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Summary

Governments worldwide have agreed that international climate policy should aim to limit the
increase of global mean temperature to less than 2°C with respect to pre-industrial levels.
The purpose of this paper is to analyse the emission reductions and related energy system
changes in various countries in pathways consistent with the 2°C target. We synthesize and
provide an overview of the national and regional information contained in different scenarios
from various global models published over the last few years, as well as yet unpublished
scenarios submitted by modelling teams participating in the MILES project (Modelling and
Informing Low-Emission Strategies). We find that emissions in the mitigation scenarios are
significantly reduced in all regions compared to the baseline without climate policies. The
regional cumulative CO; emissions show on average a 76% reduction between the baseline
and 450 scenario. The 450 scenarios show a reduction of primary energy demand in all
countries of roughly 30-40% compared to the baseline. In the baseline scenario, the
contribution of low-carbon energy technology remains around 15%, i.e. similar as today. In
the mitigation scenario, these numbers are scaled up rapidly towards 2050. Looking at air
quality, sulphur dioxide and black carbon emissions are strongly reduced as a co-benefit of
greenhouse gas emission reductions, in both developing and developed countries. However,
black carbon emissions increase in countries that strongly rely on bioenergy to reach
mitigation targets. Concerning energy security, energy importing countries generally
experience a decrease in net-energy imports in mitigation scenarios compared to the baseline
development, while energy exporters experience a loss of energy export revenues.
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Abstract

Governments worldwide have agreed that international climate policy should aim
to limit the increase of global mean temperature to less than 2°C with respect to
pre-industrial levels. The purpose of this paper is to analyse the emission
reductions and related energy system changes in various countries in pathways
consistent with the 2°C target. We synthesize and provide an overview of the
national and regional information contained in different scenarios from various
global models published over the last few years, as well as yet unpublished
scenarios submitted by modelling teams participating in the MILES project
(Modelling and Informing Low-Emission Strategies). We find that emissions in
the mitigation scenarios are significantly reduced in all regions compared to the
baseline without climate policies. The regional cumulative CO, emissions show on
average a 76% reduction between the baseline and 450 scenario. The 450
scenarios show a reduction of primary energy demand in all countries of roughly
30-40% compared to the baseline. In the baseline scenario, the contribution of
low-carbon energy technology remains around 15%, i.e. similar as today. In the
mitigation scenario, these numbers are scaled up rapidly towards 2050. Looking
at air quality, sulphur dioxide and black carbon emissions are strongly reduced as
a co-benefit of greenhouse gas emission reductions, in both developing and
developed countries. However, black carbon emissions increase in countries that
strongly rely on bioenergy to reach mitigation targets. Concerning energy
security, energy importing countries generally experience a decrease in net-
energy imports in mitigation scenarios compared to the baseline development,
while energy exporters experience a loss of energy export revenues.



SUMMARY

The purpose of this paper is to synthesize and provide an overview of the
national and regional information contained in different scenarios from various
global models published over the last few years. We use this information to
analyse the emission reductions and related energy system changes in various
countries in pathways consistent with the 2°C target. This analysis provides input
for international policy processes, and the context for more detailed analyses of
meaningful indicators at the national level. We note that although we present the
results of several models, these are used to build significant corridors and not as
a basis for an inter-model comparison, which is not the scope of this work.

In our work, the scenarios were characterized on the basis of the assumed
climate policies: i.e. baseline scenarios (no new policies), reference scenarios
(existing policies) and scenarios aiming at 550 and 450 ppm CO;-eq targets. The
latter were divided into scenarios with and without assumed delay in policy
implementation in the near term. Each of the global models contains information
for about 10-30 regions and countries. The scenarios with delay implement
prescribed policies per region. After the delay period, a uniform global carbon
price is assumed. This implies that the contribution of each country (or region) is
mostly determined by the marginal abatement costs. This is also the case for the
scenarios without delay for the full scenario period. Differences in model
outcomes have been used to indicate model uncertainty ranges for the various
indicators that are shown.

Emission trends

In this summary, we focus on the baseline and 450 ppm CO,-eq scenarios (see
Box 1).

Box 1: Model-based scenario analysis

The baseline scenario shows the situation in the absence of climate policy. Such
a scenario is not realistic (as most countries have indicated elaborate plans to
implement policies), but forms a counterfactual scenario that can be used to
show the effect of policies in each region in a compatible way. For the 450 ppm
scenarios, two categories are shown, i.e. with and without delay. The scenarios
without any policy delay are also not realistic, but again, provide a reference
showing the situation if a globally cost-efficient response could be formulated. In
the database, results from various models were available for 13 regions.

Models provide insights into cost-optimal trajectories for achieving specific
climate goals given assumptions on the costs, efficiency and preferences for
specific technologies, their interaction in the energy system and existing policies.




The information can be used to explore costs and benefits of alternate pathways.
Future policy developments are beset with uncertainty. The use of multiple
models is one way to obtain some insights into the impact of different model
assumptions.

Figure S.1 shows the mean values of projected trends in per capita GDP levels
and associated per capita emissions for all models (baseline and 450 ppm CO,-
eq) for 13 regions covered in this study. This figure leads to the following
conclusions:

e Without climate policy, greenhouse emissions are expected to
increase rapidly in low-income regions, driven by a projected
further increase in economic activity and population. Per capita
emissions are projected to remain more or less stable in high-
income regions. The emissions per capita in high-income countries are
expected to remain more or less stable as a result of opposing trends in
activity growth, efficiency improvement and (slow) decarbonisation of fuel
supply.

e Emissions in the mitigation scenarios are significantly reduced
compared to the baseline in all regions, independent of income-
level. Further analysis of the scenarios shows global average CO,
emissions to range from about 0.3 to 2 tCO,/capita in 2050 under delayed
450 scenarios. This range results from differences in non-CO, emissions
assumptions and assumed mitigation action beyond 2050 (especially the
use of negative emissions). Figure S.1 shows that low-income countries
generally remain below the global average, although the upper end of the
ranges for China, Indonesia and South Africa are slightly above the global
average. Most OECD countries show per capita emissions ranges similar to
or higher than the global average.

e The results also show that CO, emissions from fossil fuels and
industry represent the majority of global total emissions in the
baseline, while the mitigation scenarios result in about equal
shares of non-CO, emissions and CO, emissions from fossil fuels
and industry globally in 2050. CO, emissions are reduced more than
non-CO, emissions. There are, however, regional differences in the
contribution of the different emission categories. In China, for example,
CO, emissions from fossil fuels and industry remain the major contributor
to total emissions, while in Indonesia, land use emissions represent the
lion’s share. All countries show increasing shares of low-carbon primary
energy sources (i.e. all energy sources except coal, oil and gas without
carbon sequestration) with lower cumulative carbon emissions. For
developed countries, this generally means a substantial increase on 2010
levels.




