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Abstract 

Given increasing numbers of patients who are undergoing exome or genome 

sequencing, it is critical to establish tools and methods to interpret the impact of genetic 

variation. While the ability to predict deleteriousness for any given variant is limited, 

missense variants remain a particularly challenging class of variation to interpret, since 

they can have drastically different effects depending on both the precise location and 

specific amino acid substitution of the variant. In order to better evaluate missense 

variation, we leveraged the exome sequencing data of 60,706 individuals from the 

Exome Aggregation Consortium (ExAC) dataset to identify sub-genic regions that are 

depleted of missense variation. We further used this depletion as part of a novel 

missense deleteriousness metric named MPC. We applied MPC to de novo missense 

variants and identified a category of de novo missense variants with the same impact on 

neurodevelopmental disorders as truncating mutations in intolerant genes, supporting 

the value of incorporating regional missense constraint in variant interpretation. 

 

Introduction 

With the widespread accessibility of genome sequencing, interpreting genetic 

variation has become a central challenge in medical genetics. Particularly given that the 

vast majority of variants in any given genome are benign, the ability to pinpoint true 

disease associated variation within a vast background of neutral variation is key to both 

discovery and diagnostics. This has specifically arisen in the study of de novo (newly 

arising) variants. Over the last few years, many projects sequenced thousands of 

parent-child trios—primarily focused on neurodevelopmental disorders, such as 
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intellectual disability1-3, developmental delay4,5, epileptic encephalopathy6, and autism 

spectrum disorders7-12—to evaluate the role of de novo variation in the hope of 

identifying genes and pathways relevant to disease etiology. These studies established 

and characterized the important, but limited, role of de novo variation in the genetic 

architecture of these diseases. The largest excesses were found for de novo protein-

truncating variants (PTVs) (roughly 2-fold enriched over expectation; Table S1), which 

because of their infrequency and obvious functional consequence have become the 

main focus for follow up research. 

The availability of large-scale exome sequencing datasets of reference 

individuals, such as the Exome Aggregation Consortium (ExAC; n = 60,706)13, enable 

refined searches for de novo PTVs most likely to contribute to disease. These 

databases provide the opportunity to better understand patterns and rates of variation 

within the human population and have permitted the identification of genes and regions 

within genes that are intolerant of nonsynonymous variation (constrained)14-16 and 

therefore more likely to be associated to disease. As an example, Kosmicki and 

colleagues found that the overall 2.6-fold excess for de novo PTVs in patients with 

neurodevelopmental disorders (when compared to controls) is explained almost entirely 

by a small subset of variants, specifically those de novo PTVs, absent from individuals 

in ExAC, which disrupted genes which were recognizably and strongly intolerant of loss-

of-function variation (6.7-fold enriched; no significant signal in the remaining de novo 

PTVs)17. 

Beyond PTVs, cases with neurodevelopmental disorders also have a significant, 

but more modest (1.3-fold; Table S1), enrichment of de novo missense variants 
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compared to expectation, indicating that a subset of these variants are disease-related. 

Interpreting missense variation, however, presents unique challenges. While some 

amino acid substitutions may lead to effects on the protein just as deleterious as PTVs 

(or in the case of some gain-of-function substitutions, even more so), many substitutions 

can be neutral. Additionally, there are position-dependent effects of missense variants, 

meaning that neutral substitutions can occur next to disease-relevant substitutions. This 

stands in contrast to PTVs where, for the most part, truncating variants at adjacent 

amino acids have the same effect (i.e., it makes little difference if a transcript is 

truncated at 20% or 50% of full-length if both are eliminated by nonsense-mediated 

decay). These two elements—the location and specific amino acid substitution—make 

interpreting missense variation considerably more challenging than interpreting PTVs. 

Previous tools used to predict the deleteriousness of missense variation have 

relied primarily on sequence conservation across species (e.g. SIFT18), structural 

features of the protein (e.g. PolyPhen-219), or combinations of these metrics (e.g. 

CADD20, MutationTaster21). Few metrics have yet to take advantage of the knowledge 

of constrained genes and regions, where natural selection most aggressively removes 

variation within the human population. One metric to do so is M-CAP22, which includes a 

metric of genic intolerance to nonsynonymous variation (RVIS14) as one of the many 

features in its classifier. Given that the deleteriousness of missense variation is tied to 

the domain disrupted by the variant, we hypothesize that incorporating local depletion of 

missense variation will increase our ability to differentiate pathogenic from benign 

variation. 
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To pursue this idea, we developed a method to identify regions within genes that 

are specifically depleted of missense variation and found that ~15% of genes show 

evidence of regional variability in missense intolerance (constraint). That is, genes with 

two or more sub-regions with significantly different tolerance for missense variation. We 

then combined this information with variant-level metrics to best predict the impact of 

any observed missense variants. There are many tools to predict the deleteriousness of 

missense variants19-22 and to evaluate specific amino acid substitutions23,24. To this end, 

we created a score (missense badness) that measures the increased deleteriousness of 

amino acid substitutions when they occur in missense-constrained regions. We 

combined information from orthogonal deleteriousness metrics into one score, called 

MPC (for Missense badness, PolyPhen-2, and Constraint). When we evaluate the MPC 

scores of de novo missense variants, we found that 17.6% of missense variants from 

neurodevelopmental disorder cases, but only 3.9% from controls, have MPC ≥ 2. Using 

MPC therefore allowed us to identify a subset of de novo missense variants with an 

effect size approaching that of de novo PTVs in intolerant genes, cleanly separating the 

few likely pathogenic variants from the much larger background of neutral missense 

variants. 

