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Abstract: The large-scale integration of wind turbines (WTs) in renewable power generation induces
power oscillations, leading to frequency aberration due to power unbalance. Hence, in this paper,
a secondary frequency control strategy called load frequency control (LFC) for power systems
with wind turbine participation is proposed. Specifically, a backpropagation (BP)-trained neural
network-based PI control approach is adopted to optimize the conventional PI controller to achieve
better adaptiveness. The proposed controller was developed to realize the timely adjustment of
PI parameters during unforeseen changes in system operation, to ensure the mutual coordination
among wind turbine control circuits. In the meantime, the improved particle swarm optimization
(IPSO) algorithm is utilized to adjust the initial neuron weights of the neural network, which can
effectively improve the convergence of optimization. The simulation results demonstrate that the
proposed IPSO-BP-PI controller performed evidently better than the conventional PI controller in the
case of random load disturbance, with a significant reduction to near 10 s in regulation time and a
final stable error of less than 10−3 for load frequency. Additionally, compared with the conventional
PI controller counterpart, the frequency adjustment rate of the IPSO-BP-PI controller is significantly
improved. Furthermore, it achieves higher control accuracy and robustness, demonstrating better
integration of wind energy into traditional power systems.

Keywords: wind power generation; sudden load disturbance; load frequency control; BP neural
network; particle swarm optimization algorithm

1. Introduction

With the increasing energy crisis and environmental pollution of today’s society, the de-
velopment of renewable energy resources is gradually gaining attention all over the world.
Wind energy is gradually recognized as one of the most essential and promising energy
sources due to its advantages of clean environmental protection and high feasibility [1,2].
While wind power penetration gradually increases, its volatility and unpredictability bring
great challenges to the stable operation of the wind power system. Compared with tra-
ditional thermal generating units, the method of using wind turbine units to provide
electric power can often quickly respond to the change in load frequency. In addition, it
is more suitable to achieve the frequency regulation of the power system. Therefore, it
is crucial to explore an advanced control strategy to address the negative effects of load
frequency fluctuation.