Baseline CO; emissions per capita vs. GOP per capita; 2010 - 2050 Optimal 450 CO, emissions per capita vs. GDP per capita; 2010 - 2050
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Figure S.1: CO, emissions per capita (tCO,/capita) versus GDP per capita (US$2005/capita)
between 2010 and 2050 for baseline scenarios (left panel) and cost-optimal 450 scenarios (right
panel).

Greenhouse emissions in 2030

The results across the different models for 2030 greenhouse gas emissions are
summarized in Figure S.2.

e The data show a clear difference in 2030 emission levels between
the baseline scenarios and the cost-optimal 450 ppm scenarios.
The delayed 450 ppm scenarios typically show slightly higher emissions
than the cost-optimal 450 ppm scenarios.



Kyoto gas emissions in 2030
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Figure S.2: Kyoto gas emissions (MtCO.e) in 2030 for cost-optimal 450 ppm scenarios, delayed
450 ppm scenarios and baseline scenarios. Filled bars show the median value across models, error
bars show the 10" to 90" percentile range.

Cumulative emissions

A key outcome of the models are the regional cumulative emissions
consistent with different global climate targets. These can be interpreted as
regional emission constraints assuming cost-efficient implementation of the
global target across all regions. Note that the cumulative emissions linked to e.g.
a <2°C temperature outcome need to be constantly updated to account for
revised estimates of past, current and future emissions as well as developments
in climate science.

e Figure S.3 shows the regional cumulative emissions for the baseline and
optimal 450 scenarios for the period 2010-2100. The results indicate the
actual emissions in the cost-optimal scenarios and do not make any
assumptions as to who pays for the emission reductions. The cumulative
emissions between the baseline and 450 scenario are very
different, showing on average around 76% reduction across all
regions. The important role of China, India, and the USA is illustrated by
the fact that in the baseline scenario, each of these regions alone accounts
for at least half the global cumulative emissions consistent with the 2°C
target. The different ratios between baseline emissions and the cost-
optimal 450 emissions mostly reflect abatement opportunities in the
various regions.
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Figure S.3: Regional cumulative CO, emissions between 2010 and 2100, for cost-optimal 450 ppm
and baseline scenarios. Filled bars represent the median, error bars give the 10" to 90" percentile
ranges across models.

Emissions peak

e A similar picture of stringent climate action in all regions emerges when
looking at the peak year of CO, emissions (Figure S.4). Under the optimal
450 scenarios that assume direct implementation of policies, most
countries’ CO, emissions peak before 2025 (except for India). Under
delayed 450 scenarios (taking into account 2020 pledges and introducing
cost-optimal policies between 2020 and 2025), this peak generally shifts
to later in the century, although not by much.



Peak year of CO, emissions
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Figure S.4: Regional peak years of CO, emissions for cost-optimal 450 ppm, delayed 450 ppm and
baseline scenarios. Dots give the median of the models, error bars give the 10" to 90" percentile
ranges. The median results can be at the outer end of the range, for instance for OECD countries,
as a majority of these regions show an immediate peak with only a few exceptions.

Consequences for energy use

e Primary energy demand decreases strongly in the mitigation scenarios,
compared to the baseline scenario, especially in developing countries. The
450 scenarios show a reduction in all countries of roughly 30-40%
compared to the baseline. There are regional differences, with e.g.
South Africa halving its primary energy demand under mitigation
scenarios.

o Key differences between the baseline scenario and the 450 ppm
scenario occur for the composition of the energy mix (Figure S.5). In
the baseline scenario, the contribution of low-carbon energy technology
remains around 15%, i.e. similar as today. Large differences across the
different regions can be seen in the baseline projections for 2030 and
2050, with Brazil showing significantly higher shares of low-carbon energy
technology than other regions. In the mitigation scenario, the shares of
low-carbon energy technology are scaled up rapidly towards 2050. While
some differences across the regions can be noticed, the large model
uncertainty ranges indicate that this differs strongly across the models.

Policy costs

e There is a cost advantage to starting mitigation early. Delayed 450
scenarios show lower median policy costs in the short term in some



regions (China and World), but higher policy costs in the long term in all
regions, compared to the optimal 450 scenarios.
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Co-benefits

Mitigation action does not only impact greenhouse gas emissions, but also the
energy mix — and thus energy security and air pollution. Overall, it has been
shown on the global level that mitigation action is likely to result in co-benefits.
The analysis here shows such co-benefits for air pollution (although showing
clear regional differences), but for energy security, the impacts of mitigation
action are dependent on the region.

40

Looking at air quality, sulphur dioxide emissions are strongly
reduced as a co-benefit of greenhouse gas emission reductions, in
both developing and developed countries (Figure S.6). Also significant
reductions of black carbon emissions can be found, although
emissions increase in countries that strongly rely on bioenergy to reach
mitigation targets. In these cases, additional policies are required to
reduce air pollution from black carbon.
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Figure S.6: Changes, in 2050, in black carbon (brown) and sulphur dioxide (orange) emissions
when moving from a baseline without new climate policies to a pathway in line with stabilizing
atmospheric CO»-equivalent concentrations at 450 ppm. Dots show single model results, bars the
full range.