 

Results 

Searching for regional missense constraint within transcripts 

We used a set of 17,915 transcripts (see Materials and Methods for transcript 

filtering; Table S2) and, for every exon, extracted rare (minor allele frequency [MAF] < 

0.1%) missense variants from the Exome Aggregation Consortium (ExAC; n = 60,706)13 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/148353doi: bioRxiv preprint 

https://doi.org/10.1101/148353
http://creativecommons.org/licenses/by/4.0/


	 6	

dataset and predicted the expected number as described previously15. In our earlier 

work, we identified 1614 transcripts that were significantly (Z ≥ 3.09; p < 10-3) depleted 

of missense variation13. To move away from statistical significance and towards 

biological significance, here we focus on the fraction of expected missense variation 

that is observed (defined as γ). 

Given that missense deleteriousness depends partially on the location of the 

variant within the transcript, we applied a likelihood ratio test to determine if γ was 

uniform along a transcript or whether that transcript had evidence of distinct domains of 

missense constraint. The method is depicted in Figure S1 and explained in detail in the 

Materials and Methods. We found evidence of significant regional differences in 

missense depletion within 2700 transcripts (15.1%) with 1717 split into two segments 

(having one significant break), 904 with three regions, and 79 with four or more distinct 

regions of missense tolerance (Table S3 for distribution data; Table S4 for regional 

constraint data). The transcripts with regional missense constraint have, on average, 

more coding base pairs (bp) than all other transcripts (2753 versus 1530 bp; Wilcox p < 

10-50), which is expected given the increased power to detect regional patterns in 

missense variation in longer transcripts. 

For all following analyses, we combined whole transcripts and partial segments 

of transcripts with the same values of γ when exploring disease relevance. As an 

example, ~14% of the coding region has γ < 0.6; it is compromised of 1789 unbroken 

transcripts and 2996 segments from transcripts with distinct regions of missense 

constraint. 
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ClinVar variants and regional depletion 

We previously found that missense depleted genes were enriched for known 

disease genes in the Online Mendelian Inheritance in Man (OMIM) database15, and 

therefore hypothesized that the missense depleted regions of genes would be similarly 

enriched for disease-associated variation. To test this hypothesis, we extracted 

pathogenic variants from ClinVar25 to evaluate any potential enrichments. Since our 

method focused on finding regions that are intolerant of heterozygous missense 

variants, we selected only those variants that disrupted haploinsufficient genes known 

to cause severe disease (n = 49 genes with 404 variants; Tables S5-6). Transcripts and 

regions of transcripts with the fraction of expected variation observed (γ) ≤ 0.6 contain 

89% of all the ClinVar pathogenic missense variants (6.2-fold enriched; p < 10-50; Table 

S7), despite only representing 14% of the coding region of the human genome.  

Of the 49 severe haploinsufficient genes, 32 (65%) have evidence of regional 

variability in missense constraint, and of this subset, 22 (69%) contain both constrained 

and unconstrained regions. As an example, the first 283 amino acids of CDKL5 have 

only 24% of the expected number of missense variants (χ2 = 37.6), while the remaining 

748 amino acids in the gene have 82% (χ2 = 5.5). ClinVar lists 43 pathogenic or likely 

pathogenic missense variants in CDKL5, 39 (91%) of which reside in the constrained 

regions (Figure 1). Three of the remaining variants are in the first 50 base pairs (bp) of 

exon 10, just outside the boundary defined by our approach, and lie in the kinase 

domain that extends 66 bp into that exon. 
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Figure 1. Distribution of ClinVar25 pathogenic and likely pathogenic variants in CDKL5. 
Pathogenic variants from ClinVar are indicated with a star. 91% of the variants (39/43) 
fall into the first 283 amino acids, which are significantly constrained (24% of 
expectation observed, χ2 = 37.6). The constrained region is marked with a bar. 
 

Using regional constraint to interpret de novo variation 

The variants we tested from ClinVar are considered pathogenic, but we wanted 

to evaluate the ability of our regional missense depletion results to aid in prioritization of 

variants where an unknown subset of the variants are likely contributing to disease. For 

this purpose, we chose to study de novo missense variants from cases with a 

neurodevelopmental disorder (n = 5620; Table S8)1-6 due to the significant, but modest, 

excess of de novo missense variants in these cases (1.3-fold enriched; p < 10-50; Table 

S1b). The de novo missense variants from 2078 unaffected siblings of autism spectrum 

disorder cases were used as controls (Table S8)10,11. 

