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Abstract Climate change will have serious repercussions for agriculture, ecosystems, and
farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to
their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent
need to develop national and local adaptation responses to reduce these impacts, yet evidence
from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we
review the past decade of research on agricultural and ecological climate change impact
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models for Central America. The results of this review provide insights into the expected
impacts of climate change and suggest policy actions that can help minimize these impacts.
Modeling indicates future climate-driven changes, often declines, in suitability for Central
American crops. Declines in suitability for coffee, a central crop in the regional economy, are
noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and
high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders
in many parts of the region have one or more vulnerability factors that put them at risk. Initial
adaptation policies can be guided by these existing modeling results. At the same time,
improved modeling is being developed that will allow policy action specifically targeted to
vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological
responses to climate change, improved representation of the region in climate models, and
simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are
key priorities for future research.

1 Introduction

Climate change is affecting agriculture, ecosystems, and livelihoods worldwide. Major shifts
in the areas suitable for growing some of the world’s major crops, such as wheat, corn, and
coffee, are projected (Challinor et al. 2007). Plant and animal ranges are shifting to track
suitable conditions as climate changes, resulting in reorganization of plant and animal com-
munities and impacts on ecosystem services (Thomas et al. 2004). Where there are both
agricultural and ecological changes, smallholder farmers may be particularly impacted, since
they depend strongly on ecosystems and their services (Vermeulen et al. 2012; Ricketts et al.
2004). Policy makers need to take action to minimize the impacts of climate change on people
and ecosystems, but policy is often formulated with little input from science (Rayner et al.
2005). Information at regional scales to provide context and at local scales to support building
of adaptive capacity and inform locally tailored adaptation strategies are both important inputs
to sound adaptation strategies.

Central America is one of the regions worldwide which is expected to suffer dispropor-
tionate agricultural and ecological impacts of climate change (Hannah et al. 2014). The region
is particularly vulnerable because production of many of the principle crops is expected to
decrease significantly with rising temperature. Most farmers are smallholders with limited
adaptive capacity and there is high dependency on ecosystems and biodiversity for both on-
farm (e.g., pollination, water provision) (Fischlin et al. 2007) and off-farm (e.g., tourism)
income.

Regional modeling efforts are crucial to understanding the cumulative effects of climate
change on agricultural and ecological sectors across the region and for providing context to
national and local impact studies as well as policies and programs for food security, agricul-
ture, climate change, and biodiversity conservation. The types of models that can contribute to
this understanding include crop models, species distribution models, ecosystem models,
hydrological models, and climate change models themselves. Modeling at local scales across
such a diverse region is difficult and expensive. The methods used for local and regional
studies are often the same or similar, so there are economies of scale in conducting crop,
species, and ecosystem modeling at regional domains. Over a decade of regional modeling
results now exist, so a synthesis of regional modeling results has great utility for informing
local impact studies and polices to address these impacts.
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Here, we review the past decade of research on agricultural and ecological climate change
impact models for Central America, in order to explore what the expected impacts of climate
change will be on the region’s ecosystems, agriculture, and smallholder farmers and to identify
the key research and policy actions that will be needed to minimize these expected impacts.
Specifically, we seek to answer the following questions: (1) What are the expected changes in
climate in the region, based on historical climate data and regional models of future climate
simulations?; (2) What are the major expected impacts of climate change on agriculture,
ecosystems, and ecosystem services as shown by modeling?; (3) Are the existing climate
models and models of expected impacts of climate change on agriculture, ecosystems, and
ecosystem services sufficient for local impact assessment and development of adaptation
policies?; (4) What are the key issues that policy makers need to address to minimize the
expected impacts of climate change on the region?; and (5) In light of the above, what are the
key research gaps that need to be filled? In the following five sections, we explore each of
these questions in turn, beginning with observed and expected climate changes in the region.

2 Observed regional climate trends

The historical record of climate change in Central America reflects marked warming, but less
certain changes in precipitation. The record spans nearly 100 years, but only the period from
the early 1960s to the present has sufficient data for reliable analysis of trends (Aguilar et al.
2005). The region has warmed over the last four decades, but not uniformly (Hidalgo et al.
2015). Mean air surface temperature trends from global datasets at coarser resolution show a
well-defined pattern of increasing temperature (IPCC 2013). The number of warm days and
nights is increasing in the region, while cool days and nights decreased from 1961 to 2003
(Aguilar et al. 2005).