In order to realize stable load frequency control (LFC) for power systems with wind
turbine integration and effectively improve the frequency regulation capability of wind
power regions, researchers have carried out extensive research in related fields and have
achieved a series of advanced results [3–9]. In [3], the authors proposed a robust control
strategy based on equivalent input disturbance (EID) that uses equivalent input disturbance
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to compensate the imbalance between power generation and load. This improves the
anti-disturbance performance of the power system in wind farms. However, at present,
robust control cannot be accurately guaranteed to work in the optimal state for a long
time [4]. Considering the existence of multiple energy sources serving local areas, the whale
optimization algorithm (WOA) is used to optimize fuzzy integral PI controllers (FIPIs);
then, the LFC problem in some regions and all regions in the interconnected power system
of heat–water–wind areas are analyzed under the condition of sudden disturbance, which
proves the superiority of the control method [5]. Additionally, an H2/H∞ load frequency
robust multi-objective TS fuzzy control method is applied in multi-area interconnected
power systems, and a distributed compensation scheme is used to design the entire control
system. Simulation data results show the robustness and effectiveness of this method
when dealing with load disturbance, model uncertainty, transmission delay, and model
nonlinear influence [4]. In [6], an ANFIS controller with artificial neural network was
designed considering the strength of the nonlinear characteristics of doubly fed induction
(DFIG) wind turbines and was successfully applied to the wind power generation system
in two regions. The simulation results show that the controller was helpful in reducing
overkill and shortening the regulation time of the nonlinear wind power generation system.
The study [7] designed a load frequency controller based on PSO-MPC, which not only
solved the randomness of wind turbine generation but also reduced the complexity of
traditional MPC calculation, with fast response speed and high stability. However, this
control method requires high precision of the model, and its continuous stability cannot
be guaranteed. To achieve better system performance, the sliding mode control (SMC)
strategy was used to analyze the frequency deviation and tie line power change of the
interconnected power system in two regions under the disturbance of a fixed load, and
a comparison with the traditional integral controller was made. The results show that
the control method improved the response of the main loop to a great extent and that the
frequency control effect was evident in case of overshoot and undershoot. Moreover, it
can be widely used in situations where wind and conventional power generation work
together [8]. The study [9] applied an optimal fuzzy PID sagging controller with adaptive
and self-tuning functions to the structure of wind turbines, which effectively compensated
for the decrease in the total inertia of the power system with the participation of the
wind farm. At the same time, the artificial bee colony algorithm was used to optimize the
membership function of input and output signals based on the multi-objective function. The
simulation results show that the control method is reasonable, with short stabilizing time
and high frequency control precision. In the paper [10], the researchers presented a data-
driven and model-free frequency control method based on deep reinforcement learning
(DRL) in the continuous-motion domain, which greatly differs from the traditional model-
based frequency control method. It is more adaptable to the dynamics of the unmodeled
system and has obvious advantages in solving the problem of renewable power supply.
Recently, some researchers investigated an asynchronous tracking control method for
amplitude signals and proved that the stochastically stable ability is significant in tracking
error systems [11]. The distributed LFC method uses a modular, distributed architecture,
where each region has an independent control system and is under the unified control of
a central control system, so it is highly flexible and coordinated. The interconnection of
signals from multiple regions solves, to a certain extent, the problem of the failure of part of
a single system leading to the collapse of the frequency control of the entire power system.
However, this control method has high technical requirements and a large communication
volume, which also brings some problems, such as data security and confidentiality [12–14].
Recently, designers proposed a static/dynamic event-triggered and self-triggered discrete
gain scheduled controller with designable parametric minimal interevent time (MIET) to
effectively achieve the semi-global stabilization of a linear system with input constraints,
which can save communication resources and avoid the monitoring of all states, which
gives us an idea of how to solve the above problem [15].
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LFC, as one of the important means to maintain the balance of power systems, plays
an indispensable role in the stable operation of power systems. At present, LFC still adopts
PI control to realize the normal operation of AGC, that is, traditional PI control is used to
adjust the wind turbine within the specified output adjustment range, track the instructions
issued by the power dispatching and trading institutions, and adjust the power output in
real time according to a certain adjustment rate, so as to meet the frequency adjustment
of the power system. Although traditional PI control can meet the basic requirements of
frequency regulation in wind power regions to a certain extent when the power system
is subjected to random disturbance, the load frequency can fluctuate. Thus, the balance
between the power generation and consumption of the power system can be easily broken,
which has negative effects on the stable operation of the whole power system. Therefore,
the adaptability of frequency control of wind power generation systems needs to be further
improved [16].

In recent years, modern artificial intelligence technology has been broadly utilized in
the field of LFC. Mainstream expert systems [17], artificial neural networks [18–21], and
fuzzy logic [22–24] have gradually replaced the classical control approaches and continu-
ously penetrated every link of electric automation control, providing guarantees for the
safe, secure, and stable operation of power systems. In this paper, an improved particle
swarm optimization algorithm is proposed to optimize the initial neuron weights of the BP
neural network (BPNN), and it is used to adjust PI control parameters in real time. This
research is very adaptive compared with some existing secondary frequency regulation
methods. The fixed gain parameter characteristic of the conventional method is altered in
order to facilitate the appropriate frequency response for different load requirements [25].
At the same time, the method is less informative and more stable and has good applica-
tion prospects to effectively improve the efficiency of wind energy utilization. The main
innovations of this work lie in two aspects:

(1) The BP neural network algorithm has the defects of slow convergence speed and local
minimization, which are mainly due to the random selection of initial weights [26]. In
this paper, the optimal initial neuron connection weights of the BP-PI controller are
determined by combining IPSO with its fast convergence speed and global optimization
features. Thus, the individual parameters of the PI controller are continuously adjusted
by the improved BPNN algorithm, which can achieve better dynamic performance.