Concerning energy security, energy importing countries generally
experience a decrease in net-energy imports in climate stabilization
scenarios compared to the baseline development, while energy exporters
experience a loss of energy export revenues from climate stabilization
policies (Figure S.7).
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| ntroduction

Governments worldwide have agreed that international climate policy should aim
to limit the increase of global mean temperature to less than 2°C with respect to
pre-industrial levels (UNFCCC, 2010). The IPCC Fifth Assessment Report (AR5)
indicates that scenarios without new climate policies typically result in a an
increase of global mean temperature of around 3-4°C by 2100 (Clarke et al.,
2014). In order to reach the 2°C target, urgent and drastic emission reductions
are required. Such reductions are needed in all regions around the world (Tavoni
et al., 2014).

Global modelling teams have worked on developing a set of scenarios for
international climate policy in projects such as AMPERE (Kriegler et al., 2014a),
LIMITS (Kriegler et al., 2014b, Riahi et al., 2014, Tavoni et al., 2014) and EMF27
(Kriegler et al., 2014c). These scenarios look into possible emission trajectories
without new climate policies, estimates of current policies and different variants
of scenarios aiming at the 2°C target (these scenarios vary in terms of the
probability of achieving the target, technology assumptions and the timing of
climate policy). The scenarios also played an important role in the analysis
performed in the last report of IPCC (Clarke et al., 2014). Typically, these models
contain around 10-30 regions in order to describe trends in global emissions.
While several projects have started to use the regional information of the global
models to look into climate policy strategies at the scale of countries and regions
(e.g. Herreras Martinez et al., 2015, Tavoni et al., 2014, Van Sluisveld et al.,
2013), in general, the regional information has not been used extensively.

The purpose of this paper, therefore, is to analyse the energy system changes in
various countries in pathways consistent with the 2°C target, by looking into the
national/regional information contained in different global scenarios from various
global models. The objectives of this study are:

e To better understand the transition pathways at the level of major
economies in a set of global scenarios developed over the past few years;

e To specifically investigate various policy relevant indicators such as peak
years and cumulative emissions at the level of major economies;

e To provide insights in potential co-benefits of different pathways.

The information presented here was evaluated by both national and international
modelling teams. This analysis could in particular help positioning the different
countries regarding low-emission pathways. The focus of the analysis is on
regional results (and thus not on a model comparison).






Methodology

Main Method

In this paper, we compare scenarios developed in previous studies using global
models in terms of the results for key countries/regions. We use data from the
following studies: AMPERE, LIMITS, and EMF27 (see earlier references), which
include several models such as DNE21+, GCAM, GEM-E3, IMAGE, MESSAGE,
POLES, REMIND, and WITCH.

In addition, new scenarios, developed after these previous studies or specifically
for the MILES project, have been added by the teams participating in MILES. The
MILES project (Modelling and Informing Low Emission Strategies) is an
international cooperation project between 19 international research teams'. Key
objectives of the project are: 1) to explore different country-level strategies
consistent with the 2°C target, 2) to increase understanding of differences
between strategies in different parts of the world, and 3) to enhance in all
participating countries the capacity to perform analysis of mitigation strategies.

In this study, we look into regional results evaluating the drivers, emission
trajectories, and energy system changes. The national and regional emission
pathways in the global studies provide insight into the required energy
transitions at this level. It should be noted that in these studies, the contribution
of each country (or region) in global reductions is determined by the marginal
abatement costs. The results of the global models have been compared with the
results of the national models.

The discussion of the results is divided into three parts, each of them oriented at
the following key questions:

e What do regional/national emission and energy system pathways
consistent with different assumptions on international climate policy look
like?

e How do assumptions on the availability of different technologies influence
these results?

e What are important co-benefits at the national/regional level of the
different policies?

For this analysis, existing scenarios were characterized as indicated in Table 1.

' ERI, RUC, TU, TERI, IIM, COPPE, PNNL, NIES, RITE, ICCS, I1ASA, PIK, PBL, CMCC, CLU, IDDRI, CCROM, CRE, INECC



Table 1: Scenario categories used in this study.

Category

Description

Baseline

Scenarios that do not include new climate policies
other than via the calibration to the historical period.
This scenario category thus acts as a counterfactual
scenario providing a consistent reference across all
regions for showing the impact of climate policies.

Reference policy

Describes possible development assuming
implementation of existing policies and some
continuation of these policies in the longer term
(without strengthening these policies).

Cost-optimal 500-550
ppm CO.eq

Scenarios aimed at stabilizing GHG concentrations at
the level of 500-550 ppm CO.-eq at the lowest costs
(within the model).

Cost-optimal 450

A universal global carbon tax is implemented
immediately in order to research a target of 450 ppm
CO.eq, resulting in the lowest costs (within the
model).

Intermediate 450

This scenario type follows the implementation of the
pledges in 2020 and assumes cost-optimal policies
(based on intermediate policies) to be introduced after
2020-2025.

Delayed 450 ppm CO.eq

Scenarios that include the current description of
pledges until 2020, and assume some further delayed
policies up to 2025. In the longer term, cost-optimal
policies are implemented. As a result, global emissions
peak after 2025.

Regional Coverage of the Models

Table 2 indicates how the information of the different models was used in this
study to look into regional trends. Table 3 provides the main characteristics of
the models included in this study.




Table 2: Regional coverage per model (X indicates that the region is represented
case slightly different regions were used this is indicated in the Table).

in the model; in

DNE21+ GCAM GEM-E3 IMAGE MESSAGE POLES Remind WITCH
Brazil X X X X X
Canada X X X X X
China X X X X Includes X Centrally X X X
Includes Includes | Includes | Mongolia planned Includes | Includes
Hong Hong Hong and Taiwan Asia and Hong Hong
Kong Kong, Kong, China Kong, Kong
Macau Macau Macau,
Taiwan
EU X X X Includes X Includes X X X
Includes Norway, Iceland, Includes
Greenland Switzerland, | Turkey, EFTA
Iceland, Norway,
Balkan Switzerland,
countries Greenland
India X X X X X South X X X
Asia
Indonesia X X X X
Japan X X X X X X
Mexico X X X X X
Russia X X X X X X
South X X X X
Africa
South X X X Includes X
Korea North Korea
USA X X X X X North X X X
Includes America Includes
Puerto (includes Puerto
Rico Canada, Rico
Guam,
Puerto Rico)
World X X X X X X X X
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Results

What do regional/ national emission and energy system pathways
consistent with different assumptions on international climate policy
look like?