Precipitation trends in the region, on the other hand, are highly spatially variable and
usually statistically insignificant (Fig. 1; Hidalgo 2013). There are inconsistencies in trends
evidenced in different data sources that are not yet fully understood (Hidalgo et al. 2015). For
example, satellite records show drying over Nicaragua (Neelin et al. 2006), but this drying is
not reflected in the gridded data based on meteorological observations.

3 Projected regional changes in climate

Global climate models and regional climate models project the continuation of these trends
into the future. Models of future temperature generally reflect warming across the region,
while there is considerable model disagreement on magnitude and sign of future precipitation
change. Nonetheless, many modeling studies project a warmer and drier climate in Central
America by the end of the century (Fig. 2; Hidalgo et al. 2013).

Central America is a challenging environment for global climate models (general circula-
tion models—GCMs). GCMs are unable to simulate well many of the synoptic influences that
define Central American climate. Of particular importance is the subtropical high of the North
Atlantic (Hidalgo et al. 2015). The El Niño Southern Oscillation (ENSO), the Caribbean Low
Level Jet (CLLJ) (Amador 1998), and the Inter-tropical Convergence Zone (ITCZ) are other
major determinants of climate in the region, and none are reliably simulated in most GCMs
(Hidalgo and Alfaro 2014). For example, some GCMs reproduce fairly well important
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characteristics of the climate in the region, such as the CLLJ, while others show significant
biases (Hidalgo and Alfaro 2014).

Modeling of Central American climate is further complicated by the narrow landmass of the
region (which is very small relative to the horizontal resolution of most GCMs) sandwiched
between two major oceanic influences. However, GCM resolutions are improving, and
regional climate models are becoming available which are able to better represent the isthmus
and its topography as well as land use (Chou et al. 2014). Increased resolution in GCMs could
enhance simulation of ENSO and other synoptic influences (Hidalgo and Alfaro 2014).

However, carefully applied, GCM simulations still have utility for this region (Hidalgo and
Alfaro 2014). A detailed selection of models is necessary in climate change impact studies
using GCMs. The warming trend in historical observations, GCM, and RCM simulations is
robust, paving the way for important insight in modeling of crops and ecosystems.

4 Projected impacts of climate change on agriculture

Agriculture is a major economic activity in Central America, and climate change is expected to
significantly impact agriculture across the region (Magrin et al. 2007). Therefore, it is
extremely important to understand the impacts of climate change on crop suitability and
productivity and on the incidence of agricultural pests and diseases, as well as the impacts
of those changes on socioeconomic variables. This understanding can inform the development
of adaptation policies and the identification of adaptation recommendations.

Fig. 1 Historical annual precipitation trends (1982–2005) in the region in millimeters per year. The panels
correspond to the following databases. a Global Precipitation Climatology Project (GPCP; Adler et al. 2003). b
CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997). c NCEP/NCAR reanalysis (Kalnay et al.
1996). d Chen et al. (2002) dataset. e Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS;
Pedreros et al. 2010). Only significant trends at the 95% confidence are shown in color. Satellite precipitation
indices show a decrease in precipitation over eastern Nicaragua. This drying is not reflected in the instrumental
record (but there is no station data for that region) or a modeled reanalysis (which is constrained by temperature
observations but not precipitation). From Hidalgo (2013)

Fig. 2 Projected temperature
change across 36 GCM
simulations to 2070 (RCP8.5)
relative to historical baseline
(changes in degrees C). From
Imbach et al. (2012)
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In Central America, the most important cash and subsistence crops in terms of cultivated
area are maize (34%), coffee (16%), beans (14%), sugar cane (8.4%), rice (5.8%), sorghum
(4.9%), cocoa (0.5%), plantain (1.1%), and cassava (0.9%), according to national agricultural
censuses (Bouroncle et al. 2016). Of these crops, coffee is the most studied using impact
models, with maize the second most studied, followed by other crops.