(2) Coordinating modern artificial intelligence control with traditional PI control can
effectively improve the efficiency and accuracy of an algorithm [27]. The proposed
strategy applied to the wind turbine can effectively increase the anti-interference
ability of the wind power region, enhance the stability of the power system, and thus
have a promising development prospect in the field of new energy power generation.

The rest of this paper is structured as follows: Section 2 describes the modeling
process of the involvement of the wind turbine in LFC. Section 3 illustrates the improved
particle swarm algorithm for optimizing BP neural networks and the application of the
PI controller. Section 4 uses simulation results to verify the capability of the IPSO-BP-PI
controller. Moreover, Section 5 presents a concise statement of the final conclusions.

2. System Dynamics

In this paper, a doubly fed induction generator (DFIG) is used as the generating output
of a wind turbine. In the local area, electrical energy is generated by the DFIG, and its
detailed structure is shown in Figure 1. The simplified mathematical model of the wind
turbine model is discussed in the below, and the detailed parameters are given in Table 1.
The main source of these equations is [14], and we made appropriate adjustments to the
form and dimensionality of some equations.

.
iqr = −

(
1
T1

)
iqr +

(
X2

T1

)
Vqr (1)
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.
wr = −

(
X3

2Ht

)
iqr +

(
1

2Ht

)
Tm (2)

Pe = wrX3iqr (3)

Te = iqs = − Lm

Ls
iqr (4)

Figure 1. Structure of a doubly fed wind turbine.

Table 1. Parameters of power system.

Parameter Physical Significance

f Nominal system frequency of the power system
Pmech Mechanical power of gas turbine

PL Sudden load disturbance
Pv Steam valve position
Pe Supplementary control action
Ma Angular momentum
TG Speed governor time constant

TCH Changing time constant (prime mover)
Pre f Reference setpoint

D Equivalent damping coefficient of generator
β0 Frequency bias constant
y System measurement output

By linearizing the Taylor series, we can reduce (3) to

Pe = woptX3iqr (5)

where wopt is the rotational speed operating point of the wind turbine, Te is the electric
revolution, Tm is the mechanical torque, iqr is the q-axis component of the rotor current,
iqs is the q-axis component of the stator current, Vqr is the q-axis component of the rotor
voltage, Ht is the equivalent inertia constant of the wind turbine, and wr is the rotational
speed of the wind turbine.

X2 =
1

Rr
, X3 =

Lm

Ls
, T1 =

L0

wsRr

L0 = Lr +
L2

m
LS

, Ls = Lls + Lm, Lr = Llr + Lm (6)

where ws is the synchronous speed of the wind turbine, Lm is the magnetized inductance,
Llr is the rotor leakage inductance, Lls is the stator leakage inductance, Lr is the rotor
self-inductance, Ls is the stator self-inductance, and Rr is the rotor resistance.

The frequency deviation of the wind power region can be described by the following
dynamic equation:

∆
.
f = − D

Ma ∆ f +
1

Ma ∆Pm +
1

2Ma ∆Pe −
1

Ma ∆PL (7)
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The turbine dynamic in the wind power region is depicted as

∆
.

Pm = − 1
TCH

∆Pm +
1

TCH
∆Pv (8)

The governor dynamic of the wind power region can be given as

∆
.

Pv = − 1
TG

∆ f − 1
TG

∆Pv +
1

TG
∆Pre f (9)

The area control error of the region is given as

ACE = β0∆ f (10)

According to the above expressions, the frequency response of the system under load
disturbance z = ∆PL can be described in the form of the following state space equation [14]:

.
x = Ax + Bu + Ez (11)

y = Cx (12)

A =


− D

Ma
1

Ma 0 −X3Wopt
Ma

0 − 1
TCH

1
TCH

0
− 1

TG
0 − 1

TG
0

0 0 0 − 1
T1

, B =


0 0
0 0
1

TG
0

0 X2
T1

 (13)

E =


− 1

Ma

0
0
0

, C =
[
β0 0 0 0

]
(14)

x =


∆ f

∆Pm
∆Pv
∆iqr

, u =

[
∆Pre f
∆Vqr

]
(15)

where x represents the state of the system, u represents the control input, and y represents
the output of the system.