As depicted in Figure 2a, the distribution of control de novo missense variants 

between bins of missense depletion closely matches the distribution seen for coding 

base pairs overall. To illustrate, 87.9% of the control variants reside in regions with γ > 

0.6, which represent 85.6% of all coding bases (Chi-squared test p = 0.1262). By 

contrast, the de novo missense variants identified in patients with a neurodevelopmental 

disorder are enriched in the most missense-depleted regions (2.0-fold enriched in 

regions with γ ≤ 0.6, Chi-squared test p < 10-50). 
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Figure 2. Missense depleted regions of the exome are enriched for established 
pathogenic variants and de novo missense variants found in patients with 
neurodevelopmental disorders. a) Depicted for each bin of missense depletion (e.g. 
fraction of expected variants observed [γ] > 0.6) is the fraction of coding base pairs 
(Base pairs), de novo missense variants from 2078 control trios (Controls)10,11, de novo 
missense variants from 5620 cases with a neurodevelopmental disorder (Neurodev 
cases)1-6, and pathogenic or likely pathogenic missense variants from ClinVar25 in 
haploinsufficient genes that cause severe disease (Severe HI variants). Darker reds 
indicate more extreme missense depletion. b) Comparison of the rate of case de novo 
missense variants to the corrected rate of control de novo missense variants by bins of 
missense depletion. Here, we have added a bin for 0.6 < γ ≤ 0.8. The case variants 
come from 5620 trios with a neurodevelopmental disorder1-6 and the control variants 
were identified in 2078 control trios10,11. The control rate was corrected by the ratio of 
the rate of de novo synonymous variants in cases versus controls (~1.14). The dashed 
gray line indicates a ratio of one. 95% confidence intervals are depicted around each 
point estimate. 
 

We next wanted to compare the rates of de novo missense variants between the 

neurodevelopmental disorder cases and the controls. Since these datasets were 

sequenced at separate times and locations, we first needed to correct for any potential 

differences that might result in different variant ascertainment rates between datasets. 

In particular, we note that the cases were more recently sequenced than the controls, 

and consequently exhibit a significantly higher rate of synonymous variation (0.287 de 

novo synonymous variants per case exome versus 0.251 per control exome, two-sided 

Poisson exact test p = 9.80x10-3). We control for this difference in synonymous rate by 

multiplying all rates of de novo variation in the controls by the ratio of the synonymous 

rate in the cases compared to controls (~1.14). This correction will reduce apparent 

signal, but ensures that our results are not inflated by technical differences in mutation 

discovery. 

We compared the rate of de novo missense variants in cases to the corrected 

rate in controls across four bins of missense constraint. If a region or transcript is 
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tolerant of missense variation, we expect it to have the same rate of de novo variation in 

cases as in controls, reflecting the background rate of mutation (ratio of 1:1). However, 

if the region is intolerant of missense variation—and therefore more likely to be 

associated to disease—we expect to observe a higher rate of de novo variants found in 

cases compared to controls (ratio >1:1). Here, we have added a bin for those genes and 

regions with 0.6 < γ ≤ 0.8. Both of the least missense-constrained bins (γ > 0.6) are 

indistinguishable from 1, supporting our choice of 0.6 as a cut-off between constrained 

and unconstrained regions (Figure 2b; Table S9). Combined, there are 0.58 de novo 

missense variants per case exome and 0.56 per control exome after correction for the 

difference in the rate of de novo synonymous variation. 

By contrast, the three most depleted bins together (γ ≤ 0.6) have 0.24 de novo 

missense variants per case exome and only 0.08 per control exome after correction. 

There is quantitative value in the missense depletion parameter, however, as suggested 

by the intermediate OR of regions and genes with more modest missense depletion (0.4 

< γ ≤ 0.6; OR = 2.1) compared to the most depleted two bins (γ ≤ 0.4; OR > 4.9; Figure 

2b; Table S9). It is important to note that the majority (71%) of de novo missense 

variants found in cases reside in transcripts and regions that are not missense 

constrained (γ > 0.6). However, we have used these analyses to refine the signal of de 

novo missense variant enrichment and, by doing so, shrunk the number of candidate 

pathogenic variants from 4683 to 1374. 

Taken together, and consistent with related observations regarding truncating 

variation, these analyses indicate that the signal for both established pathogenic 

variants as well as the excess of de novo missense variants in cases with a 
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neurodevelopmental disorder can be found in those transcripts and regions with 60% or 

less of their expected missense variation. 

 

Measuring the increased deleteriousness of amino acid substitutions 

While the general mutational tolerance of a gene or region disrupted by a 

missense variant carries significant information, it is also critical to consider the specific 

type of amino acid substitution that occurred. Major changes in the physiochemical 

properties of the amino acid side chain are expected to have larger effects on the 

protein than more subtle changes to the side chain. The deleteriousness of these 

changes has been quantified in a variety of metrics, the two most common of which are 

BLOSUM24 and Grantham23. Here, we hypothesized that there might be specific amino 

acid substitutions that are preferentially eliminated when they occur in the most 

missense depleted regions of the human exome. That is, analogous to the way we 

recognize the relative tolerance of genes to mutation by their variation content, we can 

potentially compare the disruptiveness of different amino-acid substitutions by how 

tolerated they are across all genes. 