Coffee is among the most important cash crops in the region, and an array of modeling
studies suggest that most of the countries in the region will lose yield and area suitable for
coffee cultivation due to climate change (Table 1). Several regional studies of the projected
impacts of climate change on coffee are available, and all point to an overall and severe
decrease in suitability for coffee (Baca et al. 2014; Ovalle-Rivera et al. 2015, Laderach et al.
2013, Bunn et al. 2015). El Salvador and Costa Rica have the highest percentage of their land
affected by decreases in suitability of 40% or more, while Guatemala and Honduras are
projected to experience lower losses (Baca et al. 2014, Laderach et al. 2013). Temperature is
what most likely determines these severe and negative changes in suitability for coffee
(Ovalle-Rivera et al. 2015) as this crop has a relatively small thermal range compared to other
crops (FAO 2015). One study of coffee yield under climate change shows a reduction in yield
of between 6.4% in 2020 and 38% in 2100 in all Central American countries (CEPAL y CAC/
SICA 2014a).

Among important subsistence crops (Table 2), declines in maize suitability are noted.
Modeling of maize indicates a projected decline in yield across most parts of the region
(Schmidt et al. 2012; Ordaz et al. 2013; CEPAL y CAC/SICA 2014a, b; Gourdji et al. 2015).
National modeling efforts support the Central America-wide regional models (Confalonieri
et al. 2012), showing declines of up to 4% in harvested area in Nicaragua (Gourdji et al. 2015),
up to 22% in Belize (Tzul et al. 1997), and up to 34% in yield for El Salvador, Guatemala,
Honduras, and Nicaragua (Schmidt et al. 2012).

Less is known about how the suitability and productivity of beans, cocoa, cassava,
sorghum, and rice will be affected by climate change in the region. Future yield projections
for beans vary, with one regional study showing a decrease in yield of up to 19.3% in Central
America (CEPAL y CAC/SICA 2014a, b), whereas subnational and national studies show an
increase (Schmidt et al. 2012; Pazos 2004) or decrease (Gourdji et al. 2015; Tzul et al. 1997) in
yield. A global study (Friedman, unpublished) on cocoa shows that on average, the Caribbean
basin of Central America will lose areas of suitability. For cassava, one study projects an
overall yield decrease from 1 to 10% across most of its current distribution (Ceballos et al.
2011). For sorghum, decreases of up to 15% in suitable area are projected for the Pacific
lowlands and increases of up to 40% are expected in mountainous areas and on the Atlantic
Coast (Ramírez-Villegas et al. 2013). Decreases in yield are also projected for rice across all
Central American countries (Confalonieri et al. 2012; CEPAL y CAC/SICA 2014b; Tzul et al.
1997).

These modeling results are complemented by the strong perception among smallholder
farmers in the region that climate change and variability are already reducing crop productivity,
causing crop losses, and affecting water availability (Tucker et al. 2009; Eakin et al. 2013).
There have been significant changes in the susceptibility of agriculture to pests and diseases
related to climate change (Rosenzweig et al. 2001), including coffee leaf rust which has
devastated production in the region in recent years and which is influenced by changing
climatic conditions, among other factors (Avelino et al. 2015). Extreme weather events—
particularly strong storms and hurricanes—have reduced crop yields, increased soil erosion,
and resulted in floods and landslides (UNEP-ECLAC 2010). The loss of agricultural
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Table 1 Studies assessing impacts of climate change on cash crops grown by smallholder farmers in Central
America

Crop
(% of
cover
area)

Target
countries

Reference Suitability Yield Scope Resolution Temporal
scale

Coffee
(16)

El Salvador,
Nicaragu-
a, and
Guatema-
la

Baca et al.
(2014)

Reduction of 40% or
more in suitability
of a high
percentage of land
in El Salvador and
Nicaragua, and up
to 20% in the
highest percentage
of land in
Guatemala

N, SN H 2050

Costa Rica,
Guatema-
la, and
Honduras

Ovalle-Rivera
et al.
(2015)

Reduction of 20% in
suitable areas in
Costa Rica, 19% in
Guatemala, and
27% in Honduras

