sources 0.0 2.4 4.8 0.347 0.347 0.347 0.059 0.444 0.841
Fertilizer application 1.0 20.3 50.6 0.166 0.277 0.394 0.102 0.403 0.746
Livestock waste production 2.7 12.8 24.6 0.127 0.211 0.300 0.100 0.395 0.744
Atmospheric deposition 6.8 18.3 32.3 0.843 1.40 1.99 0.103 0.392 0.729
Nonagricultural land 13.1 46.3 78.0 z z z z z z z z z 0.099 0.390 0.737

Hydrologic Units With Yield .1000 kg/km2/yr (n 5 271)
Point sources 0.0 10.6 39.1 0.347 0.347 0.347 0.410 0.695 0.896
Fertilizer application 12.1 47.9 71.7 0.255 0.320 0.373 0.409 0.642 0.843
Livestock waste production 3.0 15.4 27.7 0.194 0.244 0.284 0.400 0.634 0.828
Atmospheric deposition 7.5 18.0 32.6 1.29 1.62 1.89 0.429 0.645 0.828
Nonagricultural land 1.8 8.2 18.0 z z z z z z z z z 0.449 0.650 0.832

aLand-water delivery cannot be estimated for nonagricultural land because the source is not expressed in mass units.
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yield than applied fertilizer in both yield classes, a notable
departure from the pattern observed for TP (Table 5).

Finally, there are several noteworthy results pertaining to
the transport factors in Table 7. As for TP (Table 5), land-
water delivery factors for TN are similar for the two yield
classes. TN delivery factors for agricultural sources, however,
are much higher than those for TP, differing by more than a
factor of 4 in the case of applied fertilizer. The difference is
consistent with the well-established greater mobility of TN
compared to TP in soils and watersheds in general, stemming
from the adsorptive and sedimentary properties of TP. Deliv-
ery factors in Table 7 for atmospheric deposition exceed unity,
implying an upward bias in estimating the source coefficient. It
seems likely that much of the apparent bias stems from the fact
that atmospheric inputs in the TN model are based on mea-
sured wet nitrate deposition and ignore the nonnitrate and dry
components, which commonly contribute more than 60% of
total nitrogen deposition [Stensland et al., 1986].

5. Discussion

5.1. Model Reliability

The bootstrap simulations of prediction errors included in
both the model construction and application phases of this
study were designed to provide coefficient estimates, model
predictions, and confidence intervals that are robust with re-
spect to the characteristics of both model and sampling errors.
Some discussion is in order, however, of certain aspects of
error that are not fully accounted for in the results. As previ-
ously noted, there is evidence in Figure 4 of larger errors in TN
transport west of the Mississippi River than in eastern basins.
The bootstrap analysis fully accounts for the observed magni-

tude of prediction errors but does not recognize regional pat-
terns in error. Thus we expect that the true confidence inter-
vals surrounding the TN yield proportions for eastern regions
are somewhat narrower than those stated in Table 6 and are
somewhat wider than those estimated for western regions.
Such geographic (or other) patterns in model precision will
have no effect on the estimated proportions per se. By con-
trast, prediction biases do potentially affect the estimated pro-
portions. For example, the tendency for the TP and TN models
to overpredict loads in certain small basins is accounted for in
the bootstrap analysis in terms of error magnitude but not in
terms of direction. If there were large differences in the num-
bers of affected basins among the water resource regions, the
estimated regional proportions would be biased. The lack of
evidence of major regional biases in either the TN or TP
residuals maps (Figures 4 and 5) suggests that the effect is
generally small. The localized clusters of same-sign residuals
that are evident in the maps do provide evidence of spatial
dependence of errors on a subregional scale that could affect
the results for certain of the smaller water resource regions.
We also hasten to note that success in interpreting the nature
of these spatial dependencies would provide a means for sig-
nificantly reducing model bias and increasing precision.