To measure the increased deleteriousness of amino acid substitutions when they 

occur in the constrained regions of the exome, we tabulated all possible amino acid-to-

amino acid substitutions that could occur in the exome via a single nucleotide mutation 

along with the number observed in ExAC (with MAF < 0.1%)13. The rate of possible 

substitutions observed was determined for constrained (γ ≤ 0.6) and unconstrained 

(here, γ > 0.8) regions separately; in almost all instances, we observed a higher rate in 

the unconstrained regions, including for synonymous variants. The fold difference 
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between the rate in the unconstrained and constrained regions differs depending on the 

functional class. For synonymous changes, the rate difference clusters around one and 

enters the 3-5 range for nonsense changes.  As expected, the rate difference for 

missense changes falls primarily in between the synonymous and nonsense changes 

(Figure S2). 

We used the normalized fold difference of missense substitutions (“missense 

badness”) as a measure of the increased deleteriousness of amino acid substitutions 

when they occur in constrained genes and regions (scores provided in Table S10). As 

expected, this score has a high correlation with both BLOSUM and Grantham scores (r 

= -0.6437 and 0.5180, respectively; Figure S3) with few exceptions. 

 

Combining variant level deleteriousness scores 

We wanted to determine which variant deleteriousness metric, or combination of 

metrics, best differentiated benign from pathogenic missense variants. We selected 

missense variants with a minor allele frequency (MAF) > 1% in ExAC as our benign set 

(n = 82,932 variants after removing those variants missing one of the metrics) and used 

the ClinVar missense variants found in haploinsufficient genes that cause severe 

disease as our set of pathogenic variants (n = 402 after removing variants missing one 

of the metrics). We compared the following metrics: missense depletion (γ) of the region 

in which the variant resides, missense badness, PolyPhen-219, BLOSUM24, and 

Grantham scores23. Using a series of logistic regressions, missense depletion (γ) of the 

region in which the variant was located best predicted missense deleteriousness (Table 

S11). 
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As the metrics can provide complementary information, we sought to create a 

composite predictor. Given that γ was by far the best score, we tested nested logistic 

regression models and found that both missense badness and PolyPhen-2 significantly 

added to the composite predictor, but neither BLOSUM nor Grantham did. Therefore, 

the best model included γ, missense badness, and PolyPhen-2 (Table S12), and we 

took the predictions as our final score, known as MPC (for Missense badness, 

PolyPhen-2, and Constraint). Given the number of benign variants, the range of MPC is 

limited from 0 to 5, with larger numbers indicating increased deleteriousness. 

 

Using MPC to evaluate the deleteriousness of de novo variants 

To independently test the utility of these scores, we analyzed the MPC 

distributions of the previously described de novo variants from 5620 cases with a 

neurodevelopmental disorder1-6 and from 2078 controls10,11. We find that the vast 

majority (72%) of de novo missense variants in controls have MPC values below 1 

(Figure 3). In fact, those de novo missense variants with MPC < 1 show no sign of 

enrichment in cases compared to the rate seen in controls (0.507 de novo missense 

variants per case exome versus 0.504 in controls after correction; rate ratio = 1.01; one-

sided Poisson exact p = 0.885; Table 1). By contrast, the MPC distribution for the de 

novo missense variants identified in cases with a neurodevelopmental disorder appear 

to comprise two distributions: one following the distribution of the control de novo 

variants and the other with a peak at an MPC of 2.5 (Figure 3), reinforcing that these 

variants are a mix of signal and noise. Variants with MPC ≥ 2 have a rate nearly 6 times 

higher in cases than in controls (0.162 versus 0.028 de novo missense variants; rate 
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ratio = 5.79; one-sided Poisson exact p < 10-50; Table 1), while those with intermediate 

MPC values (1 ≤ MPC < 2) have a more modest excess in cases (0.185 per case 

versus 0.124 per control exome after correction; rate ratio = 1.49; one-sided Poisson 

exact p = 3.70x10-9; Table 1). 

 

 
 
Figure 3. The MPC distributions for de novo variants in cases with a 
neurodevelopmental disorder and controls. The MPC scores for de novo missense 
variants identified in 2078 controls10,11 are depicted in gray. Note that the control rate 
has been corrected for the differences in de novo synonymous rates between cases 
and controls. In green are the MPC scores for the de novo missense variants (n = 5113) 
identified in 5620 patients with a neurodevelopmental disorder1-6. Larger MPC values 
indicate increasing deleteriousness of the variant.  
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  MPC < 1 1 ≤ MPC < 2 MPC ≥ 2 

Neurodevelopmental 
disorder cases 

Count 2848 1038 911 
Per exome 0.507 0.185 0.162 

     

Controls 
Count 918 226 51 

Per exome* 0.504 0.124 0.028 
     
 Rate ratio 1.01 1.49 5.79 
 p-value 0.885 3.70x10-9 <10-50 

 
Table 1. Distribution of MPC scores for de novo missense variants in patients with 
neurodevelopmental disorders and controls. For three bins of MPC values, the number 
of de novo missense variants (count) and per exome rate are reported for 5620 cases 
with a neurodevelopmental disorder1-6 and 2078 controls10,11. Below each bin is the rate 
ratio. Higher MPC values indicate increasing deleteriousness. * The per exome rate for 
the controls has been corrected for the difference in rate of de novo synonymous 
variants in cases versus controls (~1.14:1).  P-values come from one-sided Poisson 
exact tests. 
 