3. Frame and Algorithm of Wind Turbine
3.1. Particle Swarm Optimization Analysis
3.1.1. Basic Particle Swarm Optimization Algorithm

Particle swarm optimization is widely used as a classical swarm intelligent optimiza-
tion algorithm. The algorithm simulates the predation behavior of a flock of birds. Each
individual in the flock is regarded as a particle with velocity and position attributes. Each
particle searches for the optimal solution of the individual in the search space and shares
the optimal solution of the individual with the group to obtain the global optimal solution
of the current state. At the same time, each particle also adjusts its flight speed and direction
according to the optimal solution information of the population and eventually forms a
new population. Compared with other random search algorithms, the PSO algorithm does
not have too many adjustable parameters. It is simple and easy to implement and has
high precision and fast convergence, which can achieve good application effects in LFC for
power system fields [28,29].

In the D-dimensional search space, a population contains N particles, and the position
of the ith particle is expressed as Xi = (xi1, xi2 . . . xiD) in the D-dimensional space, with
velocity Vi = (vi1, vi2 . . . viD), i = 1, 2, . . . N. At the same time, the iteration formula is used
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to update the velocity and position of the particles, and the individual and population
optimal values of the next generation of particles are obtained.

Vid(k + 1) = wVid(k) + c1r1(Pid(k)− Xid(k)) + c2r2(Pgd(k)− Xid(k) (16)

Xid(k + 1) = Xid(k) + Vid(k + 1) (17)

where w is the inertia factor, r1 and r2 are random numbers in [0, 1], c1 and c2 are learning
factors, and Pi and Pg are the individual optimal position and the global optimal position
of the iteration up to the present.

3.1.2. Improvement in Particle Swarm Optimization Algorithm

The traditional PSO algorithm still has the risk of non-convergence, so this paper
adopts an improved strategy for the PSO algorithm, that is, introducing the iterative
process of asynchronous learning factors. By improving the learning factors, the global
search ability in the early stage is balanced with the local search ability in the late stage.
We select larger c1 with smaller c2 in the early stage, enhance the global search ability,
and avoid falling into the local optimum. In the later stage, the opposite happens, i.e., we
enhance the local search ability and accurately obtain the global optimal solution.

c1(t + 1) = c1max − (c1max − c1min)
t

tm
(18)

c2(t + 1) = c2max − (c2max − c2min)
t

tm
(19)

where t is the current iteration number, tm is the maximum iteration number, c1max and c2max
are the maximum learning factors, and c1min and c2min are the minimum learning factors.

3.2. Principle and Framework of BP-PI Control Algorithm

Traditional PI control is one of the most widely used approaches in power industries,
and refers to the adjustment of the controlled object by incorporating two fixed parameters
through proportion. This paper selects a self-tuning BP-PI controller, which is possible with
the participation of an artificial intelligence control algorithm. The controller constantly
adjusts the weight of the neural network to achieve the optimal combination of PI gain
output by the neural network, which is shown in Figure 2. In the discrete state, the
mathematical formulation of PI control is described by

u(k) = KP × e(k) + KI × ∑ e(k) (20)

where KP and KI are the proportion and integration coefficients and e(k) represents the
deviation of system state input and output at time k.