We selected a set of variables, presented hereafter, which are relevant for the
analysis of national emission and energy system pathways consistent with the
2°C target. The selection includes: population, GDP, primary energy demand,
energy intensity, GHG emissions, cumulative emissions, peak years, shares of
low-carbon energy sources, and policy costs.

Population and GDP are two important socio-economic drivers that have a direct
influence on primary energy demand and GHG emissions. The energy intensity
variable is a measure of the energy use per unit of economic activity and informs
about the general level of efficiency of a given region. Another widely used
indicator is cumulative emissions, which correlates well with the temperature at
the end of the century. The study of peak years allows us to compare countries
in terms of stringency of emission pathways. The shares of low-carbon energy
sources show the transitions needed in energy systems to meet the long-term
climate target. Finally, policy costs are relevant in this study in order to address
the regional impacts of delaying optimal mitigation.

Population and GDP

Figure 1 and Table 4 show the population and GDP per capita projections for the
different countries. Assumptions on the trends in these drivers do not vary
across different scenario categories.

The global population growth in the 2010-2050 period is projected to be about
30-40%. The GDP per capita growth over the same period is considerably faster
and the range in the assumed GDP growth across models is large for individual
regions, but also for the projected global GDP growth (i.e. 110-210%).



Table 4: Projected change in population and GDP per capita per region between 2010 and 2050
(2050 values expressed relative to 2010). UN population projections (medium variant) are also
included for reference.

Population Population Population GDP per GDP per

(UN (national capita capita
medium) scenarios) (national
scenarios
Brazil [1.12,1.19] 1.18 1.11 [2.53,5.35] 3.14
Canada [1.29,1.33] 1.33 [1.69, 1.87]
China [0.97, 1.07] 1.02 [4.91, 10.53]
EU [1, 1.05] 0.96 1.05 [1.77, 2.22] 1.71
I ndia [1.33, 1.45] 1.34 [6.29, 14.65]
Indonesia [1.24,1.34] 1.34 [4.82, 10.68]
Japan [0.81, 0.86] 0.85 0.80 [1.72,2.19] 1.75
Mexico [1.17,1.33] 1.32 [2.78,4.01]
Russia [0.85, 0.91] 0.84 [2.44, 4.45]
South 123
Africa [1.13,1.24] [3.28, 5.48]
South 1.05
Korea [0.91, 1.06] [2.36, 2.79]
USA [1.28,1.3] 1.28 [1.25, 1.88]
World [1.33,1.39] 1.38 [2.09, 3.12]

Population growth

The projected population growth rates of the OECD countries lie well below the
global average. The populations of Japan and the Russian Federation are
projected to fall. In general, the different global model-based scenarios do not
include a very wide range of population projections, and agree well with UN
population projections. A notable exception is the EU, which shows slightly higher
population projections than the UN medium scenario. A key reason is that some
models include more countries in their EU region than the 28 EU member states
(e.g. Turkey, Greenland or Iceland).

The projected population growth rate of the low-income countries covered in this
study also lies below the global average. Again, the regional model projections
correspond well with the UN medium scenario, with a relatively small range
across the different models. The projected global average population growth rate
is higher than the growth rates of all countries covered in this study (except
India) due to high growth rates in other regions not covered here, most notably
Africa, and India.

Comparison with the national model results

The projections for Brazil are similar to the population projections by the national
modelling team. The Brazilian population is projected to reach around 200 million
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inhabitants by 2030 and 230 million by 2050, which is based on the official
projections by the Brazilian Institute of Geography and Statistics (Herreras
Martinez et al., 2015). The projections for Mexico are in line with the findings by
Veysey et al. (2015), reporting on The Climate Modeling and Capacity Building in
Latin America project (CLIMACAP) and the Latin American Modeling Project
(LAMP). They project the Mexican population to reach about 150 million by 2050,
with MILES projections for Mexico reaching about 125 — 175 million.

GDP growth

GDP per capita is projected to increase in all countries. Again, the average of the
OECD countries lies significantly below the global average — although here Russia
forms an exception. The projected increase of other OECD countries is around 1—
1.7% per year, while the Russian growth included in the projections is 2.3-3.8%

per year.

The projected growth rate of the non-OECD countries is more than twice as high
as in OECD countries. The average growth rate of GDP per capita between 2010
and 2050 is projected to be around 3-6% per year in non-OECD countries, and
up to 4.7-6.8% per year for India.

Comparison with the national model results

Growth rates projected by the Indian team are slightly higher than most global
model projections (around 6.5% per year). Also the Brazilian national team’s
GDP projections were higher than those of (most of) the global models, with a
growth rate of 2.3-3.5% in the 2010-2030 period. These national GDP
projections are based on the Brazilian long term National Energy Plan, which
projects an average GDP growth of 4% per year until 2050. Mexico’s GDP in the
global model projections reaches a level of about US$ 2 — 4 trillion by 2050,
which is the same as the range reported by Veysey et al. (2015).
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Figure 1: Population and GDP per capita in the 12 countries + world, relative to 2010 values. The
number of models per country reporting these variables is indicated’. No scenario category
dimension is shown here, as assumptions on trends in drivers do not vary across scenario
categories. Solid black lines show UN population projections (medium variant), solid blue lines
show available national scenario projections.