We compared MPC to three other metrics that evaluate the deleteriousness of 

missense substitutions: PolyPhen-219, CADD20, and M-CAP22. We combined the scores 

for de novo missense variants from cases and controls and took the top ~10% ranked 

by each score to determine the enrichment of case variants. Since the total proportion 

of case variants is 0.8 (5113 out of 6382), if a metric has no predictive value, the 

proportion of case variants in the top 10% should match the overall rate (0.8). However, 

the better a metric is at determining deleteriousness of variants, the greater the fraction 

of case variants should be seen in the top 10% of scores – since the global excess of 

mutations in cases suggests up to 20% of de novo missense variants may confer risk to 

neurodevelopmental disorders. While all four metrics are significantly enriched for case 

de novo variants in their most deleterious ~10% of variants, MPC has the greatest 

enrichment of cases variants (odds ratio [OR] = 5.43; Fisher’s exact test p < 10-27; Table 

2; Table S13). Given that PolyPhen-2 is incorporated into each of MPC, CADD, and M-
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CAP, it is unsurprising that PolyPhen-2 by itself shows the least enrichment (OR = 1.44; 

Fisher’s exact test p = 2.66x10-3; Table 2; Table S13), though clearly it is an integral 

component of the predictive success of the other metrics. The greater enrichment for 

MPC supports the notion that high MPC values are more specific to pathogenic variants 

than high CADD, M-CAP, or PolyPhen-2 scores. We provide MPC values for all 

possible missense variants in the canonical transcripts under study in this work (Table 

S14). 

 
 

 MPC M-CAP CADD PolyPhen-2 

Fraction of top 10% from cases 0.95 0.93 0.86 0.85 
Odds ratio 5.43 3.52 1.58 1.44 

p-value 1.48x10-28 4.35x10-20 1.46x10-4 2.66x10-3 

 
 
Table 2. Comparison of MPC, M-CAP, CADD, and PolyPhen-2 scores for de novo 
missense variants in patients with neurodevelopmental disorders and controls. Taking 
the combined scores from 5620 cases with a neurodevelopmental disorder1-6 and 2078 
controls10,11, we took the top ~10% of scores and determined the fraction of those 
variants that came from the cases. We also report odds ratios and p-values (Fisher’s 
exact test) for the enrichment of case variants in the top ~10%. Overall, the proportion 
of case variants is 0.80. See Table S13 for more details. 
 
 
 
 
Discussion 

We have developed a method to locate regions within genes that are specifically 

intolerant of missense variation and used those results to create MPC, a metric to 

evaluate the deleteriousness of missense variants. Our work here highlights the 

usefulness of incorporating regional depletion of missense variation into missense 

variant pathogenicity calculations. 
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While many genes have a relatively consistent tolerance or intolerance to 

missense mutation throughout, ~15% display evidence of strong regional variability in 

missense constraint and are split into two or more regions of varying missense 

depletion. We find that the genes and regions that have 60% or less of their expected 

missense variation—while only representing a small fraction of all coding sequence—

contain 89% of missense pathogenic variants25 in haploinsufficient genes known to 

cause severe disease. These genes and regions also contain the vast majority of the 

excess of de novo missense variation that is seen in 5620 cases with a 

neurodevelopmental disorder1-6. 

Since the missense constrained regions are depleted of variation due to selective 

pressures, we proposed that including information about the local missense depletion 

could improve variant deleteriousness metrics. We first created a measure of the 

increased deleteriousness of amino acid substitutions when they occur in missense 

constrained genes and regions, which outperformed similar amino acid substitution 

matrices (BLOSUM24 and Grantham23) at separating pathogenic25 from benign variants. 

The best predictor of variant deleteriousness, however, was the combination of regional 

missense constraint, the amino acid substitution score we developed (missense 

badness), and PolyPhen-219. The MPC scores—the joint metric—for the de novo 

missense variants from neurodevelopmental cases appeared to comprise a mixture of 

two distributions (benign and pathogenic), which matches what would be expected 

given the modest enrichment of such variants in the cases. 

When applied to the de novo missense variants identified in 5620 patients with a 

neurodevelopmental disorder and 2078 controls, MPC displayed the greatest specificity 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/148353doi: bioRxiv preprint 

https://doi.org/10.1101/148353
http://creativecommons.org/licenses/by/4.0/


	 19	

for pathogenicity when compared to three other metrics of variant deleteriousness. 

Specifically, we found that de novo missense variants with MPC ≥ 2 were found at a 5.8 

times higher rate in cases compared to controls. This enrichment approaches that found 

for de novo protein-truncating variants—which are predicted to be more deleterious 

overall than missense—that were absent in the ExAC database and that disrupted 

genes extremely intolerant of protein-truncating variation (pLI ≥ 0.9; rate ratio = 6.7)17. 

We predict that MPC will be most informative for those variants that are found in regions 

with intermediate missense depletion (40-60% of expected variation), since this set of 

variants has a lower signal to noise ratio than the variants found in the more missense 

depleted genes and regions.  