Figure 2. IPSO-BP-PI controller of the power system.
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For LFC with wind turbine participation, since the controller achieves the control
effect in the mode of multi-input and multi-output, improved PI control based on the above
state space equation is written as

u1(k) = QA × e(k) + RA × ∑ e(k) (21)

u2(k) = QB × e(k) + RB × ∑ e(k) (22)

QA, QB, RA, and RB are expressed as

QA =
[
KPa1 KPa2 KPa3 KPa4

]
, QB =

[
KPb1 KPb2 KPb3 KPb4

]
,

RA =
[
KIa1 KIa2 KIa3 KIa4

]
, RB =

[
KIb1 KIb2 KIb3 KIb4

] (23)

where QA and QB represent the proportional coefficient matrices of PI control, RA and
RB represent the integral coefficient matrices of PI control, u1(k) represents the control
quantity of valve position deviation quantity ∆Pre f at moment k, u2(k) represents the
control quantity of voltage ∆Vqr at moment k, and e(k) is the deviation of input and output
of each state quantity in the system at time k.

The BP-trained neural network (BPNN) is a multilayer feedforward network trained by
an error backpropagation algorithm. Its main characteristics are the forward propagation of
signal and the backpropagation of error. Its powerful nonlinear mapping capability enables
the BPNN to approximate any nonlinear continuous function with arbitrary precision.
At the same time, BPNN has the functions of self-adaptation and self-learning, and the
learning content is memorized in the network weight. In addition, the weight of the
network is adjusted by means of backpropagation; finally, the network error sum of squares
is minimized. In this paper, a three-layer BPNN is used to constantly adjust the weight;
finally, the optimal PI parameter matrix combination is obtained. The network structure of
the BPNN is shown in Figure 3.

Figure 3. Structure of BP neural network.

A group of state quantity x and control quantity u, as well as the deviation quantity
error and adjustment value 1 of input and output, are selected each time as the input of the
BPNN. The structure of the BPNN adopts a 4-5-2 structure. The neural network outputs
a group of parameter values of Kp and Ki by learning each time, and a total of 8 groups
of values of Kp and Ki are output. The corresponding control effect can be obtained by
applying the values of Kp and Ki to the PI controller.

We set the input variable of the BPNN as xj; then, the input–output relationship of the
hidden layer can be expressed as

net(2)i (k) =
M

∑
j=1

w(2)
ij (k)x(1)j (24)
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O(2)
i (k) = f1

(
net(2)i (k)− θi

)
(25)

where net(2)i (k) denotes the node input of the hidden layer of the neural network, θi is the

threshold value of the neuron of the hidden layer, w(2)
ij (k) signifies the weight of the neuron

of the input layer and the neuron of the hidden layer, and O(2)
i (k) is the node output of the

hidden layer. The excitation function of the hidden layer is

f1(x) =
ex − e−x

ex + e−x (26)

The relationship of the output layer of the BPNN is given by

net(3)l (k) =
P

∑
j=1

w(3)
li (k)O(2)

i (k) (27)

O(3)
l (k) = f2

(
net(3)l (k)− θl

)
(28)

where w(3)
li (k) is the weight of the hidden layer neuron and the output layer neuron, θl is

the threshold value of the output layer neuron, and O(3)
l (k) represents the output of the

output layer. The excitation function of the output layer selects the non-negative sigmoid
function, whose expression form is

f2

(
net(3)l (k)

)
=

ex

ex + e−x (29)

In the BP neural network backpropagation process, we adjust the connection weights
by setting the backpropagation of the error function. The difference between the actual
measured output state quantity and the expected output state quantity of the control system
is defined as the calculation error of backpropagation, and the performance index function
is obtained as follows:

e(k) = yout(k)− rin(k)

E(k) =
1
2

e2(k) (30)

The BP neural network usually adopts the gradient descent method to modify neural
network parameters, that is, to adjust connection weights according to the direction of
the negative gradient change of performance index function E(k). The momentum term
is introduced in the backpropagation process, and a value proportional to the previous
weight change is added to each weight change. The weight updating processes of the
output layer and the hidden layer can be described as

∆w(3)
li (k + 1) = −β

∂E(k)

∂w(3)
li (k)

+ α∆w(3)
li (k) (31)

∆w(2)
ij (k + 1) = −β

∂E(k)

∂w(2)
ij (k)

+ α∆w(2)
ij (k) (32)

where ∆w(3)
li (k + 1) and ∆w(2)

ij (k + 1) represent the weight increments of output layer and

hidden layer at moment k + 1, ∆w(3)
li (k) and ∆w(2)

ij (k) stand for the weight increments of
output layer and hidden layer at moment k + 1, β is the learning rate (in the range of 0 ∼ 1),
and α is the momentum factor (in the range of 0 ∼ 1).