Primary Energy

Primary energy demand projections under baseline, delayed, intermediate, and
optimal 450 scenarios are shown in Figure 2 (delayed and intermediate 450
scenarios are combined into one category). Primary energy demand decreases
strongly in the mitigation scenarios compared to the baseline scenario. This

2 Some regions and variables may show a larger number of models than the eight reported in Table 2, because models
exist in different versions and with results of various studies in the database; these different model versions are
counted individually.
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effect is strongest in developing countries. For most countries, the scenarios
from the global models encompass the |IEA’s World Energy Outlook projections.
The largest difference can be observed in China. Here baseline results are quite
comparable, but the models show an outcome range for the optimal 450
scenarios that lies significantly below the IEA’s 2°C scenario. This may be
explained by the different accounting methods for total primary energy supply
applied by the |EA and official Chinese statistics. The Figure also emphasises the
considerable model uncertainty ranges for individual countries in the scenarios in
the literature.

OECD countries

In general, the primary energy projections for the OECD countries under baseline
assumptions show relatively small changes over time (increase or decrease). The
projections for the 450 scenarios show typically a 30-40% reduction compared to
the baseline scenarios by 2050.

Non-OECD countries

In baseline scenarios, the primary energy demand is projected to increase
strongly in most of the non-OECD countries. In contrast, the 450 scenarios show
a reduction of roughly 30-40% compared to the baseline by 2050, the same
order of magnitude as the reduction in the OECD countries. There are regional
differences, with e.g. South Africa showing a reduction up to 50% between the
baseline and the delayed + intermediate 450 scenarios.

Comparison with the national model results

Compared to national projections, not all global models show a similar reduction
of Indian energy demand (implying that the |EA scenarios are closer to the
national scenario projections than some of the global model projections). The
global model projections for Brazil are slightly lower than the projections by the
national modelling team. Primary energy demand is projected to be about 15 EJ
by 2050 under the intermediate 450 scenario in the global models, compared to
20 EJ according to the national model, which used the same carbon tax to create
a scenario similar to the ones developed by the global models. For the delayed
450 scenario, the Brazilian national model projection shows a slightly different
trajectory but a similar total primary energy demand in 2050 (about 40 EJ).
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Figure 2: Total primary energy demand (EJ/ year) in baseline, delayed + intermediate 450 ppm,
and optimal 450 ppm scenarios. |EA World Energy Outlook scenarios (450 ppm, current policies,
new policies) are also plotted for reference. The number of models per country reporting this
variable is indicated. Coloured vertical bars show the 2050 scenario ranges.

Energy I ntensity

Primary and final energy intensity decrease strongly in all countries and all
scenarios, including the baseline scenario, but especially in developing countries
and the Russian Federation (Figure 3).

Comparison with the national model results

The projected trends in energy intensity are generally in line with national
scenario projections. For Brazil, the pathways as well as the absolute values are
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very similar to the projections by the national modelling team. The Indian team
noted that the projected trend of declining energy intensity agrees with their
results of decoupling of energy use and GDP growth, although rates of
decoupling might differ. Veysey et al. (2015) expect some improvement in
energy intensity in Mexico between 2010 and 2020, and substantially more
improvement towards 2050. This trend is most pronounced in the delayed +
intermediate 450 scenarios shown in Figure 3.

Primary energy intensity
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Figure 3: Primary energy intensity (EJ/billion US$2005) in baseline, delayed + intermediate 450
ppm, and optimal 450 ppm scenarios. The number of models per country reporting the variables
used to calculate energy intensity is indicated.
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Greenhouse Gas Emissions

Figure 4 gives projected total CO, emissions, while Figure 5 presents projected
CO, emissions per capita. Worldwide, a strong emission increase can be observed
in the baseline scenarios, mostly driven by the trend in low-income countries. In
contrast, total CO, emissions decrease rapidly for the mitigation scenarios in all
countries, and even turn negative in Brazil, as a result of land-use management.
Some differences can be observed across the different regions in the reduction
rates — reflecting assumptions on mitigation potential. The Figure also shows
quite substantial differences across the models for the various regions. The IEA
emissions projections are at the lower end of the global model range, because
they exclude land use change emissions.

Per capita CO, emissions are projected to decline in all countries under mitigation
scenarios. Global average CO, emissions reach about 0.3 — 2 tCO,/capita by 2050
under delayed 450 scenarios, with intermediate 450 scenarios falling within that
range. Developing countries generally remain below the global average, although
the upper end of the ranges for China, Indonesia and South Africa are slightly
above the global average for the delayed 450 scenario category. Most OECD
countries show per capita emissions ranges similar to or higher than the global
average.

Figure 6 shows that total greenhouse gas emissions in 2030 need to decrease
significantly below the baseline in all countries to remain on a 2°C pathway, as in
the delayed and especially optimal 450 scenarios.

Comparison with the national model results

Indian national scenarios project per capita emissions that remain below the
global average, which is also projected by the global models included in this
study (0.2 — 1.4 tCO,/capita by 2050 under delayed 450 scenarios). Herreras
Martinez et al. (2015) report the results of the MESSAGE-Brazil model with
projected CO, emissions for Brazil of 1633 MtCO, by 2050 under their reference
scenario, and 212 MtCO, under a 450 ppm scenario. These numbers agree with
the results from the global models in MILES, considering that the projections by
Herreras Martinez et al. (2015) do not include land use emissions, while the
projections shown in Figure 4 do. Global model emission projections for the
European Union are in line with regional scenarios developed for the EU.
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Per capita CO, emissions
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Kyoto gas emissions in 2030
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Figure 6: Kyoto gas emissions (MtCO,e) in 2030 for Baseline, Delayed + intermediate 450, and
Optimal 450 scenarios. Filled bars show the median value across models, error bars show the 10"
to 90" percentile range.

Emissions: CO, Energy, CO, Land Use, Non-CO,

Figure 7 shows the projected greenhouse gas emissions in 2050 in terms of CO,
emissions from fossil fuels and industry, CO, emissions from land use, and non-
CO, emissions. The emissions in each of these categories decline in the
mitigation scenarios with respect to the baseline projections, with land use
emissions even turning negative in some cases (Brazil, USA). CO, emissions from
fossil fuels and industry represent the majority of global total emissions in the
baseline, while the mitigation scenarios result in about equal shares of non-CO,
emissions and CO, emissions from fossil fuels and industry globally. There are,
however, regional differences. In China, for example, CO, emissions from fossil
fuels and industry remain the major contributor to total emissions, while in
Indonesia, land use emissions represent the largest share.