In addition to predicting nutrient concentrations and yields,
the models developed in this study are designed to provide
some insight into the important sources and processes affect-
ing nutrients in watersheds. The reliability of estimates of
source shares, land-water delivery factors, and in-stream trans-
port factors (Tables 5 and 7) can be evaluated to a limited
extent in terms of the estimation error of model coefficients
and the overall accuracy of model predictions. The generally
high precision of coefficient estimates and moderately high R2

Figure 8. Classification of predicted local total nitrogen yield in hydrologic cataloging units of the conter-
minous United States. Local yield refers to transport per unit area at the outflow of the unit due to nitrogen
sources within the unit, independent of upstream sources.
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values obtained in this study therefore encourage tentative use
of the models in process interpretation. However, the ultimate
limitation on use of this method in the explanatory aspects of
water-quality assessment lies in the necessary oversimplifica-
tion of transport processes that is inherent in the model struc-
ture.

One of the important variables influencing the precision of
the SPARROW method in estimating proportions and other
regional water-quality descriptors is the number of indepen-
dent point estimates of transport that are aggregated in the
regional estimates. The widths of the confidence intervals
shown in Tables 4 and 6 decrease as the number of cataloging
units per region increases. The full range of this effect becomes
evident in comparing the precision of individual point predic-
tions of transport, which are commonly in error by 50% or
more, with the precision of the estimated national TN and TP
proportions (based on the total 2046 units), which are esti-
mated to be in error by only a few percentage points. In
general, the most useful applications of the SPARROW
method are likely to involve analysis of aggregate properties of
regional watersheds. For a model with given error character-
istics, the effective minimum region size for useful analysis
becomes largely dictated by the number of statistically inde-
pendent locations that are available for prediction. At the
other extreme, the accuracy of aggregate statistics for large
regions with many independent prediction points is ultimately
limited by the estimation error of the model coefficients.

5.2. Concluding Remarks

Interpretive models are an important adjunct to data collec-
tion in regional water-quality assessment programs as a means
of addressing the problems imposed by limited sampling re-
sources, network bias, and basin heterogeneity. Models relat-
ing water-quality measurements to contaminant sources and
other watershed attributes provide a means of linking the de-
scriptive and explanatory functions of water-quality assess-
ment. The results of this study demonstrate that spatial refer-
encing of in-stream measurements in relation to basin
attributes greatly increases the predictive accuracy and explan-
atory potential of regression-based water-quality models. Spa-
tial referencing also facilitates application of the model to a
variety of assessment-related problems, which are not amena-
ble to analysis with nonspatially referenced models.

The SPARROW method can support water-quality assess-
ment objectives in several ways. The TP and TN model appli-
cations presented here are examples of two important catego-
ries of potential applications. The first, estimation of TP
exceedance proportions, represents a format for regional as-
sessment that is repeatable at regular intervals for purposes of
public information. We point out that although the model
functions according to watershed boundaries in the region of
interest, the results may be interpreted and displayed accord-
ing to any geographic scheme, including political units. Thus
analyses of state-level influences on regional water-quality con-
ditions are possible, provided the confidence intervals associ-
ated with analyses at this scale are acceptably narrow.

The TN model application presented here is a simple exam-
ple of use of the method in support of pollution control design.
Other applications in this category would logically involve sim-
ulation of the effects of alternative designs. Of particular value
is the capacity of the model to project the effects of contami-
nant sources originating in one location on water quality else-
where. Indeed, an important result of coefficient estimation for

both the TP and TN models is the clear indication that in-
stream transport becomes increasingly conservative as channel
size increases. An important consequence of this is that once
delivered to large rivers, nutrient loads travel long distances
and exert their effects far from their point of origin. The
implications of this for nonpoint-source control of nitrogen are
especially large because its ecological effects are thought to be
greatest in coastal areas.

One area for application of SPARROW models that should
not be overlooked is water-quality sampling and network de-
sign. A logical format for applications in this area is to use the
model to simulate the effects of changes in sampling location
and frequency on the reliability of water-quality predictions
based on the model. The merits of alternative designs may then
be explored in terms of accuracy improvements for various
types of model output. For example, the accuracy of predic-
tions related to contaminant sources and processes is heavily
dependent on coefficient error, which can be reduced by sam-
pling the widest possible range of the predictor variables. Al-
ternatively, predictions of regional-aggregate water quality may
be improved more through spatially representative sampling.
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