Global H 2050

El Salvador,
Nicaragu-
a, Costa
Rica,
Guatema-
la, and
Honduras

Läderach et al.
(2013)

Reduction of 40% or
more in suitability
of a high
percentage of land
in El Salvador,
Nicaragua, and
Costa Rica,
between 20 and
40% in Honduras,
and up to 20% in
Guatemala

R, N H 2050

Central
America

Bunn et al.
(2015)

Reductions in
suitability in all
countries. Small
areas in Guatemala,
Honduras, and
Costa Rica
becoming slightly
more suitable

N H 2050

Central
America

CEPAL y
CAC/SICA
(2014a)

Reduction
between
6.4% in
2020 and
38.3% in
2100 in
all
countries

R H 2020,
2050,
2070,
2100

Citrus
(22)

Belize Santos and
Garcia
(2008)

Reduction of
3% by
2028 and
a 5%
reduction
by 2050

N Not
speci-
fied

2028,
2050

Cacao
(1)

Nicaragua Martinez
(2012)

Decrease in overall
suitability in all
Nicaragua

SN, N H 2050
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productivity has had important impacts on smallholder farmers, resulting in lower incomes,
reduced food security, malnutrition and migration of farmers to other areas (Castellanos et al.
2012; Robalino et al. 2015).

5 Projected changes in biodiversity and ecosystem services due to climate
change

Climate change will affect ecosystems and the provision of ecosystem services such as clean
water or pollination to a wide range of users across a broad range of sectors in Central
America. Those in poor rural areas are expected to suffer the largest impacts due to their
strong dependence on ecosystems and ecosystem services (Fischlin et al. 2007).

Assessments of future ecosystem change in Central America project an expansion of drier
ecosystem types (e.g., dry forests) eastward expanding from Pacific lowlands toward the more
humid Caribbean. Leaf area index is projected to decline across all ecosystems, indicating
changes in forest canopy density, if not forest type (Imbach et al. 2012). Parts of central
Honduras and Guatemalan highlands might lose the potential to sustain tree cover due to drier
conditions (Imbach et al. 2012). Modeling for Costa Rica using Holdridge life zones shows
higher sensitivity of ecosystems in tropical lowlands and highland areas, with less sensitivity in
ecosystems at intermediate elevations (Enquist 2002).

There are already plot-level observation studies that indicate these changes are underway.
For example, studies at Panama’s Barro Colorado Island show an increasing representation of
drought-tolerant species (Feeley et al. 2011). Similarly, forests in northeastern Costa Rica have
grown more slowly due to lower precipitation and increased minimum temperatures (Clark
et al. 2010). Dry tropical forests in Costa Rica’s northern Pacific region are showing increases
in deciduous canopy species in response to drying (Enquist and Enquist 2011).

Studies of climate change impacts on biodiversity suggest that tropical lowland species will
suffer the greatest range shifts and loss of range, causing local extinctions or decreasing
lowland diversity. This is due to upslope range migrations in response to warmer climate
conditions and biotic attrition (higher numbers of emigration than immigration species)
(Feeley and Silman 2010). However, some species (e.g., Pinus patula and Pinus tecunumanii)
might experience a positive effect from climate change, expanding their current distributional
ranges (van Zonneveld et al. 2009). The capacity that species may have to disperse and reach

Table 1 (continued)

Crop
(% of
cover
area)

Target
countries

Reference Suitability Yield Scope Resolution Temporal
scale

Central
America

Friedman
(unpub-
lished)

Caribbean basin will
lose areas of
optimal suitability
in 2020, and areas
will be even larger
in 2050

R L 2020,
2050

N national, R regional, SN subnational, H <5 km, M 5–10 km, L >10 km
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Table 2 Studies assessing impacts of climate change on subsistence crops grown by smallholder farmers in
Central America

Crop (%
of cover
area)

Target
countries

Reference Suitability Yield Scope Resolution Temporal
scale

Maize
(34)

Honduras Pazos (2004) Reduction in
all 6
scenarios,
except B2b

SN Not
speci-
fied

Not
speci-
fied

Nicaragua Gourdji et al.
(2015)