Looking at the change between 2010 and 2050 (lower part of Figure 7), globally,
all emission categories show values lower than one in the mitigation scenarios,
i.e. all emission sources decrease between 2010 and 2050. Please note that
there are three emissions categories so the reference value for comparison with
2010 levels is three and not one. The Delayed 450 scenario shows larger
reductions in all emission categories than the Optimal 450 scenario, because the
Delayed 450 scenario requires faster and deeper emission reductions in the long
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term than the Optimal 450 scenario.
Note that the intermediate 450 scenario category is not directly comparable to
the other scenario categories, because it is mostly based on one model run,

whereas the other scenario categories show the median of a larger number of

runs.
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Figure 7: CO, emissions from energy supply and from land use, and non-CO, emissions in 2050
(upper graph: MtCO.eq/year; lower graph: indexed to 2010) in baseline, delayed 450, intermediate
450 and optimal 450 scenarios.

Regional cumulative emissions

The scenarios can be used to calculate cumulative CO, emissions over a given
period. These cumulative CO, emissions can be interpreted as regional emission
constraints consistent with global climate policy targets assuming cost-efficient
implementation across the regions. Note that the cumulative emissions linked to
e.g. a <2°C temperature outcome need to be constantly updated to account for
revised estimates of past, current and future emissions as well as developments
in climate science. The regional cumulative emissions are presented in Figure 8

| 33



(median of all models). The difference in cumulative emissions between the
baseline and the mitigation scenarios is especially pronounced in China and
India.

Regional cumulative emissions
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Figure 8: Cumulative CO, emissions (Gt CO,) between 2010 and 2100 per country / region and
scenario, based on the median of the model ensemble. The number of models per country is
indicated. The coloured areas are indicative of the emission reductions going from one scenario
category to another. For instance, the black area indicates the additional emissions in the baseline
scenario compared to the current policy (reference) scenarios. The red area shows the additional
emissions between current policies and 550 ppm CO,

Peak Year

Figure 9 presents the peak year in CO, emissions per region. Under the optimal
450 scenarios, most countries’ CO, emissions peak before 2025 (except for
India, which peaks around 2030). Under delayed 450 scenarios, this peak
generally shifts to later in the century by construction, although not by much.
The peak year is even later in 500-550 ppm scenarios, especially in India and
Indonesia.
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Comparison with the national model results

National scenarios for the European Union indicate that emissions have already
peaked, which is not the case for some of the global model scenario results. For
Brazil, the peak year of CO, emissions in the reference scenario is projected to
be around 2060 (albeit with a large model spread), which is slightly later than
found by Herreras Martinez et al. (2015), whose reference scenario shows a peak
between 2045 and 2050. Peaking occurs considerably earlier in mitigation
scenarios for Brazil, around 2015 under delayed 450 scenarios. The 450 ppm
scenario by Herreras Martinez et al. (2015) peaks in 2020.

Peak year CO, emissions
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Figure 9: Peak year of CO, emissions per country, in reference, 500-550 ppm, delayed 450 and
optimal 450 scenarios. Models are plotted individually (coloured shapes), lines show the 5, 50"
and 95" percentiles of the range of model results.

Low-carbon energy technology as a function of cumulative
emissions

All countries show increasing deployment of low-carbon primary energy sources
with respect to carbon-intensive energy sources as stringency in mitigation
increases, i.e. lower cumulative emission scenarios, as shown in Figure 10. Low-
carbon primary energy sources are all primary energy sources except coal, gas
and oil without carbon capture and storage (CCS). For developed countries, this



generally means a substantial increase on 2010 levels. Some developing
countries, such as Brazil, India and Indonesia, on the other hand, show 2010
shares of low-carbon primary energy sources that are already close to the range
reached in mitigation scenarios (over 25% of total primary energy supply in
these cases).

Figure 11 shows that the share of low-carbon energy sources in electricity
generation increases substantially in mitigation scenarios, compared to baseline
scenarios. In 2030, the global average share of low-carbon energy sources is
roughly twice as high in mitigation scenarios as the share in baseline scenarios.

Comparison with the national model results

Mexico is projected to reach about a 65% — 100% share of low-carbon energy
sources in the mitigation scenarios, which is confirmed by Veysey et al. (2015).
They conclude that all models included in their study find a significant
decarbonisation necessary to reach Mexico’s greenhouse gas emission reduction
target, with ‘clean sources® reaching a share of 80% to 100% of electricity
generation by 2050.

The Brazilian national modelling team created their own intermediate 450
scenario for comparison, in which they defined low-carbon sources in the same
way as was used to produce Figure 11 (i.e. fossil fuels with CCS, nuclear,
biomass with and without CCS, and non-biomass renewables). They find high
shares of low-carbon sources in electricity generation, going from 79% in 2010
to 100% in 2050, mainly due to growth of non-biomass renewables (solar
photovoltaic, solar CSP, distributed solar, wind, wind offshore, hydropower and
ethanol). The global models project similar shares, reaching about 80%—-100%
by 2050.

% Defined as in Mexico’s Electricity Industry Law: non-biomass renewables, biomass, nuclear, and CCS technologies
(Veysey et al., 2015).
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Share of low-carbon energy sources in total primary energy in 2050 versus cumulative emissions
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Figure 10: Share (%) of low-carbon primary energy sources (all sources except coal, gas and oil
without carbon capture and storage, CCS) in total primary energy supply in 2050, versus
cumulative CO, emissions (Gt CO,) between 2010 and 2100. The scenario categories are shown as
colour. 2010 values are indicated by black dotted lines.
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gas and oil without carbon capture and storage, CCS). The number of models per country is

indicated.