Ideally, constraint would be calculated per base, but even the 60,706 individuals 

released in the original ExAC dataset is not large enough to provide sufficient power to 

do this. We therefore needed to aggregate variant counts and, while there are many 

options, we chose to aggregate across exons with further refinement to the amino acid 

level. As publicly released datasets such as ExAC continue to grow, our ability to define 

the constraints on specific amino acids and base pairs will improve. 

Moving forward, it will also be critical to consider both noncoding DNA and non-

linear coding sequences. Currently, determining noncoding regions under selective 

constraint is limited by our lack of knowledge of both boundaries of relevant elements 

and which variants are more likely to be deleterious, both of which would decrease 

power to identify intolerant elements26. However, we can start to evaluate non-linear 

sequences, which would be a critical advance. Binding pockets, which are key 

functional domains of proteins, are made up of amino acids scattered across the gene 
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and are currently not evaluated by our method. Other 3D structural aspects of the 

protein (e.g. internal versus external residues, structured versus unstructured regions) 

could also supply important information to consider when evaluating variant 

deleteriousness. Evaluating disparate amino acids would also provide the ability to 

determine constraint of the same residue or set of residue across members of a protein 

family. Therefore, future work would greatly benefit from being able to analyze non-

linear sequences. The knowledge gained from our work and similar studies will continue 

to improve our ability to interpret genetic variation and, therefore, understanding of the 

genetic basis of disease. 
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URLs 

Exome Aggregation Consortium (ExAC), http://exac.broadinstitute.org/; ClinVar 

https://www.ncbi.nlm.nih.gov/clinvar/; Online Mendelian Inheritance in Man (OMIM), 

http://omim.org/; ClinGen Dosage Sensitivity Map 

www.ncbi.nlm.nih.gov/projects/dbvar/clingen/; Combined Annotation Dependent 

Depletion (CADD) http://cadd.gs.washington.edu  
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Online Material and Methods 

Transcript and exon definitions 

In order to have one representative transcript for each gene, we used the 

canonical GENCODE (v19) transcript as defined by Ensembl 75, for protein-coding 

genes. We removed transcripts that lacked a methionine at the start of the coding 

sequence, a stop codon at the end of coding sequence, or were indivisible by three, 

which left 19,621 transcripts. Additionally, we dropped 795 transcripts that had zero 

observed variants when dropping counts in exons with a median depth < 1. Our 

previous work with the Exome Aggregation Consortium’s dataset (ExAC; n = 60,706)13 

identified a set of 251 genes that had either (1) far too many synonymous and missense 

variants as determined by a Z score (p < 10-4 and 10-3, respectively) or (2) far too few 

synonymous and missense variants as determined by a Z score (p < 10-4 and 10-3, 

respectively). These outlier genes were removed as well as all genes with synonymous 

Z scores that were significantly high or significantly low (p < 10-3; n = 310), leaving 

17,915 transcripts for all analyses (Table S2). The exon boundaries were defined by 

UCSC’s annotation for GENCODE v19 (downloaded on June 16th, 2014). 

 

Observed variant counts 

To obtain the observed number of missense variants per exon, we extracted 

variants from ExAC that met the following criteria: 

(1) Defined as a missense change by the predicted amino acid substitution. 

Variants that would be considered “initiator_codon_variants” and “stop_lost” 
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by annotation programs such as Variant Effect Predictor (VEP)27 are therefore 

included in the total. 

(2) Caused by a single nucleotide change. 

(3) Had an adjusted allele count ≤ 123, corresponding to a minor allele frequency 

(MAF) < 0.1% in ExAC. The adjusted allele count only includes individuals 

with a depth (DP) ≥ 10 and a genotype quality (GQ) ≥ 20. 

(4) Had a VQSLOD ≥ -2.632. 

Due to the VQSLOD threshold, variants were not required to have a PASS in their 

FILTER column. The observed counts represent the unique number of qualifying 

variants and not the aggregate allele count of all qualifying variants within the exon. 

Variants in exons with median depth < 1 were not considered in our analyses. 

 

Expected variant counts 

Expected missense variant counts were determined as described in Lek et al.13 

Briefly, we used a model of mutation based on sequence context and corrected for 

regional divergence between humans and macaques to define the probability of a 

mutation per exon in all canonical transcripts13,15. We used exons with a median depth ≥ 

50 and regressed the number of rare, synonymous variants on the probability of a 

synonymous mutation. Regressions were run separately for the autosomes with the 

pseudo-autosomal regions (PAR) of the X chromosome, the non-PAR regions of the X 

chromosome, and the Y chromosome. The expectations produced by these regressions 

were then corrected for the median depth of coverage of the exon using the following 

equation: 
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𝑑𝑒𝑝𝑡ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 =  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡,𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑡ℎ ≥ 50

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 ∗ (0.089 + 0.217 ∗ ln 𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑡ℎ , 1 ≤  𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑡ℎ < 50 

0.089 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡,𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑡ℎ < 1

 

For exons with a median depth < 1, we set the expected counts to 0. 

 

Likelihood ratio tests to define regional constraint 

Using the observed and expected counts for the 17,915 canonical transcripts, we 

searched for significant breaks between exons that would split the transcript into two or 

more regions with varying levels of missense depletion. For these analyses, we assume 

that observed counts should follow a Poisson distribution around the expected number. 