Reduction of
4% per
decade on
harvested
area

N H CV

Central
America

CEPAL y
CAC/SICA
(2014b)

Reductions in
all
countries
between
4% in 2020
and 17.2%
in 2100 in
Central
America

R H 2020,
2050,
2070,
2100

Belize Tzul et al. (1997) Reduction
between 17
and 22%

N Not
speci-
fied

2060,
2080–2-
100

El Salvador,
Guatem-
ala,
Hondur-
as, and
Nicara-
gua

Schmidt et al
(2012)

Losses up to
34% in El
Salvador,
Guatemala,
Honduras,
and
Nicaragua

N, SN H 2025

Central
America

Confalonieri et al.
(2012)

Reduction
between 20
and 50%
without
adaption
measures
and
between 15
and 25%
with
adaption
measures in
all
countries

R, N L 2020

Beans
(14)

Guatemala Eitzinger et al.
(2011)

Small increase
in 2030 and
2050

SN, N Not
speci-
fied

2030, 2050

El Salvador,
Hondur-
as,
Nicarag-
ua, and

Schmidt et al.
(2012)

Changes
between −7
and +14%
in El
Salvador,
Honduras,

SN, N H 2025
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Table 2 (continued)

Crop (%
of cover
area)

Target
countries

Reference Suitability Yield Scope Resolution Temporal
scale

Guate-
mala

and
Nicaragua
and an
increase of
4% in
Guatemala

Honduras Pazos (2004) Increment in
most
scenarios

SN Not
speci-
fied

Not
speci-
fied

Nicaragua Gourdji et al.
(2015)

Reduction of
5% per
decade on
harvested
areas

N H CV

Belize Tzul et al. (1997) Reduction
between 14
and 19%

N Not
speci-
fied

2060,
2080–2-
100

Central
America

CEPAL y
CAC/SICA
(2014b)

Reduction
between
2.8 and
19.3% in
Central
America.
Guatemala
shows a
1.5%
increase.

R H 2020,
2050,
2070,
2100

Cassava
(1)

Central
America

Ceballos et al.
(2011)

Reduction
between 1
and 10% in
all
countries

R Not
speci-
fied

2020

Sorghum
(5)

Central
America

Ramírez-Villegas
et al. (2013)

Decreases up
to 15% in
the Pacific
lowlands.
Increases
up to 40%
in
mountain-
ous areas
and on the
Atlantic
Coast

Global H 2030

Rice (6) Central
America

Confalonieri et al.
(2012)

Reduction
between 15
and 25%
without
adaptation
measures
and
between 5

R, N L 2050
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ideal climatic conditions will depend on their dispersal ability and ability to access biological
corridors, mainly altitudinal pathways (Imbach et al. 2013).

Modeling of impacts on ecosystem services has focused on multinational modeling of
vegetation and water availability (Imbach et al. 2015). These models project that runoff is
projected to decrease substantially across Central America, with at least 20% likely reduction
over 61% of the region, due primarily to temperature impacts on evapotranspiration (Imbach
et al. 2012). Similar trends have been found in models of water availability under climate
change at the catchment scale. For example, models show up to 24% reduction in tri-national
catchments (over El Salvador, Honduras, and Guatemala) (Maurer et al. 2009); 70% in central
Nicaragua (Palmer et al. 2008), and mixed trends (+40 to −50%) in runoff in 2100 precipi-
tation change scenarios over Panama (Fabrega et al. 2013). Increased drought frequency is also
expected across the region (Hidalgo et al. 2013). Since most smallholder farmers depend to
some extent on surface water, these changes in water availability have serious ramifications for
their livelihoods.

6 Improving modeling linkages to adaptation and policy

Regional models reviewed here show major potential declines in crop suitability and yield,
changes in species and ecosystem distributions, and reduction in water availability due to
climate change. These models show that the suitability of some of the most important crops in
the region, coffee and maize, may undergo declines substantial enough to have major
economic consequences. Redistribution of species and ecosystems may result in extinctions
and loss of tourism revenue. Both smallholder and ecosystem changes may be compounded by
decreases in ecosystem services driven by climate change, particularly reductions in water
runoff (Eitzinger et al. 2013).