The process of signal forward transmission and error backpropagation of the BPNN is
the training process of the network. This process makes the actual output of the network
gradually approximate to the expected output by adjusting the connection weights of the
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hidden layer and the output layer inside the network. In general, the typical BPNN needs
to be trained on multiple sets of data to achieve the desired effect.

3.3. Specific Implementation Process of IPSO-BPNN-PI-Based Secondary Frequency Control

We use the IPSO-BP-PI control strategy to achieve effective control in LFC, as shown in
Figure 4. The specific implementation process of IPSO-BPNN-PI-based LFC can be divided
into the following 6 steps.

Figure 4. IPSO algorithm for optimizing neural network process.

Step 1: The dimension of the particle swarm is determined; the velocity and position of
particles are initialized; and learning factors c1 and c2, as well as initial individual optimal
value P0best and global optimal value G0best, and other related parameters are set.

Step 2: The adaptation value after particle position update and the following fitness
function are calculated:

f itness =
1
n ∑n

k=1 e2(k) (33)

Step 3: The above improved PSO is adopted to iteratively update the individual
optimal value and global optimal value of the particle, and the fitness of the new particle is
compared with the fitness of the previous particle. If the number of iterations reaches the
maximum set number of iterations, the iteration is ended, and the current optimal solution
is output.

Step 4: The optimal solution of the PSO algorithm is used to initialize the optimal initial
weight of the BPNN. Then, the network obtains the optimal PI controller parameter combina-
tion through the process of signal forward transmission and error reverse transmission.

Step 5: The adjustable parameters of the neural network output are used to adapt the
gains of the PI controller in order to reach valve position ∆Pre f and the voltage adjustment
of ∆Vqr.

Step 6: Control quantities ∆Pre f and ∆Vqr jointly act on the wind turbine and finally
achieve the control of the load frequency output of the power system.
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4. Simulation and Discussion

An LFC system involving a wind turbine in a certain region was set up. We here
set the base simulation sampling interval to 0.3 s. Assuming that there is no power flow
switching between the regions, the actual nominal parameters used in the power system
simulation are shown below in Table 2 [7,14].

Table 2. Model parameters of power system.

D = 2.75 pu/Hz wopt = 1.18 rad/s
Ma = 3.15 N·m Rr = 0.00552 pu

TCH = 8.0 Rs = 0.00491 pu
TG = 12.5 Lm = 3.62 H

β0 = 1 Lr = 0.17 H

The number of iterations of the control system was set to 50. After 50 iterations, the
fitness changes of the optimal individuals of the particle swarm are shown in Figure 5.
After 50 iterations, the fitness of the particle swarm tends to be stable, and changes are no
longer observed.

Figure 5. Convergence curve of IPSO.

Case study one: Frequency adjustment in the presence of initial frequency errors

In order to verify the dynamic performance of the system, a simulation test was carried
out with an IPSO-BP-PI controller, and the results were evaluated within 60 s to obtain
the effect of the change in the frequency deviation of the system output. Meanwhile, we
compared this control strategy with conventional PI control and BP-PI control, whose
results show that the IPSO-BP-PI control strategy had the best adjustment effect. In the
simulation, we set the initial frequency error to 0.03 Hz; the dynamic response curves of
the frequency deviation are shown in Figures 6 and 7.