We defined the null model—no regional variability in missense depletion—as the model 

where the overall fraction of expected missense variation observed (𝛾) for the transcript 

is used as the expectation for all segments. We then employed a likelihood ratio test to 

compare the null model with an alternative model where expectation was 𝛾 for each 

specific segment. Given that the alternative model should always have a better fit than 

the null, we require a χ2 above a given threshold to establish significance. 

We used the following general formula to determine the significance of a break 

that would split a transcript into segments A and B: 

𝑝! = 𝑃𝑜𝑖𝑠 𝑜𝑏𝑠!, 𝑒𝑥𝑝! ∗ 𝛾 ∗ 𝑃𝑜𝑖𝑠(𝑜𝑏𝑠! , 𝑒𝑥𝑝! ∗ 𝛾) 

𝑝! = 𝑃𝑜𝑖𝑠 𝑜𝑏𝑠!, 𝑒𝑥𝑝! ∗ 𝛾! ∗ 𝑃𝑜𝑖𝑠(𝑜𝑏𝑠! , 𝑒𝑥𝑝! ∗ 𝛾!) 

𝜒! = 2(𝑙𝑜𝑔(𝑝!)− log (𝑝!)) 

Where 𝛾 is the fraction of expected variation observed across all segments in the 

transcript; 𝑜𝑏𝑠! is the observed number of missense variants in segment A; 𝑒𝑥𝑝! is the 

expected number of variants in segment A; 𝛾! is the fraction of expected variation 
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observed only for segment A; 𝑜𝑏𝑠! is the observed number of missense variants in 

segment B; 𝑒𝑥𝑝! is the expected number of variants in segment B; 𝛾! is the fraction of 

expected variation observed only for segment B; and 𝑃𝑜𝑖𝑠 denotes the Poisson 

likelihood. 

To account for the fact that exon boundaries do not always follow the boundaries 

of biological significance, we refined any significant break we found by searching for an 

amino acid nearby that best modeled the differences in missense depletion. Specifically, 

we tested all amino acid boundaries halfway through each of the bordering exons. As 

an example, if the 5’ exon for a significant break was 100 amino acids long, we tested 

each amino acid break for the 50 amino acids at the 3’ end of the exon (and therefore 

closest to the original exon break). This would be repeated for half of the amino acids in 

the 3’ exon as well. The amino acid boundary that best modeled the data (via the χ2) 

was taken as the break between the two regions of the gene. 

For the purposes of this method, all exons or sections with more observed 

variants than expected were assigned 𝛾 = 1 since we were looking for variation in 

missense depletion. In addition, exons or sections with zero observed variants were 

considered to have one variant to prevent 𝛾 = 0. 

We first searched for a single break in between exons that would significantly (χ2 

≥ 10.8, p < ~10-3) better model the transcript’s data than the null model. If multiple 

significant breaks between exons were found, we took the best break as defined by the 

χ
2 value. If a significant break was found, we first refined the break by examining the 

local amino acid space and then searched for a second break. This process was 

repeated until the best break did not significantly improve on the model (χ2 < 10.8). If a 
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transcript had no significant single break, we searched for two breaks at a time, 

requiring a χ2 ≥ 13.8 (p < ~10-4) to indicate significance. As before, if we found evidence 

of two breaks, both breaks were refined to the local amino acids that gave the most 

significant χ2. Those transcripts with χ2 < 13.8 were considered to show no evidence of 

regional variability in missense depletion, and were left intact. The general process is 

depicted in Figure S1 and the regional constraint data can be found in Table S4. 

 

ClinVar pathogenic variants 

We extracted variants from the July 9, 2015 release of ClinVar25 that were 

labeled as “pathogenic” and “likely pathogenic”. We specifically focus on those 

missense variants that fell into a set of 55 haploinsufficient genes (49 when removing 

outliers; Table S5) that cause severe disease (n = 483 variants; 404 variants when 

removing synonymous Z-score outliers; Table S6). The haploinsufficient genes were 

primarily those with sufficient evidence for dosage pathogenicity (level 3) as determined 

by the ClinGen Dosage Sensitivity Map (www.ncbi.nlm.nih.gov/projects/dbvar/clingen/; 

downloaded on May 5, 2015); the severity of disease caused by variants in the genes 

was manually curated by AHODL. We also included 11 genes that were established to 

cause severe disorders in a dominant and/or haploinsufficient mechanism, as manually 

curated by AHODL and EPH. 

 

De novo variants from cases with a neurodevelopmental disorder 

We collected the de novo variants found in 5264 trios with intellectual 

disability/developmental delay1-5 and 356 with an epileptic encephalopathy6. De novo 
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variants from the unaffected siblings of autism cases were used as controls (n = 

2078)10,11. As described in Kosmicki et al.17, we created a standardized annotation of all 

de novo variants to ensure uniformity across the datasets. Briefly, we used a Python 

implementation of vt normalize28 to annotate all variants with VEP27 version 81 with 

GENCODE v19 on GRCh37. Given that some variants fall into multiple transcripts, we 

used the annotation from the canonical transcript whenever possible. In the case of 

multiple canonical transcripts or no canonical transcript available for the gene, the most 

deleterious annotation was used. All variants are provided in Table S8. 