Table 2 (continued)

Crop (%
of cover
area)

Target
countries

Reference Suitability Yield Scope Resolution Temporal
scale

and 15%
with
adaptation
measures in
all
countries

Central
America

CEPAL y
CAC/SICA
(2014b)

Reduction
between
7% (2020)
and 30.2%
(2100) in
all coun-
tries

R H 2020,
2050,
2070,
2100

Belize Tzul et al. (1997) Reduction
between 10
and 14%

N Not
speci-
fied

2060,
2080–2-
100

N national, R regional, SN subnational, H <5 km, M 5–10 km, L >10 km
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When appropriately combined with assessments of the adaptive capacity of rural
livelihoods at community and on-farm levels to assess vulnerability, these modeling
results can be used to identify a suite of adaptation strategies and policies. On- and
off-farm adaptation strategies should help reduce the vulnerability of smallholder farmers
to decreasing subsistence and cash crop suitability, and to changes in the ecosystem
services on which farmers rely. Protected areas’ location and management can be
improved to reduce risk of extinctions and loss of ecosystem services, especially in
upland areas where increases of suitability for coffee and some other crops are expected.
Policies supporting these strategies span a range of novelty, from reinforcing the impor-
tance of policies already in place to implementing completely new actions.

Diversification in smallholder farming systems can help farmers adapt to declines in coffee
and subsistence crops with income from other crops or varieties that may be increasing in yield
or suitability as climate changes. Areas for these on-farm actions can be targeted for diversi-
fication based on results of regional modeling, for instance in areas where particular crops will
experience a decrease in suitability and/or yield.

On-farm soil moisture conservation practices could largely offset the projected neg-
ative impacts of climate change, particularly on maize yield (Schmidt et al. 2012). Those
soil management practices, such as retaining plant residue on the soil surface and
mulching, can also reduce the vulnerability of farmers to expected decreases in water
runoff and availability and provide off-farm benefits for improved water quality and
regulation to downstream users. Those practices could be implemented in areas where
maize yield and/or where water runoff and availability are expected to decrease, which
are highlighted by results of existing regional modeling. Off-farm adaptation strategies
related to the protection, restoration, and sustainable management of key ecosystems and
biodiversity can help maintain ecosystem services that small farmers rely on, such as
crop pollination and pest control, as climate changes.

Shifting species and ecosystem locations can be compensated through strategies that
represent all species and ecosystems in protected areas in both their present and likely future
locations. A strategy of revising protected areas’ boundaries and locations based on climate
change modeling can help conserve species and ecosystem services (see Fung et al. this issue).

Adaptation strategies should be supported by policies that help strengthen regional exten-
sion services to farmers, environmental planning capacities, and that afford smallholder
farmers improved access to credit. Extension services are crucial to targeted improvement of
on-farm diversification and soil moisture-retaining practices. Government extension services
in the region have declined, so support for rebuilding government services or supplementing
them with NGO on-farm extension are important in implementing strategies for climate
adaptation.

Access to credit is key for farmers and cooperatives to implementing these adaptation
strategies, as diversification and soil moisture practices often incur up-front costs in
return for long-term climate adaptation and income returns. Capacity building and
information sharing through extension services alone will be insufficient to help farmers
adapt if farmers and cooperatives do not have sufficient financial resources to help
support or improved practices.

National environmental planning can be improved by incorporating results of agricultural
and biological models. Planning can be improved by drawing on existing regional modeling
studies, collaborating with NGOs and research institutions on additional studies, and improv-
ing government or NGO in-house spatial planning and modeling capabilities. This improved
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spatial planning can reduce extinctions, improve conservation of areas key to pollinators and
watersheds, and protect ecosystem services important to the livelihoods of farmers. Improved
spatial planning for climate change can help target diversification, soil moisture practices, and
other adaptation strategies to communities and areas most in need and improve the provision
of on- and off-farm services (e.g., Bouroncle et al. 2016; Fung et al. this issue; Holland et al.
this issue).