Policy Costs

By 2030, the median policy costs under optimal 450 scenarios are higher than
those under delayed 450 scenarios for the world and for the region of China
(Figure 12). However, the delayed 450 scenarios result in higher policy costs by
2050, compared to the optimal 450 scenarios. This can be explained by the
steeper emission reductions needed in the longer term in the delayed 450
scenarios To some extent, these policy costs may be compensated by avoided
impacts of climate change, though economic modelling is beyond the scope of

this paper.
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Note that the regions are covered by less models than for other variables shown
above, because models report different policy cost variables; here, consumption
loss is shown.
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Figure 12: Policy costs (consumption loss), expressed as % of average costs in the 500-550 ppm
scenarios of the same model, by 2030 and 2050, per country and scenario category. The number
of models per country reporting this cost variable is indicated. Categories include the reference
scenario (current climate policies), the cost-optimal implementation of a 450 ppm target and the
delayed implementation of a 450 ppm target (see methods).

How do assumptions on the availability of different technologies
influence these results?

Implications of Technology Availability Assumptions

The two modelling inter-comparison projects AMPERE and EMF27 have explored
the implications of different technology assumptions on scenario results. Figure



13 shows the different primary energy mixes for five different technology
assumptions as indicated in Table 5.

Table 5: Scenario categories used to evaluate technology availability implications (all scenario
categories are variants of the AMPERE2-450-xxx-OPT scenario, thus assume an optimal 450 ppm
pathway).

Scenario category Description
FullTech The default assumption of each model.
LowEI Assuming lower energy intensity of the economy,

which can be interpreted as a higher efficiency of
end-use technologies, that are not explicitly
represented in some of the models, or a less
materialistic evolution of the economy with a strong
focus on the service sector, or a combination of both.

noCCS Assuming that carbon capture and storage will not be
used (due to technology failures or as a political
decision).

Conv A conventional world, with only limited biomass use

(100 EJ globally is available) and the share of
variable power technologies (wind + solar) does not
exceed 20% of electricity generation.

EERE A world of high efficiency and with focus on
renewable energies. This combines the assumption of
LowEl and noCCS and additionally assumes a global
phase-out of nuclear power after the end of the
economic lifetime of all standing and currently
planned nuclear reactors.

For this analysis, we have selected the REMIND model for illustration, which
studied several variants of the AMPERE2-450-xxx-OPT scenario for the 6 regions
shown in Figure 13. REMIND was the only model able to provide all scenarios for
all 6 regions.

These different assumptions result in very strong differences in the deployment
of different technologies, with generally more deployment of the unrestricted
options, if one or several options are unavailable. Therefore, the extremes
observed in technology-restricted scenarios tend to be higher than in the default
scenario (FullTech). Moreover, the difference across scenarios is more important
than variability across regions. The results imply a large deployment of CCS for
India and Japan, which might raise feasibility problems. Furthermore, the high
use of biomass for some regions is improbable unless regions can import
biomass.
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Figure 13: Primary energy mixes for 4 major economies + world under different assumptions on
technology availability in the REMIND model.

What are important co-benefits at the national/ regional level of the
different policies?

Co-benefits

Energy Security and Energy Independence Co-benefits of Mitigation

Climate policies (both existing pledges* (see e.g. Den Elzen et al., 2015,
Roelfsema et al., 2014) and 450 stabilization scenarios) globally lead to lower
energy trade (Cherp et al., 2013, Jewell et al., 2014, Jewell et al., 2013), but
both the uncertainty and the reduction in net-energy imports (or conversely
reduction in net-exports) from the baseline varies between countries and over
time. There are three types of national dynamics with respect to net-energy
trade. Firstly, energy importers generally experience a decrease in net-energy
imports in climate stabilization scenarios compared to the baseline development
while, secondly, energy exporters experience a loss of energy export revenues
from climate stabilization policies (Figure 14). However, the differences between
the baseline and the climate stabilization scenario are relatively small, except for
the Middle East and North Africa (MENA) region. The results for Canada are

4 The Pledges scenario is the so-called “Stringent Policy” scenario from the LIMITS exercise (Kriegler et al., 2014b).
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influenced by one model showing a strong decrease in exports. Regional analyses
for Europe and the 2030 framework study show that energy imports decrease
with increasing ambition of climate policies, confirming the trends shown in
Figure 14.
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Figure 14: Change in net-energy imports (left) and net-energy exports (right) for major energy
importers and exporters. The number for each country represents the number of models.
*Note: Reference Policy includes LIMITS-RefPol and AMPERES3-RefPol. Delayed-450 includes
LIMITS-RefPol-450 and AMPERES3-450. Models include IMAGE, MESSAGE, REMIND, TIAM-ECN,
WITCH, DNE and POLES. For China and India, we excluded one model which diverges from the
trend of all the other models. In both cases, all but one model depict them as energy importers.

Thirdly, there are countries that in the baseline experience changes in their net-
energy trade (Table 6). For these countries, climate policies would likely not have
the biggest impact on their net-energy trade in the short term, but rather the
relative cost of extraction technologies and resource base development between
different regions. This dynamic is most pronounced in the USA, which becomes a
net energy exporter (primarily of coal) in most models between 2025 and 2060;
climate stabilization does not reverse this trend but delays it and prevents the
USA from developing significant energy export revenues in the latter half of the
century. For Mexico, as the country’s oil reserves are depleted, the country
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becomes a net energy importer around 2030, followed by growing energy
imports. Climate stabilization curbs the growth of energy imports. Finally, Brazil
is characterized by very low energy imports today, which grow but plateau
around 2030 before becoming a net energy exporter around 2050.

Table 6: Countries with shifting net-energy dependence in the Baseline

Baseline Reference Policy Delayed-450

USA |Becomes a net energy Similar to Baseline Similar to
exporter in most models (5 | but the shift is Baseline but loses
out of 7) between 2025 and | delayed and coal most energy
2060. exports are lower. exports post

2050.

Mexic | Oil reserves are depleted, Similar to Baseline Similar to

o and becomes energy Baseline but lower
importer ~2030 followed by imports.

growing imports.

Brazil | Very low energy imports Similar to Baseline Similar to
today. In Baseline, modest Baseline
growth in energy imports
which plateau ~2030.