 

Correcting the rate of de novo variants in controls 

Before we could compare the rate of de novo missense variants between the 

cases and controls, we wanted to correct for potential differences in sequencing 

technology and time of sequencing (e.g. the cases were sequenced more recently than 

the controls). As listed in Table S1b, the rate of de novo synonymous variants in the 

cases (0.287 events per case exome) is significantly higher than the rate seen in 

controls (0.252 events per control exome; p = 9.80x10-3). This increased in rate would 

also extend to missense variation, and therefore make any enrichment using the raw 

rates of de novo missense variants inflated. To correct for this, we multiplied all control 

de novo rates in analyses by ~1.14, which is the ratio of the rate of de novo 

synonymous variants in cases to the rate seen in controls. Our correction for this 

difference is conservative, as it will reduce any signal of enrichment we see in cases. 
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Confidence intervals around the ratio of case:control de novo variant rates 

 We compared the rate of de novo missense variants in cases compared to the 

rate in controls for the five constraint bins. To determine confidence intervals around the 

point estimates of the ratio of de novo variant rates, we took the natural logarithm of the 

point estimate 

𝜃 =  
𝑥! 𝑛!

𝑥! 𝑛!

   , 

and found the standard error 

𝑆𝐸 log 𝜃 =  
(𝑛! − 𝑥!) 𝑥!

𝑛!

+
(𝑛! − 𝑥!) 𝑥!

𝑛!

 

using the delta method. The upper and lower bounds are then transformed back to 

obtain the 95% confidence interval 

𝜃 exp ±1.96𝑆𝐸 𝑙𝑜𝑔 𝜃    , 

where 𝑥! is the number of case de novo variants; 𝑛! is the number of case trios; 𝑥! is 

the number of control de novo variants; and 𝑛!is the number of control trios. 

 

Creation of missense badness 

We created a metric (missense badness) of the increased deleteriousness of 

specific amino acid substitutions when they occur in constrained regions to identify 

those substitutions that are preferentially eliminated when they occur in missense 

depleted sequence. To do so, we identified all possible amino acid-to-amino acid 

substitutions that could occur via a single nucleotide mutation and then tallied the 

number of these substitutions in ExAC with a MAF < 0.1%. The observed and possible 

were then split by whether they occurred in a gene or regions with γ ≤ 0.6 (constrained) 
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or γ > 0.8 (unconstrained) and we determined the rate of possible substitutions 

observed for both groups. Transcripts and regions with 0.6 < γ ≤ 0.8 were excluded from 

both constrained and unconstrained groups because, while these regions look null with 

respect to the rate of de novo missense variants in cases compared to the rate seen in 

controls (Figure 2b), they are noticeably depleted of the expected amount of missense 

variation and may hold some small residual signal. We observed a higher rate of 

possible substitutions observed in the unconstrained regions with the notable 

exceptions that synonymous changes in isoleucine and phenylalanine did not follow this 

pattern. 

We used the median fold difference of all synonymous substitutions as a floor 

(set to 0) and the median of all nonsense substitutions as a ceiling (set to 1) and 

normalized the missense fold differences to create missense badness. Missense 

badness is provided in Table S10. 

 

Creation of MPC, a composite missense deleteriousness score 

We used logistic regressions to determine which of five deleteriousness metrics 

was best at separating benign from pathogenic missense variants. The metrics we 

compared were the missense depletion of the region in which the variant was found (γ), 

missense badness, PolyPhen-219, BLOSUM24, and Grantham scores23. Our benign 

variants were missense variants with a MAF > 1% in ExAC13 (n = 88,083 variants when 

removing synonymous Z outlier genes). The pathogenic variants were ClinVar25 

missense variants found in haploinsufficient genes that cause severe disease (n = 404 

variants when removing synonymous Z outlier genes). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/148353doi: bioRxiv preprint 

https://doi.org/10.1101/148353
http://creativecommons.org/licenses/by/4.0/


	 32	

As the metrics provide complementary information, we used nested models to 

determine the best composite score starting with missense depletion (γ). Missense 

badness and PolyPhen-2 significantly added to the composite predictor, but BLOSUM 

and Grantham did not. We therefore tested the combination of the three significant 

metrics and all possible interactions between them. The best model included all three 

scores and the interaction between γ and missense badness as well as the interaction 

between γ and PolyPhen-2 (Table S11). 

We used the best regression to predict scores for all benign and pathogenic 

variants. In order to make more easily interpretable numbers, we transformed the raw 

score (RS) 

−𝑙𝑜𝑔!"
𝑛!"#$%# <  𝑅𝑆

𝑁!"#$%#

   , 

where 𝑛!"#$%# is the number of benign variants with a raw score less than RS and 

𝑁!"#$%# is the total number of benign variants. We refer to the final composite score as 

MPC. Since there are ~88k benign variants that had information for all three metrics, the 

highest MPC is ~5. MPC values for all possible missense variants—excluding those 

involving a selenocysteine—in the 17,915 canonical transcripts were calculated and are 

provided in Table S14. 
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