7 Future research priorities

Important research priorities emerge from this analysis. First, advanced crop models can build
on the robust set of early results. While there are suitability analyses for the most important
crops in the region, there is still a need for more sophisticated yield models for most major
crops and for suitability and yield modeling for the less well-studied crops. Yield analyses are
more data intensive, but the data exist for many parts of the region and additional investment is
warranted to help confirm or test suitability model results. This process is already underway
for maize, but similar efforts are needed in other key crops. Suitability and yield models are
needed that focus on actual and likely cultivated areas (rather than the whole region regardless
of land use), to get a better sense of the regional significance of area and yield losses. To plan
diversification, modeling is needed to identify which crops may replace existing crops in areas
where suitability for existing crops significantly declines due to climate change.

Second, improved biological models are essential to understanding environmental
change in the region, particularly changes in species extinctions and ecosystem services.
Virtually no models exist of species’ dispersal relative to range shifts due to climate
change in the region and the vegetation type models that exist are relatively simple.
Building on understanding of species and ecosystem movements, more sophisticated
models can explore effects on ecosystem processes, including ecosystem services and
inter-species interactions. More sophisticated models on the expected impacts of climate
change on the region’s rich biodiversity are needed to inform protected area management
and to ensure countries’ national biodiversity strategies adequately address the threat of
climate change.

Third, more information is needed on expected changes in water availability across the
region’s watersheds and the associated impacts on agriculture, communities, and other sectors.
Such information is critical for informing watershed management plans, water policies, and
payments for ecosystem services, among other policies. Modeling needs to include impacts on
groundwater and interactions between surface and groundwater withdrawals of particular
importance for the drier Pacific watershed.

Fourth, models are needed that place local to regional yield changes in context with global
changes in yield and market price. Without understanding global price changes due to climate
change, it is impossible to develop informed regional or national policy strategies that will help
maintain and increase farmer incomes. For instance, declining local coffee suitability does not
automatically equate to lowered incomes if global prices are rising (due to global suitability
declines). Strategies to support existing crops or diversification will be most effective where
they draw on information from models that put local change into global context.

Finally, much more information is needed on how climate change will affect key diseases
and pests, especially coffee leaf rust, a disease that led to a 16% decrease of the region’s coffee
production in the 2012–2013 harvest (Avelino et al. 2015). The impacts of climate change are
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likely to be more heavily impacted by these factors than by the direct effects of climate on
suitability or yield. Understanding complex climate influences on major pests and diseases is a
major research priority.

8 Conclusion

Our synthesis highlights that climate change in Central America is projected to result in
declines in crop suitability for many of the major smallholder crops, significant changes in
natural ecosystems, and associated changes in the provision of ecosystem services, particularly
water availability. These changes will have important impacts on the region’s smallholder
farmers, affecting their income, food security and livelihood strategies, and on the agricultural
sector biodiversity and national economies more generally.

Flexible adaptation strategies are needed that can address both agricultural and ecological
dimensions of change. Flexible strategies are important because of the uncertainty surrounding
precipitation change in the region and potential discrepancies between short-term variability
and longer term trends. Until GCMs can better represent the sub-tropical high of the North
Atlantic, ENSO, and other teleconnections, adaptation must be prepared for the consequences
of either increases (flooding) or decreases (drought) in precipitation. Addressing agricultural
and ecological adaptation in an integrated manner is important because of the interconnected-
ness of ecosystem services and smallholder agriculture in the region.

Intermediaries are needed to bridge the gap between modeling of projected climate impacts
and action on the ground. Government policies and programs should reach out to small
farmers and help them adapt to climate change, by strengthening the ability of extension
services to use modeling results, providing information on likely crop and ecosystem changes
and their global context, promoting sustainable agricultural practices that have adaptation
benefits, and providing incentives that reward building farm and ecosystem resilience. NGOs
working directly with farmers play a valuable role in helping realize the full potential of
adaptation strategies on the ground, particularly in light of the weakening of government
agricultural extension services. Finally, researchers and modelers need to produce fine-scale
models relevant to building adaptation capacity on-farm and climate-sensitive practices. These
may be conceptual models with simple data needs, rather than GCM-driven simulations. As
evidence from results stemming from ground-based measurements and modeling efforts, major
climate-driven changes are occurring in the region, making it crucial for scientists and
practitioners to work together to find flexible solutions.
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