Case study two: Adjustment process with application of random load disturbance

Figures 8–10 show the control effects of ∆ f , ∆Pm, and ∆Pv, respectively, following the
application of random disturbance ∆PL at the initial moment. On the whole, the frequency
deviation, the variation range of mechanical power deviation, and the governor output
power deviation were relatively stable from a numerical point of view, and all converged
to 0 within a short period of time after a period of fluctuation. Furthermore, to verify the
proposed scheme, we used MATLAB to test the maximum overshoot, minimum overshoot,
adjustment time, and the magnitude of the stability error, which are given in Table 3. The
measurements validated the effectiveness of the IPSO-BP-PI control method.
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Figure 6. Dynamic response of frequency using IPSO-BP-PI strategy with DFIG-based wind turbine.

Figure 7. Dynamic responses of frequency using three strategies with DFIG-based wind turbine.

Figure 8. Frequency dynamic curve in the presence of load disturbance using IPSO-BP-PI technique.
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Figure 9. Dynamic response of mechanical power using IPSO-BP-PI technique.

Figure 10. Dynamic response of steam value position using IPSO-BP-PI technique.

Table 3. Specific values for random load demand.

Parameter Max. Value Min. Value Stable Time Stable Error

∆ f 0.00086 −0.01596 15.81 −0.00024

∆Pm 0.02611 −0.00137 33.48 0.00012

∆Pv 0.00047 −0.00248 37.02 0.00007

Case study three: Frequency tuning with perturbations applied at subsequent intervals

Here, we simulated the frequency adjustment more realistically using the IPSO-BP-PI
controller when the actual area is subjected to load disturbance. Power systems are always
subjected to varying degrees of load demand changes during real-time operation. To clearly
demonstrate the frequency tuning capability of the IPSO-BP-PI controller, we simulated
the frequency response when random perturbations ∆PL = 0.1 × (rand(1)− 0.5) were
applied every other 60 s. The frequency response effects with PI control, BP-PI control,
and IPSO-BP-PI control strategies were respectively compared. The frequency responses
in these cases using different techniques are shown in Figure 11. With the participation of
the doubly fed wind turbine, the three controllers all converged to zero and had a certain
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effect on LFC, ignoring the information exchange between the region and the outside
region. In comparison, the IPSO-BP-PI controller showed shorter stabilizing time and
smaller overshoot, which is ideal for regulating different load changes. Meanwhile, the
method effectively improved the frequency response of the system and avoided redundant
oscillation links, as clearly shown in Table 4. The superior effect of the IPSO-BP-PI controller
on the LFC of local random disturbance was also verified.

Figure 11. Frequency regulation curves with random perturbation using three techniques.

Table 4. Stable time of the system.

Stable Time
1

Stable Time
2

Stable Time
3

Stable Time
4

Stable Time
5

PI 46.86 30.39 28.47 38.25 35.17
BP-PI 36.57 25.72 23.62 33.51 31.64

IPSO-BP-PI 15.85 10.67 9.91 11.76 10.26

5. Conclusions

The requirements of grid-connected wind power rules around the world make it easy
to conclude that system frequency regulation involving wind power will likely become
an inevitable requirement for future new energy development [30,31]. In this paper, an
IPSO-BP-PI frequency control method for wind power systems is proposed to solve the
problems of large load disturbance and high uncertainty in wind power systems. The
improved PSO algorithm is used to optimize the initial weight of the BPNN, which reduces
and stabilizes particle fitness around 0.194 and increases the stability of the neural network.
Using the adaptive ability of the optimized BPNN to adjust the gain parameters of the
PI controller in real time overcomes the problem of the traditional PI controller used in
time-varying systems. The optimization scheme was applied to regional LFC involving
wind turbines. The simulation test results show that the IPSO-BP-PI control strategy
had better instantaneous response effect, which effectively reduced the stable error of the
frequency to less than 10−3. Additionally, the IPSO-BP-PI control approach improves the
accuracy and significantly shortens adjustment times for frequency stabilization, which has
a remarkable effect on solving the load disturbance caused by uncertain factors compared
with traditional PI control and BP-PI control. In the future, we aim to investigate LFC for
power systems with the integration of multiple renewable energy resources in the presence
of unforeseen disturbances.
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