Air Pollution Co-benefits of Mitigation

Achieving a 450 ppm stabilization scenario implies a fundamental transformation
of the global energy system. Such a transformation will not only result in the
required greenhouse gas emissions reductions, but will also affect the abundance
of air pollutants in the atmosphere. Greenhouse gas emissions, in particular CO,,
are reduced to a large degree by phasing out unabated fossil-fuel energy
production, like coal, and replacing them with less carbon intensive alternatives
like renewables or biomass energy. Because air pollutants are co-emitted with
CO, during the combustion processes, changes in the energy system can result
in less or more air pollutants emissions.

Figure 15 shows that, across the board, sulphur dioxide emissions are strongly
reduced as a positive side-effect of greenhouse gas emission mitigation. This is
the case for both developing and developed countries. The main reason for this
reduction is that unabated coal combustion is a dominant source of sulphur
dioxide emissions, and this source of energy production needs to be rapidly
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replaced by less carbon-intensive alternatives in order to achieve a 450
stabilization scenario.

Significant reductions can also be found for emissions of black carbon (soot).
However, because black carbon can be emitted during the combustion of fossil
fuels as well as from much less carbon-intensive energy sources, like biomass
(Bond et al., 2013), the effect can vary regionally. While, generally, black carbon
emissions are reduced together with emissions of greenhouse gases in 450
scenarios, some estimates show increasing black carbon emissions in countries
that strongly rely on bioenergy to achieve their greenhouse gas targets. In the
latter cases, more complementary policies are required to specifically reduce air
pollution from black carbon.
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Figure 15: Changes in black carbon (brown) and sulphur dioxide (orange) emissions when moving
from a baseline in absence of targeted new climate policies to a pathway in line with stabilizing
atmospheric CO,-equivalent concentrations at 450 ppm. Data is provided for 2030 (top) and 2050
(bottom). Dots show single model results, bars the full range. *Note: The LIMITS-Base (LIMITS1)
scenario is taken as the baseline scenarios. LIMITS-RefPol-450 (LIMITS6) is taken as the 450
scenario. Models include IMAGE, MESSAGE, REMIND, GCAM, AIM, and WITCH. In case models did
not report data at the national level, the reductions in air pollutants from the encompassing region
were downscaled based on the shares found in the IMAGE model. Both the baseline and the 450
scenario assume a successful implementation of current air pollution legislation policies (CLE).
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Conclusions

In this paper, we have looked into the regional results of a set of global models
in order to derive policy-relevant indicators at the national level and to compare
the insights of the global models with insights of national modelling teams.

General conclusions

The mitigation scenarios require major emission reductions in all
countries. These can only be achieved by a considerable change in
the energy supply of these countries. Primary energy demand
decreases strongly in the mitigation scenarios, compared to the baseline
scenario, especially in developing countries. The 450 scenarios show a
reduction in all countries of roughly 30-40% compared to the baseline.
There are regional differences, with e.g. South Africa showing a stronger
reduction in primary energy demand under mitigation scenarios.

Per capita CO, emissions are projected to decline in all countries
under mitigation scenarios. Global average CO, emissions reach
about 0.3 — 2 tCO,/ capita under delayed 450 scenarios. Total CO,
emissions decrease in most countries under the mitigation scenarios, and
even turn negative in Brazil (due to land use, acting as a sink). In terms of
per capita emissions, developing countries generally remain below the
global average, although the upper end of the ranges for China, Indonesia
and South Africa are slightly above the global average. Most OECD
countries show per capita emissions ranges similar to or higher than the
global average. CO, emissions from fossil fuels and industry represent the
majority of global total emissions in the baseline, while the mitigation
scenarios result in about equal shares of non-CO, emissions and CO,
emissions from fossil fuels and industry globally. There are, however,
regional differences in the mitigation scenarios. In China, for example, CO,
emissions from fossil fuels and industry remain the major contributor to
total emissions, while in Indonesia, land use emissions represent the lion’s
share. The difference in cumulative emissions between the baseline and
the mitigation scenarios is especially pronounced in China and India
(assuming cost-efficient implementation across regions).

Under the optimal 450 scenarios, most countries’ CO, emissions
peak before 2025 (except for India) and a phase-out of CO,
emission occurs around 2060. Under delayed and intermediate 450
scenarios (taking into account 2020 pledges and introducing optimal
policies between 2020 and 2025), this peak generally shifts to later in the
century, although not by much. The peak year is even later in 500-550
ppm scenarios, especially in India and Indonesia.

All countries show increasing shares of low-carbon primary energy
sources with lower cumulative emissions. For developed countries,
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this generally means a substantial increase on 2010 levels. Some
developing countries, such as Brazil, India and Indonesia, on the other
hand, show 2010 shares of low-carbon primary energy sources that are
already close to the range reached in mitigation scenarios (over 25% of
total primary energy supply in these cases).

There is a cost advantage to starting mitigation early. Delayed 450
scenarios show lower median policy costs in the short term in some
regions (China and the world), but higher policy costs in the long term in
all regions, compared to the optimal 450 scenarios.

Comparison with national projections

In general the projections seem to be in line with those used at the
national level, although the latter show somewhat higher growth
rates in Brazil and I ndia.

Primary energy intensity decreases strongly in all countries and all
scenarios, including the baseline scenario, but especially in developing
countries and the Russian Federation.

Co-benefits

Energy importing countries generally experience a decrease in net-
energy imports in climate stabilization scenarios compared to the
baseline development, while energy exporters experience a loss of
energy export revenues from climate stabilization policies.
Countries that experience changes in net energy trade in the baseline,
most notably the USA, are likely more affected by relative costs of
extraction technologies and resource base developments than by climate
policies.

Across the board, sulphur dioxide emissions are strongly reduced
as a positive side-effect of greenhouse gas emission mitigation.
This is the case for both developing and developed countries. Significant
reductions of black carbon emissions can also be found, albeit with
regional differences. Countries that strongly rely on bioenergy to reach
mitigation targets, for example, see increasing black carbon emissions,
thus requiring additional policies to reduce air pollution from black carbon.
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